Information Processing Mechanisms in the Mammalian Brain: Analysis of Spatio-temporal Neural Response in the Auditory Cortex

  • Kohyu Fukunishi
Part of the Statistics for Engineering and Physical Science book series (ISS)


The mammalian brain can be regarded as a huge and complicated dynamical information processing system composed of single units called neurons or nerve cells. The mechanisms of brain function have, traditionally, been elucidated with the aid of single microelectrodes to measure the responses in single neurons. This approach, however, seems to be insufficient for identifying the complex dynamical system as the brain. An optical recording method, on the other hand, has made possible real-time multipoint measurement of the evoked neural activities distributed in the brain. This new recording method can be used to explore new mechanisms responsible for the dynamical neural processing activities of the brain. Such neural activities always exhibit nonlinear and nonstationary characteristics, and so straight forward application of any system identification theory to the neural system is inappropriate. On the other hand, many industrial dynamical systems, which involve nonstationary and nonlinear dynamical phenomena, exquisitely are modeled and controlled by using the extensive linear theory regarding to system identification and control. From this fact, there is a possibility that a linear identification theory such as time series analysis could be used in exploring the functioning of a nonlinear and nonstationary brain.


Neural Activity Auditory Cortex Power Spectrum Density Primary Auditory Cortex Optical Recording 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaike, H. and Nakagawa, T. (1972), “Stochastic Analysis and Control of a Dynamical System,” Science-sya (in Japanese)Google Scholar
  2. Akaike, H. (1974), “A new look at the statistical model identification,” IEEE Transactions on Automatic Control, AC-19, 716–723.MathSciNetCrossRefGoogle Scholar
  3. De Weer, P. and Salzberg, B. M., (eds.), (1986), “Optical Methods in Cell Physiology,” Wiley-Interscience Google Scholar
  4. Engel, A. K., Konig, P., Kreiter, A. K., Schillen, T. B. and Singer, W. (1992), “Temporal coding in the visual cortex: new vistas on integration in the nervous system,” Trends in Neuroscience, Vol. 15, 218–226.CrossRefGoogle Scholar
  5. Hubel, D. H. and Wiesel, T. N. (1965), “Binocular interaction in striate cortex of kitten reared with artificial squint,” J. Neurophysiology, Vol. 28, 1041–1059.Google Scholar
  6. Fukunishi, K. (1977), “Diagnostic analysis of a nuclear power plant using multivariate autoregressive processes,” Nuclear Science and Engineering, Vol. 62, 215–225.Google Scholar
  7. Fukunishi, K., Murai, N. and Uno, H. (1992), “Dynamical characteristics of the auditory cortex of Guinea pig observed with multichannel optical recording,” Biological Cybernetics, Vol. 67, 501–509.CrossRefGoogle Scholar
  8. Fukunishi, K., Uno, H. and Murai, N. (1993a), “Spatio-temporal observation of guinea pig auditory cortex with optical recording, Japanese Journal of Physiology, Vol. 43, s 61–66.Google Scholar
  9. Fukunishi, K., Murai, N. and Uno, H. (1993b), “Cortical neural networks revealed by spatio-temporal neural observation and analysis on Guinea pig auditory cortex,” Proceedings of 1993 International Joint Conference on Neural Networks, IJCNN-93-Nagoya, 73–76.Google Scholar
  10. Fukunishi, K. and Murai, N. (1995), “Temporal coding mechanism of Guinea pig auditory cortex as revealed by optical imaging and its pattern time series analysis,” Biological Cybernetics, Vol. 72, 463–473.zbMATHCrossRefGoogle Scholar
  11. Fukunishi, K., Tokioka, R., Miyashita, T. and Murai, N.(1997),”Species-specific vocalization in guinea pig auditory cortex observed by dye optical recording, Acoustic Signal Processing in the Central Auditory System: Syka, J. (ed.),” Plenum Publishing Co., 443–449.Google Scholar
  12. Fukunishi, K., Murai, N. and Tokioka, R.(1998),”On the stochastic neural characteristics of spontaneous activity and evoked response revealed by optical imaging and time series analysis in guinea pig auditory cortex, (to appear).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1999

Authors and Affiliations

  • Kohyu Fukunishi
    • 1
  1. 1.Advanced Research laboratoryHitachi, Ltd.Hatoyama, SaitamaJapan

Personalised recommendations