Natural Sampling: Rationality without Base Rates

  • Gernot D. Kleiter
Part of the Recent Research in Psychology book series (PSYCHOLOGY)


The Bayesian classification of single cases into classes is investigated. The neglect of class base rates is usually considered to be a fundamental violation of the principles of rationality and, in human judgment, is called ‘the base rate fallacy’. This paper analyzes an important special sampling condition in which the base rates actually turn out to be irrelevant in estimating classification probabilities. It is shown that the base rates do not affect the precision of the estimates of classification probability. This precision is modeled by a second-order probability distribution. Implications for the design of artificial and for the modeling of natural knowledge systems are discussed.


Conditioned Stimulus Base Rate Unconditioned Stimulus Beta Distribution Natural Sampling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitchison, J., & Dunsmore, I. R. (1975). Statistical prediction analysis, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. Ajzen, I. (1977). Intuitive theories of events and the effects of base rate information on prediction. Journal of Personality and Social Psychology, 35, 303–314.CrossRefGoogle Scholar
  3. Bar-Hillel, M. (1980). The base rate fallacy in probability judgments. Acta Psychologica, 44, 211–213.CrossRefGoogle Scholar
  4. Bar-Hillel, M. (1982). The base rate fallacy controversy. In R. W. Scholz (Ed.), Decision making under uncertainty (pp. 39–61 ). Amsterdam: Elsevier.Google Scholar
  5. Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975). Discrete multivariate analysis. Cambridge, MA: MIT Press.Google Scholar
  6. Christensen-Szalanski, J. J. J., & Beach, L. R. (1982). Experience the base rate fallacy. Organizational Behavior and Human Performance, 29, 270–278.PubMedCrossRefGoogle Scholar
  7. Cosmides, L., & Tooby, J. (1992). Are humans good intuitive statisticians after all? Santa Barbara: Department of Psychology, University of California, Santa Barbara.Google Scholar
  8. de Finetti, B. (1974). Theory of probability (Vol. 1 ). London: Wiley.Google Scholar
  9. Einhorn, H. J., & Hogarth, R. M. (1985). Ambiguity and uncertainty in probabilistic inference. Psychological Review, 92, 433–461.CrossRefGoogle Scholar
  10. Evans, J. St. B. T. (1989). Bias in human reasoning. Hove: Erlbaum.Google Scholar
  11. Fischhoff, B., & Bar-Hillel, M. (1984). Diagnosticity and base-rate effect. Memory and Cognition, 12, 402–410.CrossRefGoogle Scholar
  12. Fischhoff, B., Slovic, B., & Lichtenstein, S. (1979). Subjective sensitivity analysis. Organizational Behavior and Human Performance, 23, 339–359.CrossRefGoogle Scholar
  13. Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: MIT Press.Google Scholar
  14. Gigerenzer, G. (1991). How to make cognitive illusions disappear: Beyond “heuristics and biases”. European Review of Social Psychology, 2, 83–115.CrossRefGoogle Scholar
  15. Gärdenfors P., & Sahlin, N.-E. (1982). Unreliable probabilities, risk taking, and decision making. Synthese, 53, 361–386.CrossRefGoogle Scholar
  16. Gröbner, W., & Hofreiter, N. (Eds.) (1966). Integraltafel (zweiter Teil). Bestimmte Integrale. Wien-New York: Springer-Verlag.Google Scholar
  17. Johnson-Laird, P. N., & Byrne, R. M. J. (1991). Deduction. Hove: Erlbaum.Google Scholar
  18. Kleiter, G. D. (1992). Bayesian diagnosis by expert systems. Artificial Intelligence, 54, 1–32.CrossRefGoogle Scholar
  19. Kahneman, D., Slovic, P., & Tversky, A. (Eds.). (1982). Judgment under uncertainty: Heuristics and biases. Cambridge: Cambridge University Press.Google Scholar
  20. Macnamara, J. (1986). A border dispute. Cambridge, MA: MIT Press.Google Scholar
  21. Manis, M., Dovalina, I., Avis, N. E., & Cardoze, S. (1980). Base-rates can affect individual predictions. Journal of Personality and Social Psychology, 38, 231–248.CrossRefGoogle Scholar
  22. Ofir, C. (1988). Pseudodiagnosticity in judgment under uncertainty. Organizational Behavior and Human Decision Processes, 42, 343–363.CrossRefGoogle Scholar
  23. Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo, CA: Morgan Kaufmann.Google Scholar
  24. Sahlin, N.-E. (1990). On higher order beliefs. Lund, Sweden: Department of Philosophy, University of Lund.Google Scholar
  25. Sahlin, N.-E., & Gärdenfors, P. (1983). Decision making with unreliable probabilities. British Journal of Mathematical and Statistical Psychology, 36, 240–251.CrossRefGoogle Scholar
  26. Shanks, D. R. (1992). Connectionist acounts of the inverse base-rate effect in categorization. Connection Science, 4, 3–18.CrossRefGoogle Scholar
  27. Spiegelhalter, D. J., & Lauritzen, S. L. (1990). Techniques for bayesian analysis in expert systems. Annals of Mathematics and Artificial Intelligence, 2, 353–366.CrossRefGoogle Scholar
  28. Spiegelhalter, D. J. (1986). A statistical view of uncertainty in expert systems. In W. Gale (Ed.), Artificial intelligence and statistics (pp. 7–56 ). Reading: Addison Wesley.Google Scholar
  29. Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 1124–1131.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Gernot D. Kleiter
    • 1
  1. 1.Department of PsychologyUniversity of SalzburgSalzburgAustria

Personalised recommendations