Random Sets pp 165-183 | Cite as

Cramér—Rao Type Bounds for Random Set Problems

  • Fred E. Daum
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 97)


Two lower bounds on the error covariance matrix are described for tracking in a dense multiple target environment. The first bound uses Bayesian theory and equivalence classes of random sets. The second bound, however, does not use random sets, but rather it is based on symmetric polynomials An interesting and previously unexplored connection between random sets and symmetric polynomials at an abstract level is suggested. Apparently, the shortest path between random sets and symmetric polynomials is through a Banach space.

Key words

Bounds on Performance Cramér—Rao Bound Estimation Fuzzy Logic Fuzzy Sets Multiple Target Tracking Nonlinear Filters Random Sets Symmetric Polynomials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F.E. DaumBounds on performance for multiple target trackingIEEE Transactions on Automatic Control, 35 (1990), pp. 443–446.zbMATHCrossRefGoogle Scholar
  2. [2]
    I.R. GoodmanFuzzy sets as equivalence classes of random setsFuzzy Sets and Possibility Theory (R.R. Yager, ed.), pp. 327–343, Pergamon Press, 1982.Google Scholar
  3. [3]
    I.R. Goodman and H.T. NguyenUncertainty Models For Knowledge-Based SystemsNorth-Holland Publishing, 1985.Google Scholar
  4. [4]
    I.R. GoodmanAlgebraic and probabilistic bases for fuzzy sets and the development of fuzzy conditioningConditional Logic in Expert Systems (I.R. Goodman, M.M. Gupta, H.T. Nguyen, and G.S. Rogers, eds.), North-Holland Publishing, 1991.Google Scholar
  5. [5]
    K. Hestir, H.T. Nguyen, and G.S. RogersA random set formalism for evidential reasoningConditional Logic in Expert Systems (I.R. Goodman, M.M. Gupta, H.T. Nguyen, and G.S. Rogers, eds.), pp. 309–344, North-Holland Publishing, 1991.Google Scholar
  6. [6]
    B. KoskoFuzzy ThinkingHyperion Publishers, 1993.Google Scholar
  7. [7]
    G. MatheronRandom Sets and Integral GeometryJohn Wiley&Sons, 1975.Google Scholar
  8. [8]
    D.G. KendallFoundations of a theory of random setsStochastic Geometry (E.F. Harding and D.G. Kendall, eds.), pp. 322–376, John Wiley & Sons, 1974.Google Scholar
  9. [9]
    T. NorbergConvergence and existence of random set distributionsAnnals Probability, 32 (1984), pp. 331–349.MathSciNetGoogle Scholar
  10. [10]
    H.T. NguyenOn random sets and belief functionsJournal of Mathematical Analysis and Applications, 65 (1978), pp. 531–542.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    R.B. WashburnReview of bounds on performance for multiple target tracking(unpublished), March 27, 1989.Google Scholar
  12. [12]
    F.E. DaumA system approach to multiple target trackingMultitargetMultisensor Tracking, Volume II (Y. Bar-Shalom, ed.), pp. 149–181, Artech House, 1992.Google Scholar
  13. [13]
    Fuzziness vs.Probability -Nth RoundSpecial Issue of IEEE Transactions on Fuzzy Systems, 2 (1994).Google Scholar
  14. [14]
    D.V. LindleyComments on `The efficacy of fuzzy representations of uncertainty’Special Issue of IEEE Transactions on Fuzzy Systems, 2 (1994), p. 37.Google Scholar
  15. [15]
    J.M. MendelFuzzy logic systems for engineering: A tutorialProceedings of the IEEE, 83 (1995), pp. 345–377.CrossRefGoogle Scholar
  16. [16]
    N. Wiener and A. WintnerCertain invariant characterizations of the empty setJ.T. Math, (New Series), II (1940), pp. 20–35.Google Scholar
  17. [17]
    V.E. BenesExact finite—dimensional filters for certain diffusions with nonlinear driftStochastics, 5 (1981), pp. 65–92.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    V.E. BenesNew exact nonlinear filters with large Lie algebrasSystems and Control Letters, 5 (1985), pp. 217–221.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    V.E. BenesNonlinear filtering: Problems examples applicationsAdvances in Statistical Signal Processing, Vol. 1, pp. 1–14, JAI Press, 1987.Google Scholar
  20. [20]
    F.E. DaumExact finite dimensional nonlinear filters IEEE Trans. Automatic Control31 (1986), pp. 616–622.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    F.E. DaumExact nonlinear recursive filtersProceedings of the 20thConference on Information Sciences and Systems, pp. 516–519, Princeton University, March 1986.Google Scholar
  22. [22]
    F.E. DaumNew exact nonlinear filtersBayesian Analysis of Time Series and Dynamic Models (J.C. Spall, ed.), pp. 199–226, Marcel Dekker, New York, 1988.Google Scholar
  23. [23]
    F.E. DaumSolution of the Zakai equation by separation of variablesIEEE Trans. Automatic Control, 32 (1987), pp. 941–943.zbMATHCrossRefGoogle Scholar
  24. [24]
    F.E. Daum, Newexact nonlinear filters: Theory and applicationsProceedings of the SPIE Conference on Signal and Data Processing of Small Targets, pp. 636–649, Orlando, Florida, April 1994.Google Scholar
  25. [25]
    F.E. DaumBeyond Kalman filters: Practical design of nonlinear filtersProceedings of the SPIE Conference on Signal and Data Processing of Small Targets, pp. 252–262, Orlando, Florida, April 1995.Google Scholar
  26. [26]
    A.H. JazwinskiStochastic ProcessesandFiltering TheoryAcademic Press, New York, 1970.zbMATHGoogle Scholar
  27. [27]
    G.C. SchmidtDesigning nonlinear filters based on Daum’s TheoryAIAA Journal of Guidance, Control and Dynamics, 16 (1993), pp. 371–376.zbMATHCrossRefGoogle Scholar
  28. [28]
    H.W. SorensonOn the development of practical nonlinear filtersInformation Science, 7 (1974), pp. 253–270.MathSciNetzbMATHGoogle Scholar
  29. [29]
    H.W. SorensonRecursive estimation for nonlinear dynamic systemsBayesian Analysis of Time Series and Dynamic Models (J.C. Spall, ed.), pp. 127–165, Marcel Dekker, New York, 1988.Google Scholar
  30. [30]
    L.F. Tam, W.S. Wong, and S.S.T. YauOn a necessary and sufficient condition for finite dimensionality of estimation algebrasSIAM J. Control and Optimization, 28 (1990), pp. 173–185.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    F.E. DaumCramér—Rao bound for multiple target trackingProceedings of the SPIE Conference on Signal and Data Processing of Small Targets, Vol. 1481, pp. 582–590, 1991.Google Scholar
  32. [32]
    E. KamenMultiple target tracking based on symmetric measurement equationsProceedings of the American Control Conference, pp. 263–268, 1989.Google Scholar
  33. [33]
    R.L. Bellaire and E.W. KamenA new implementation of the SME filterProceedings of the SPIE Conference on Signal and Data Processing of Small Targets, Vol. 2759, pp. 477–487, 1996.Google Scholar
  34. [34]
    S. SmaleThe topology of algorithmsJournal of Complexity, 5 (1986), pp. 149–171.MathSciNetGoogle Scholar
  35. [35]
    A. WilesModular elliptic curves and Fermat’s last theoremAnnals of Mathematics, 141 (1995), pp. 443–551.MathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    Seminar on FLTedited by V.K. Murty, CMS Conf. Proc. Vol. 17, AMS 1995.Google Scholar
  37. [37]
    M. KacStatistical Independence in Probability Analysis and Number TheoryMathematical Association of America, 1959.Google Scholar
  38. [38]
    M. KacProbability Number Theory and Statistical Physics: Selected PapersMIT Press, 1979.zbMATHGoogle Scholar
  39. [39]
    R.W. BrockettDynamical systems that sort lists diagonalize matrices and solve linear programming problemsProceedings of the IEEE Conf. on Decision and Control, pp. 799–803, 1988.CrossRefGoogle Scholar
  40. [40]
    N. Karmarkar, Anew polynomial time algorithm for linear programmingCornbinatorica, 4 (1984), pp. 373–395.MathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    M.R. SchroederNumber Theory in Science and CommunicationSpringer-Verlag, 1986.Google Scholar
  42. [42]
    A. WeilNumber TheoryBirkhäuser, 1984.Google Scholar
  43. [43]
    D.P. BERTSEKASThe auction algorithm: A distributed relaxation method for the assignment problemAnnals of Operations Research, 14 (1988), pp. 105–123.MathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    M. Waldschmidt, P. Moussa, J.-M. Luck, and C. Itzykson (eds.)From Number Theory to PhysicsSpringer-Verlag, 1992.Google Scholar
  45. [45]
    R.M. YoungExcursions in Calculus: An Interplay of the Continuous and the DiscreteMathematical Association of America, 1992.Google Scholar
  46. [46]
    B. Booss and D.D. BleeckerTopology and Analysis: The Atiyah-Singer Index Formula and Gauge-Theoretic PhysicsSpringer-Verlag, 1985.Google Scholar
  47. [47]
    T.M. ApostolIntroduction to Analytic Number TheorySpringer-Verlag, 1976.Google Scholar
  48. [48]
    I. MacdonaldSymmetric Functions and Hall Polynomials2nd Edition, Oxford Univ. Press, 1995.zbMATHGoogle Scholar
  49. [49]
    G.H. Hardy and E.M. WrightAn Introduction to the Theory of Numbers5th Edition, Oxford Univ. Press, 1979.zbMATHGoogle Scholar
  50. [50]
    M.R. SchroederNumber Theory in Science and CommunicationSpringer-Verlag, New York, 1990.Google Scholar
  51. [51]
    D. Coppersmith and S. WinogradMatrix multiplication via arithmetic progressionsProceedings of the 19th ACM Symposium on Theory of Computing, pp. 472–492, ACM 1987.Google Scholar
  52. [52]
    A. CayleyOn the theory of the analytical forms called treesPhilosophical Magazine, 4 (1857), pp. 172–176.Google Scholar
  53. [53]
    H.N.V. TemperleyGraph TheoryJohn Wiley & Sons, 1981.Google Scholar
  54. [54]
    Béla BollobásGraph TheorySpringer-Verlag, 1979.Google Scholar
  55. [55]
    Béla BollobÁsRandom GraphsAcademic Press, 1985.Google Scholar
  56. [56]
    V.F. KolchinRandom MappingsOptimization Software Inc., 1986.Google Scholar
  57. [57]
    J. STILLWELLClassical Topology and Combinatorial Group Theory2nd Edition, Springer-Verlag, 1993.Google Scholar
  58. [58]
    L.H. KauffmanOn KnotsPrinceton University Press, 1987.Google Scholar
  59. [59]
    H. WielandtFinite Permutation GroupsAcademic Press, 1964.zbMATHGoogle Scholar
  60. [60]
    D. PassmanPermutation GroupsBenjamin, 1968.zbMATHGoogle Scholar
  61. [61]
    O. OreTheory of GraphsAMS, 1962.zbMATHGoogle Scholar
  62. [62]
    G. Polya`Kombinatorische anzahlbstimmungen für gruppen graphen and chemische verbindungenActa Math. 68 (1937), pp. 145–254.CrossRefGoogle Scholar
  63. [63]
    G. De B. RobinsonRepresentation Theory of the Symmetric GroupUniversity of Toronto Press, 1961.zbMATHGoogle Scholar
  64. [64]
    J.D. Dixon and B. MortimerPermutation GroupsSpringer-Verlag, 1996.zbMATHCrossRefGoogle Scholar
  65. [65]
    W. Magnus, A. Karrass, and D. SolitarCombinatorial Group TheoryDover Books Inc., 1976.Google Scholar
  66. [66]
    J.-P. SerreTreesSpringer-Verlag, 1980.Google Scholar
  67. [67]
    H. RadströmAn embedding theorem for spaces of convex setsProceedings of the AMS, pp. 165–169, 1952.Google Scholar
  68. [68]
    M. Puri and D. RalescuLimit theorems for random compact sets in Banach spacesMath. Proc. Cambridge Phil. Soc., 97 (1985), pp. 151–158.MathSciNetzbMATHCrossRefGoogle Scholar
  69. [69]
    E. Gine, M. Hahn, and J. ZinnLimit Theorems for Random SetsProbability in Banach Space, pp. 112–135, Springer-Verlag, 1984.Google Scholar
  70. [70]
    K.L. Bell, Y. Steinberg, Y. Ephraim, and H.L. Van TreesExtended ZivZakai lower bound for vector parameter estimationIEEE Trans. Information Theory, 43 (1997), pp. 624–637.zbMATHCrossRefGoogle Scholar
  71. [71]
    Relations between combinatorics and other parts of mathematicsProceedings of Symposia in Pure Mathematics, Volume XXXIV, American Math. Society, 1979.Google Scholar
  72. [72]
    H.W. LevinsonCayley diagramsMathematical Vistas, Annals of the NY Academy of Sciences, Volume 607, pp. 62–88, 1990.MathSciNetCrossRefGoogle Scholar
  73. [73]
    I. Grossman and W. MagnusGroups and their GraphsMathematical Association of America, 1964.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Fred E. Daum
    • 1
  1. 1.Raytheon CompanyMarlboroughUSA

Personalised recommendations