Advertisement

Collective Choice Probabilities

  • Ákos Münnich
Chapter
  • 176 Downloads
Part of the Recent Research in Psychology book series (PSYCHOLOGY)

Abstract

This paper studies probabilistic collective choice behavior. The concept of the composition rule for forced choice probabilities is determined in terms of the choice probabilities of choosing a stimulus from a finite set of stimuli that is “composed” of the unforced elementary response probabilities. This study starts, as usual, from the individual level of choice and extends our composition rule to the case of collective choice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrow, K.J. (1963). Social choice and individual values. New York: John Wiley.Google Scholar
  2. Bezembinder, T. (1989) Social choice theory and practice. In Ch. Vlek & G. Cvetkovich (Eds.), Social decision methodology for technological projects (pp. 15–37).Google Scholar
  3. Fishburn, P.C. (1975). A probabilistic model of social choice: Comment. Review of Economic Studies, 42, 297–301.CrossRefGoogle Scholar
  4. Fishburn, P.C, & Gehrlein, W.V. (1977). Towards a theory of elections with probabilistic preferences. Econometrica, 45, 1907–1924.CrossRefGoogle Scholar
  5. French S. (1986). Decision theory: An introduction to the mathematics of rationality. Chichester: Ellis Horwood Limited.Google Scholar
  6. Intrilligator, M.D. (1973). A probabilistic model of social choice. Review of Economic Studies, 40, 665–681.CrossRefGoogle Scholar
  7. Luce, R.D. (1959). Individual choice behavior. New York: Wiley.Google Scholar
  8. Marley, A.A. (1990). Aggregation theorems and multidimensional stochastic choice models. Theory and Decision, 30, 245–272.CrossRefGoogle Scholar
  9. Marley, A.A. (in press). Aggregation theorems and the combination of probabilistic rank orders, In D. E. Critchlow, M. A. Flinger, & J. S. Verducci (Eds.), Probability models and data analysis for ranking data. New York: Springer-Verlag.Google Scholar
  10. Münnich, A. (in press). Probabilistic choice systems, Proceedings of the 7 th Meeting of the Psychometric Society, Trier, July 1991.Google Scholar
  11. Pattanaik, P.K., & Peleg, B. (1986) Distribution of power under stochastic social choice rules. Econometrica, 54, 909–921.CrossRefGoogle Scholar
  12. Sen, A.K. (1970). Collective choice and social welfare. San Francisco: Holden-Day.Google Scholar
  13. Sen, A.K. (1977). Social choice theory: A re-examination. Econometrica, 45, 53–89.CrossRefGoogle Scholar
  14. Van Blokland-Vogelesang, A.W. (1990). Unfolding and group consensus ranking for individual preferences. Doctoral thesis. Leiden: University of Leiden.Google Scholar
  15. Williamson, O.E., & Sargent, T.J. (1967). Social choice: A probabilistic approach. Economic Journal, 77, 797–813.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Ákos Münnich
    • 1
  1. 1.Kossuth Lajos UniversityDebrecenHungary

Personalised recommendations