Advertisement

New trends in the studies about the metabolism of pesticides in plants

  • Jean Rouchaud
  • Joseph A. Meyer
Conference paper
Part of the Residue Reviews book series (RECT, volume 82)

Abstract

During the past 15 years, many reviews have been published concerning the metabolism of pesticides in plants. They usually study the problem according to the different types of pesticides (Frear et al. 1972 a and b, Kearney 1975, Klein 1972, Kuhr 1976, Menn 1972, Naylor 1976, Sijpesteijn et al. 1976), or according to the different types of biochemical reactions which generate the degradation products (Baldwin 1977, Matsunaka 1972, Menn and Still 1977). These last times, more and more new types of pesticides are studied; these studies show that the previous generalizations frequently do not correspond to reality. The present work studies the factors which influence the biochemical pathways of pesticide metabolism, the rate of metabolism, and the possible phytosanitary and toxicological properties of the metabolites. This work is based on recent researches; it thus shows the new trends of the studies about pesticide metabolism in plants.

Keywords

Cotton Plant Peanut Plant Sugar Beet Plant Foreign Compound Purple Nutsedge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin, B. C.: Xenobiotic metabolism in plants. In D. V. Parke (ed.): Drug metabolism; from microbe to man, p. 191. London: Taylor and Francis (1977).Google Scholar
  2. Ballard, J., H. A. L. Greer, and P. W. Santelman: Pre-and postemergence activity of VCS438 herbicide. Proc. S. Weed Sci. Soc. 25, 169 (1972).Google Scholar
  3. Bartha, R., and D. Pramer: Metabolism of acylanilide herbicides. Adv. Applied Microbiol. 13, 317 (1970).CrossRefGoogle Scholar
  4. Bartley, W. J., N. R. Andrawes, E. L. Chancey, W. P. Bagley, and H. W. Spurr: The metabolism of temik aldicarb pesticide in the cotton plant. J. Agr. Food Chem. 18, 446 (1970).CrossRefGoogle Scholar
  5. Baskakov, Y. A., and V. A. Zemskaya: The possibility of transformation of carbanilic esters in plants. Fiziol. Fastenii. 6, 67 (1959).Google Scholar
  6. Begum, S., I. Schneunert, A. Haque, W. Klein, and F. Korte: Conversion of 14C-pentachloronitrobenzene in onions. Pest. Biochem. Physiol. 11, 189 (1979).CrossRefGoogle Scholar
  7. Belzile, L., R. Paquin, and C. Willemot: Absorption, translocation et métabolisme du 14C-CCC chez 1’ orge d’hiver. Can. J. Bot. 50, 2665 (1972).CrossRefGoogle Scholar
  8. Beynon, K. I., and A. N. Wright: Breakdown of the insecticide Gardona on plants and in sous. J. Sci. Food Agr. 20, 250 (1969).CrossRefGoogle Scholar
  9. Beynon, K. I., D. H. Hutson, and A. N. Wright: The metabolism and degradation of vinyl phosphate insecticides. Residue Reviews 47, 55 (1973).PubMedGoogle Scholar
  10. Beynon, K. I., T. R. Roberts, and A. N. Wright: The degradation of the herbicide benzoylprop-ethyl on the foliage of cereal seedlings. Pest. Biochem. Physiol. 4, 98 (1974 a).CrossRefGoogle Scholar
  11. Beynon, K. I., T. R. Roberts, and A. N. Wright: The degradation of the herbicide benzoylprop-ethyl following its application to wheat. Pest. Sci. 5, 429 (1974 b).CrossRefGoogle Scholar
  12. Beynon, K. I., G. Stoydin, and A. N. Wright: A comparison of the breakdown of the triazine herbicides cyanazine, atrazine, and simazine in soils and in maize. Pest. Biochem. Physiol. 2, 153 (1972).CrossRefGoogle Scholar
  13. Bier, H., and W. Dedek: Zur Frage des Abbaues von 15N-und 14C-CCC in höheren Pflanzen. Biochem. Physiol. Pflanzen (BBP) 161, 403 (1970).Google Scholar
  14. Birecka, H.: Translocation and distribution of 14C-CCC in wheat. Bull. Acad. Pol. Sci. Cl. V. Ser. Sci. Biol. 15, 707 (1967).Google Scholar
  15. Blinn, R. C.: Plant growth regulant. Biochemical behavior of CCC in wheat and in rats. J. Agr. Food Chem. 15, 984 (1967).CrossRefGoogle Scholar
  16. Blinn, R. C.: Abate insecticide. The fate of abate on bean leaves. J. Agr. Food Chem. 16, 441 (1968).CrossRefGoogle Scholar
  17. Bohring, J.: Abbau und Auswaschung von CCC bei Weizen. Z. Pflanzenernähr. Düng. Bodenk. 131, 179 (1972).CrossRefGoogle Scholar
  18. Börner, H., H. Burgemeister, and M. Schroeder: Untersuchungen über Aufnahme, Verteilung und Abbau von Harnstoffherbiziden durch Kulturpflanzen, Unkräuter und Mikroorganismen. Z. Pflanzenkr. Pflanzenschutz 76, 285 (1969).Google Scholar
  19. Bouchard, D. F., and S. S. Shaw: Probe, a new herbicide for cotton and soybeans. Proc. S. Weed Sci. Soc. 25, 150 (1972).Google Scholar
  20. Boush, G. M., and F. Matsumura: Insecticidal degradation by Pseudomonas melophtora, the bacterial symbiote of the apple maggot. J. Econ. Entomol. 60, 918 (1967).Google Scholar
  21. Bowden, B. A., D. Jordan, J. M. Moncorge, and R. G. Turner: Control of Avena spp. in wheat with WL17731. Proc. 10th Brit. Weed Control Conf. Brighton (1970).Google Scholar
  22. Bowman, J. S., and J. E. Casida: Metabolism of the systemic insecticide phorate (Thimet) in plants. J. Agr. Food Chem. 5, 192 (1957).CrossRefGoogle Scholar
  23. Bowman, M. C., and M. Beroza: Determination of fenthion and five of its metabolites in corn, grass and milk. J. Agr. Food Chem. 16, 399 (1968).CrossRefGoogle Scholar
  24. Bowman, M. C., and K. R. Hill: Determination of Dasanit and three of its metabolites in corn, grass, and milk. J. Agr. Food Chem. 19, 342 (1971).CrossRefGoogle Scholar
  25. Bull, D. L.: Metabolism of Di-Syston by insects, isolated cotton leaves and rats. J. Econ. Entomol. 58, 249 (1965).PubMedGoogle Scholar
  26. Bull, D. L.: Fate and efficacy of acephate after application to plants and insects. J. Agr. Food Chem. 27, 268 (1979).CrossRefGoogle Scholar
  27. Bull, D. L., and G. W. Ivie: Fate of diflubenzuron in cotton, soil, and rotational crops. J. Agr. Food Chem. 26, 515 (1978).CrossRefGoogle Scholar
  28. Butts, E. R., and C. L. Foy: Comparative uptake and metabolism of methazole in prickly sida and cotton. Pest. Biochem. Physiol. 4, 44 (1974).CrossRefGoogle Scholar
  29. Casida, J. E., E. C. Kimmel, H. Okhawa, and R. Okhawa: Sulfoxidation of thio-carbamate herbicides and metabolism of thiocarbamate sulfoxides in living mice and liver enzyme systems. Pest. Biochem. Physiol. 5, 1 (1975).CrossRefGoogle Scholar
  30. Cathey, H. M.: Physiology of growth-retarding chemicals. Ann. Rev. Plant Physiol. 15, 271 (1964).CrossRefGoogle Scholar
  31. Chin, W. T., G. M. Stone, and A. E. Smith: Metabolism of carboxin by barley and wheat plants. J. Agr. Food Chem. 18, 709 (1970).CrossRefGoogle Scholar
  32. Chin, W. T., N. Kucharczyk, and A. E. Smith: Nature of carboxin-derived bound residues in barley plants. J. Agr. Food Chem. 21, 506 (1973).CrossRefGoogle Scholar
  33. Coppedge, J. R., D. A. Lindquist, D. L. Bull, and H. W. Dorough: Fate of aldi-carb in cotton plants and soil. J. Agr. Food Chem. 15, 902 (1967).CrossRefGoogle Scholar
  34. Dejonckheere, W., W. Steurbaut, and R. H. Kips: Residues of quintozene, hexa-chlorobenzene, dichloran, and pentachloroaniline in soil and lettuce. Bull. Environ. Contam. Toxicol. 13, 720 (1975).PubMedCrossRefGoogle Scholar
  35. Dekhuijzen, H. M., and C. R. Vonk: The distribution and degradation of chlor-mequat in wheat plants. Pest. Biochem. Physiol. 4, 346 (1974).CrossRefGoogle Scholar
  36. De Vos, N. M., K. Dilz, and J. Bruinsma: Effects of CCC on yield and lodging of wheat. Neth. J. Agr. Sci. 15, 50 (1967).Google Scholar
  37. Dorough, H. W.: Fate of furadan in bean plants. Bull. Environ. Contam. Toxicol. 3, 164 (1968).CrossRefGoogle Scholar
  38. Dorough, H. W., D. W. Whitacre, and R. A. Cardona: Metabolism of the herbicide methazole in cotton and beans, and fate of certain of its polar metabolites in rats. J. Agr. Food Chem. 21, 797 (1973).CrossRefGoogle Scholar
  39. Eastin, E. F.: Fate of fluorodifen in resistant peanut seedlings. Weed Sci. 19, 261 (1971).Google Scholar
  40. El-Fouly, M. M., and J. Jung: Some factors which affect the degradation of CCC by wheat plant extracts. Experientia 25, 587 (1969).PubMedCrossRefGoogle Scholar
  41. Engelhardt, G., P. R. Wallnöfer, and R. Plapp: Identification of N,O-dimethyl-hydroxylamin as a microbial degradation product of the herbicide linuron. Applied Microbiol. 23, 664 (1972).Google Scholar
  42. Feckes, W.: De tarwe en haar milieu. Versl. XVII Techn. Commiss. Groningen.. p. 560 (1941).Google Scholar
  43. Frear, D. S., and G. G. Still: The metabolism of 3,4-dichloropropionanilide in plants; partial purification and properties of an aryl acylamidase from rice. Phytochem. 7, 913 (1968).CrossRefGoogle Scholar
  44. Frear, D. S., H. R. Swanson, and F. S. Tanaka: Herbicide metabolism in plants. In V. C. Runeckles and T. C. Tso (eds.): Structures and functional aspects of phytochemistry. Recent advances in photochemistry. Vol. 5, p. 225. New York: Academic Press (1972 a).Google Scholar
  45. Frear, D. S., R. H. Hodgson, R. H. Shimabukuro, and G. G. Still: Behavior of herbicides in plants. Adv. Agronomy 24, 327 (1972 b).CrossRefGoogle Scholar
  46. Frear, D. S., and H. R. Swanson: Metabolism of substituted diphenylether herbicides in plants. I. Enzymatic cleavage of fluorodifen in peas. Pest. Biochem. Physiol. 3, 473 (1973).CrossRefGoogle Scholar
  47. Frear, D. S., and H. R. Swanson: Monuron metabolism in excised Gossypium hirsutum leaves. Aryl hydroxylation and conjugation of 4-chlorophenylurea. Phytochem. 13, 357 (1974).CrossRefGoogle Scholar
  48. Frear, D. S., and H. R. Swanson: Metabolism of cisanilide by excised leaves and cell suspension cultures of carrot and cotton. Pest. Biochem. Physiol. 5, 73 (1975).CrossRefGoogle Scholar
  49. Gard, L. N., and J. L. Reynolds: Residues in crops treated with CIPC and IPC. J. Agr. Food Chem. 5, 39 (1957).CrossRefGoogle Scholar
  50. Gard, L. N., C. E. Ferguson, and J. L. Reynolds: Effect of higher application rates on crop residues of IPC and CIPC. J. Agr. Food Chem. 7, 335 (1959).CrossRefGoogle Scholar
  51. Gaughan, L. C., and J. E. Casida: Degradation of trans-and cis-permethrin on cotton and bean plants. J. Agr. Food Chem. 26, 525 (1978).CrossRefGoogle Scholar
  52. Gaughan, L. C., T. Unai, and J. E. Casida: Permethrin metabolism in rats and cows and in bean and cotton plants. 172nd Amer. Chem. Soc. Meet. Symp. Ser. 42, 187 (1977).Google Scholar
  53. Geissbühler, H.: Metabolism of fluorodifen in plants. International Symposium on Chemistry and Pesticides under Metabolic and Environmental Conditions. Bonn, Birlinghaven (1970).Google Scholar
  54. Geissbühler, H., I. Baunok, and D. Gross. Radioisotope and Chromatographic techniques for tracing the fate of herbicides in plants and soils. IUPAC Symposium, Johannesburg, July (1969).Google Scholar
  55. Geissbühler, H., D. Gross, and G. Voss: Metabolism of fluorodifen in plants. Environ. Qual. Safety 1, 248 (1972).Google Scholar
  56. Geissbühler, H., H. Martin, and G. Voss: The substituted ureas. In P. C. Kearney and D. D. Kaufman (eds.): Herbicides, p. 209. New York: M. Dekker (1975).Google Scholar
  57. Golab, T., C. E. Bishop, A. L. Donoho, J. A. Manthey, and L. L. Zornes: Behavior of 14C-oryzalin in soil and plants. Pest. Biochem. Physiol. 5, 196 (1975).CrossRefGoogle Scholar
  58. Gorbach, S., and U. Wagner: Pentachloronitrobenzene residues in potatoes. J. Agr. Food Chem. 15, 654 (1967).CrossRefGoogle Scholar
  59. Gross, D., T. Laanio, G. Dupuis, and H. O. Esser: The metabolic behavior of chlorotoluron in wheat and soil. Pest. Biochem. Physiol. 10, 49 (1979).CrossRefGoogle Scholar
  60. Harvey, J. Jr., J. C. Y. Han, and R. W. Reiser: Metabolism of oxamyl in plants. J. Agr. Food Chem. 26, 529 (1978).CrossRefGoogle Scholar
  61. Hawton, D., and E. H. Stobbe: The fate of nitrofen in rape, redwood pigweed and green foxtail. Weed Sci. 19, 555 (1971).Google Scholar
  62. Hill, J. E., and R. I. Krieger: Uptake, translocation, and metabolism in tirpate in tobacco. J. Agr. Food Chem. 23, 1125 (1975).CrossRefGoogle Scholar
  63. Hoagland, R. E., and G. Graf: An aryl acylamidase from tulip which hydrolyses 3’,4’-dichloropropionanilide. Phytochem. 11, 521 (1972).CrossRefGoogle Scholar
  64. Holm, R. E., and D. E. Stallard: Metabolism of pyrrolidine urea herbicide in corn and weeds. Weed Sci. 22, 10 (1974).Google Scholar
  65. Honeycutt, R. C., and I. L. Adler: Characterization of bound residues of nitrofen in rice and wheat straw. J. Agr. Food Chem. 23, 1097 (1975).CrossRefGoogle Scholar
  66. Hutson, D. H., E. C. Hoadley, M. H. Griffiths, and C. Donninger: Mercapturic acid formation in the metabolism of 2-chloro-4-ethylamino-6-(1-methyl-1-cyanoethylamino)-l-triazine in the rat. J. Agr. Food Chem. 18, 507 (1970).CrossRefGoogle Scholar
  67. Ioannou, Y. M., and W. C. Dauterman: In vitro metabolism of diazinon and etrimfos by corn plant preparations. Pest. Biochem. Physiol. 10, 212 (1979).CrossRefGoogle Scholar
  68. Jeffcoat, B., and W. N. Harries: Selectivity and mode of action of ethyl N-benzoyl-N-(3,4-dichlorophenyl)-2-aminopropionate in the control of Avena fatua in cereals. Pest. Sci. 4, 891 (1973).CrossRefGoogle Scholar
  69. Jeffcoat, B., and W. N. Harries: Selectivity and mode of action of flamprop-isopropyl in the control of Avena fatua in barley. Pest. Sci. 6, 283 (1975).CrossRefGoogle Scholar
  70. Jones, D. W., and C. L. Foy: Metabolic fate of bioxone in cotton. Pest. Biochem. Physiol. 2, 8 (1972).CrossRefGoogle Scholar
  71. Jung, J., and M. M. El-Fouly: Über den Abbau von CCC in der Pflanzen. Z. Pflan-zenernäh. Düng. Bodenk. 114, 128 (1966).CrossRefGoogle Scholar
  72. Kearney, P. C., and D. D. Kaufman: Herbicides, chemistry, degradation, and mode of action, 2nd ed., vol. 1, p. 17. New York: M. Dekker (1975).Google Scholar
  73. Keeley, P. E., C. H. Carter, and J. H. Miller: Evaluation of the relative phyto-toxicity of herbicides to cotton and nutsedge. Weed Sci. 20, 71 (1972).Google Scholar
  74. Keeley, P. E., C. H. Carter, and J. H. Miller: Yellow nutsedge and cotton response to several herbicides. Weed Sci. 21, 327 (1973).Google Scholar
  75. Keeley, P. E., and R. J. Thullen: Yellow nutsedge control with soil-incorporated herbicides. Weed Sci. 22, 378 (1974).Google Scholar
  76. Keeley, P. E., and R. J. Thullen: Metabolic fate of methazole in purple and yellow nutsedge. Pest. Biochem. Physiol. 10, 275 (1979).CrossRefGoogle Scholar
  77. Khan, M., M. Gassman, and R. Haque: Biodegradation of pesticides. Chemtech. (Jan.), p. 62 (1976).Google Scholar
  78. Kiigemagi, Y. S. J., and U. L. C. Terriere: Oxidative metabolism of aldrin and isodrin by bean root fractions. J. Agr. Food Chem. 19, 5 (1971).CrossRefGoogle Scholar
  79. Klein, W.: Metabolism of pesticides in higher plants. Environ. Qual. Safety 1, 164 (1972).Google Scholar
  80. Kotzias, D., E. Lahaniatis, D. Bienick, and F. Körte: Nebenprodukte im käuflichen Pentachlornitrobenzol. Chemosphere 7, 503 (1978).CrossRefGoogle Scholar
  81. Krueger, H. R.: Phorate sulfoxidation by plant root extracts. Pest. Biochem. Physiol. 5, 396 (1975).CrossRefGoogle Scholar
  82. Krueger, H. R.: Aldicarb sulfoxidation by plant root extracts. Pest. Biochem. Physiol. 7, 154 (1977).CrossRefGoogle Scholar
  83. Kuchar, E. J., F. O. Geenty, W. P. Griffith, and R. J. Thomas: Analytical studies of metabolism of terraclor in beagle dogs, rats, and plants. J. Agr. Food Chem. 17, 1237 (1969).CrossRefGoogle Scholar
  84. Kuhr, R.: Insecticide metabolites in and on plants. Chemtech. (May), p. 316 (1976).Google Scholar
  85. Kuwatsuka, S., Y. Niki, M. Oyamada, H. Shimotori, and H. Ohyama: Fate of diphenylether herbicides in soils and plants. In 5th Asian-Pacific Weed Sci. Soc. Conf. Abstr. no. 97, p. 108 (1975).Google Scholar
  86. Lamoureux, G. L., and D. G. Rusness: Pentachloronitrobenzene metabolism in peanut. 172nd Amer. Chem. Soc. Nat. Meeting, San Francisco, Calif., Aug. (1976).Google Scholar
  87. Lamoureux, G. L., R. H. Shimabukuro, H. R. Swanson, and D. S. Frear: Metabolism of atrazine in excised sorghum leaf sections. J. Agr. Food Chem. 18, 81 (1970).CrossRefGoogle Scholar
  88. Leather, G. L., and L. F. Chester: Metabolism of bifenox in soil and plants. Pest. Biochem. Physiol. 7, 437 (1977).CrossRefGoogle Scholar
  89. Leather, G. L., and C. L. Foy: The metabolism of bifenox in plants and soil. In Weed Sci. Soc. Amer. Abstr. no. 167, p. 63 (1975).Google Scholar
  90. Leather, G. L., and C. L. Foy: Uptake and distribution of 14C-bifenox in crop and weed species. Proc. NE Weed Sci. Soc. 30, 122 (1976 a).Google Scholar
  91. Leather, G. L., and C. L. Foy: Differential absorption and distribution as a basis for the selectivity of bifenox. Proc. NE Weed Sci. Soc. 30, 123 (1976 b).Google Scholar
  92. Lee, S. S., and S. C. Fang: Metabolisms of monuron in excised leaves of corn and bean plants. Weed Res. 13, 59 (1973).CrossRefGoogle Scholar
  93. Lichtenstein, E. P., and J. R. Corbett: Enzymatic conversion of aldrin to dieldrin with subcellular components of pea plants. J. Agr. Food Chem. 17, 589 (1969).CrossRefGoogle Scholar
  94. Locke, R. K., and R. L. Baron: Preforan metabolism by tobacco cells in suspension culture. J. Agr. Food Chem. 20, 861 (1972).CrossRefGoogle Scholar
  95. Matsunaka, S.: Metabolism of the acylanilide herbicides. In A. S. Tahori (ed.): IUPAC symp. on pesticide terminal residues, p. 343. Israel (1971).Google Scholar
  96. Matsunaka, S.: Metabolism of pesticides in higher plants. In F. Matsumura (ed.): Environmental toxicology of pesticides, p. 341. New York: Academic Press (1972).Google Scholar
  97. Menn, J. J.: Absorption and metabolism of insecticide chemicals in plants. In: Degradation of synthetic organic molecules in the biosphere. Proc. Conf. (1971), p. 206. Nat. Acad. Sci., Washington, D.C. (1972).Google Scholar
  98. Menn, J. J.: Comparative aspects of pesticide metabolism in plants and animals. Environ. Health Persp. 27, 113 (1978).CrossRefGoogle Scholar
  99. Menn, J. J., and G. G. Still: Metabolism of insecticide and herbicides in higher plants. CRC Critical Rev. Toxicology 5, 1 (1977).CrossRefGoogle Scholar
  100. Menzer, R. E., and J. E. Casida: Nature of toxic metabolites formed in mammals, insects, and plants from 3-(dimethoxyphosphinyloxy)-N,N-dimethyl-cw-crotonamide and its N-methyl analog. J. Agr. Food Chem. 13, 102 (1965).CrossRefGoogle Scholar
  101. Metcalf, R. L., T. R. Fukuto, C. Collins, K. Borck, J. Burk, H. T. Reynolds, and H. T. Osman: Metabolism of aldicarb in plant and insect. J. Agr. Food Chem. 14, 579 (1966).CrossRefGoogle Scholar
  102. Metcalf, R. L., T. R. Fukuto, C. Collins, K. Borck, S. A. El-Aziz, R. Munoz, and C. C. Cassil: Metabolism of furadan in plants, insects, and mammals. J. Agr. Food Chem. 16, 300 (1968).CrossRefGoogle Scholar
  103. Mooney, R. P., and N. R. Pasarela: Determination of CCC residues in wheat, grain, straw, and green wheat foliage. J. Agr. Food Chem. 15, 989 (1967).CrossRefGoogle Scholar
  104. Naylor, A. W.: Herbicide metabolism in plants. In L. J. Audus (ed.): Herbicides, vol. 1, p. 397. New York: Academic Press (1976).Google Scholar
  105. Ohyama, H., and S. Kuwatsuka: Fate of bifenox in rice plant and soil environment. In 5th Asian-Pacific Weed Sci. Soc. Conf. Abstr. no. 98, p. 109 (1975).Google Scholar
  106. Paulson, G. D., A. M. Jacobsen, and G. G. Still: Animal metabolism of propham: the fate of residues in alfalfa when consumed by the rat and sheep. Pest. Biochem. Physiol. 5, 523 (1975).CrossRefGoogle Scholar
  107. Reddy, G., R. Thurston, and H. W. Dorough: Trichrome exudates as a mechanism for transporting soil-applied disulfoton to leaf surface in Nicotiana species. J. Econ. Entomol. 63, 2005 (1970).Google Scholar
  108. Roberts, T. R.: The metabolism of the herbicide flamprop-isopropyl in barley. Pest. Biochem. Physiol. 7, 378 (1977).CrossRefGoogle Scholar
  109. Roberts, T. R., and M. E. Standen: Degradation of the pyrethroid cypermethrin, NRDC149, and NRDC160 in sous. Pest. Sci. 8, 305 (1977).CrossRefGoogle Scholar
  110. Roberts, T. R., and G. Stoydin: Metabolism of the insecticide SD8280 following its application to rice. Pest. Sci. 7, 135 (1976 a).CrossRefGoogle Scholar
  111. Roberts, T. R., and G. Stoydin: Degradation of the insecticide SD8280 in soils. Pest. Sci. 7, 145 (1976 b).CrossRefGoogle Scholar
  112. Rogers, R. L.: Absorption, translocation, and metabolism of fluorodifen by soybeans. J. Agr. Food Chem. 19, 32 (1971).CrossRefGoogle Scholar
  113. Roth, W.: Etude comparée de la réaction du mais et du blé à la simazine, substance herbicide. C. R. Acad. Sci. 245, 942 (1957).Google Scholar
  114. Rouchaud, J., C. Moons, and J. A. Meyer: Characterizaton of bound residues of 3H-triforine in barley grain grown in the field. Pest. Sci. 10, 409 (1979 a).Google Scholar
  115. Rouchaud, J., C. Moons, and J. A. Meyer: Characterization of bound residues of 3H-triforine in the straw of barley grown in the field. Pest. Sci. 10, 438 (1979 b).CrossRefGoogle Scholar
  116. Rouchaud, J., C. Moons, and J. A. Meyer: Metabolism of Temik 14 C-aldicarb in the sugar beet. Med. Fac. Landbouww. Rijksuniv. Gent 45(4), 895 (1980 a).Google Scholar
  117. Rouchaud, J., C. Moons, and J. A. Meyer: Distribution of the radioactivity in sugar beet plants treated with C-aldicarb. Pest. Sci. 11, 83 (1980 b).CrossRefGoogle Scholar
  118. Rouchaud, J., C. Moons, and J. A. Meyer: The metabolism of 14 C-aldicarb in the leaves of sugar beet plants. Pest. Sci. 11, 483 (1980 c).CrossRefGoogle Scholar
  119. Rouchaud, J., C. Moons, and J. A. Meyer: Distribution of the radioactivity in sugar beet plants treated with 14 C-aldicarb. Pest. Sci. 11, 83 (1980 b).CrossRefGoogle Scholar
  120. Rouchaud, J., C. Moons, and J. A. Meyer: The metabolism of 14 C-aldicarb in the leaves of sugar beet plants. Pest. Sci. 11, 483 (1980 c).CrossRefGoogle Scholar
  121. Rouchaud, J., C. Moons, and J. A. Meyer: The metabolism of 14 C-aldicarb in the root of sugar beet plants. Pest. Sci. 12, 548 (1981).CrossRefGoogle Scholar
  122. Rusness, D. G., and G. G. Still: Effect of isopropyl-3-chlorocarbanilate and iso-propy 1-3-chlorohydroxycarbanilate analogs upon oxidative phosphorylation in plant mitochondria. Pest. Biochem. Physiol. 4, 24 (1974 a).CrossRefGoogle Scholar
  123. Rusness, D. G., and G. G. Still: Firefly luciferase inhibition by isopropyl-3-chlorocarbanilate and isopropyl-3-chlorohydroxycarbanilate analogues. Pest. Biochem. Physiol. 4, 109 (1974 b).CrossRefGoogle Scholar
  124. Rusness, D. G., and G. G. Still: S-Cysteinyl-hydroxychlorpropham formation in oat. 170th Amer. Chem. Soc. Nat. Meeting, Chicago, Ill., Aug. (1975).Google Scholar
  125. Ruzo, L. O., and J. E. Casida: Degradation of decamethrin on cotton plants. J. Agr. Food Chem. 27, 572 (1979).CrossRefGoogle Scholar
  126. Ruzo, L. O., R. L. Holmstead, and J. E. Casida: Pyrethroid photochemistry: Deca-methrin. J. Agr. Food Chem. 25, 1385 (1977).CrossRefGoogle Scholar
  127. Schneider, E. F.: Conversion of the plant growth retardant CCC to choline in shoots of chrysanthemum and barley. Can. J. Biochem. 45, 395 (1967).PubMedCrossRefGoogle Scholar
  128. Schroeder, M.: Mikrobieller Abbau von Harnstoffherbiziden. Thesis, Univ. of Kiel (1969).Google Scholar
  129. Schuette, H. R., G. Siegel, P. Held, and A. Jumar: Über Aufnahme, Translo-kation, und Ausscheidung von Propham bei Zuckerruben. Isotopenpraxis 7, 279 (1971 a).CrossRefGoogle Scholar
  130. Schuette, H. R., G. Siegel, P. Held, and A. Jumar: Über Metabolismus und Ruckstandsverhalten von Propham in Zuckerrubem. Isotopenpraxis 7, 339 (1971 b).CrossRefGoogle Scholar
  131. Schuphan, I: Zum Metabolismus von Phenylharnstoffen. II. Abbau und Metabolismus von Monolinuron-O-methyl-14C im Boden. Chemosphere 3, 127 (1974 a).CrossRefGoogle Scholar
  132. Schuphan, I: Zum Metabolismus von Phenylharnstoffen. III. Metabolismus von Monolinuron-O-methyl-14 C in Chlorella pyrenoidosa. Chemosphere 3, 131 (1974 b).CrossRefGoogle Scholar
  133. Schuphan, I: Zum Metabolismus von Phenylharnstoff-Herbiziden. VI. Geschlossene Kultursysteme für die Bilanzierung radioaktiv markierter Pestizide nach Anwendung bei Kulturpflanzen. Chemosphere 6, 5 (1977).CrossRefGoogle Scholar
  134. Schuphan, I, and W. Ebing: Zum Metabolismus von Phenylharnstoffen. V. Metabolismus von hydroxyliertem Monolinuron in Spinat. Chemosphere 4, 307 (1975).CrossRefGoogle Scholar
  135. Schuphan, I, and W. Ebing: Metabolism and balance studies of 14C-monolinuron after use in spinach followed by cress and potato cultures. Pest. Biochem. Physiol. 9, 107 (1978).CrossRefGoogle Scholar
  136. Shimabukuro, R. H.: Atrazine metabolism and herbicidal selectivity. Plant Physiol. 42, 1269 (1967).PubMedCrossRefGoogle Scholar
  137. Shimabukuro, R. H., H. R. Swanson, and W. C. Walsh: Glutathion conjugation. Atrazine detoxication mechanism in corn. Plant Physiol. 46, 103 (1970).PubMedCrossRefGoogle Scholar
  138. Shimabukuro, R. H., G. L. Lamoureux, H. R. Swanson, W. C. Walsh, L. E. Stafford, and D. S. Frear: Metabolism of substituted diphenylether herbicides in plants. II. Identification of new fluorodifen metabolite S-(2-nitro-4-trifluoro-methylphenyl) glutathione in peanut. Pest. Biochem. Physiol. 3, 483 (1973).CrossRefGoogle Scholar
  139. Shimabukuro, R. H., W. C. Walsh, and R. A. Hoerauf: Metabolism and selectivity of diclofop-methyl in wild oat and wheat. J. Agr. Food Chem. 27, 615 (1979).CrossRefGoogle Scholar
  140. Sijpesterjn, A. K., H. M. Dekhuijzen, and J. W. Vonk: Biological conversion of fungicides in plants and microorganisms. In M. R. Siegel and H. D. Sisler (eds.): Antifungal compounds, vol. 2, p. 91. New York: M. Dekker (1976).Google Scholar
  141. Stephan, U., and H. R. Schütte: Zum Metabolismus von CCC in höheren Pflanzen. Biochem. Physiol. Pflanzen (BPP) 161, 499 (1970).Google Scholar
  142. Still, G. G.: Metabolism of 3,4-dichloropropionanilide in plants: The metabolic fate of the 3,4-dichloroaniline moiety. Science 159, 992 (1967).CrossRefGoogle Scholar
  143. Still, G. G.: Metabolism of 3,4-dichloropropionanilide in plants: Metabolic fate of the propionic acid moiety. Plant Physiol. 43, 543 (1968).PubMedCrossRefGoogle Scholar
  144. Still, G. G.: Metabolism of 3,4-dichloropropionanilide in plants: Metabolic fate of the 3,4-dichloroaniline moiety. Science 159, 992 (1969).CrossRefGoogle Scholar
  145. Still, G. G., and O. Kuzirian: Enzyme detoxification of 3,4-dichloropropionanilide in rice and barnyard grass, a factor in herbicide selectivity. Nature (London) 216, 799 (1967).CrossRefGoogle Scholar
  146. Still, G. G., and E. R. Mansager: Metabolism of isopropyl-3-chlorocarbanilate by soybean plants. J. Agr. Food Chem. 19, 879 (1971).CrossRefGoogle Scholar
  147. Still, G. G., and E. R. Mansager: Aryl hydroxylation of isopropyl-S-chlorocarbanilate in soybean plants. Phytochem. 11, 515 (1972).CrossRefGoogle Scholar
  148. Still, G. G., and E. R. Mansager: Metabolism of isopropylcarbanilate by soybean plants. Pest. Biochem. Physiol. 3, 289 (1973 a).CrossRefGoogle Scholar
  149. Still, G. G., and E. R. Mansager: Soybean metabolism of isopropylcarbanilate. 166th Amer. Chem. Soc. Nat. Meeting, Chicago, Ill., Aug., (1973 b).Google Scholar
  150. Still, G. G., and E. R. Mansager: Soybean shoot metabolism of isopropyl-3-chlorocarbanilate: Ortho and para aryl hydroxylation. Pest. Biochem. Physiol. 3, 87 (1973 c).CrossRefGoogle Scholar
  151. Still, G. G., and E. R. Mansager: Alfalfa metabolism of propham. Pest. Biochem. Physiol. 5, 515 (1975).CrossRefGoogle Scholar
  152. Still, G. G., and D. G. Rusness: S-Cysteinyl-hydroxychlorpropham: formation of isopropyl-3’-chloro-4’-hydroxycarbanilate in oat. Pest. Biochem. Physiol. 7, 210 (1977).CrossRefGoogle Scholar
  153. Still, G. G., D. G. Rusness, and E. R. Mansager: Carbanilate herbicides and their metabolic products. In G. K. Kohn (ed.): Mechanism of pesticide action. Amer. Chem. Soc. symp. ser. no. 2, p. 117. Washington, D.C. (1974).Google Scholar
  154. Tanaka, F. S., H. R. Swanson, and D. S. Frear: An unstable hydroxymethyl intermediate formed in the metabolism of 3-(4-chlorophenyl)-l-methylurea in cotton. Phytochem. 11, 2701 (1972).CrossRefGoogle Scholar
  155. Thomas, E. W., B. C. Loughman, and P. G. Powell: Metabolic fate of some chlorinated phenoxyacetic acids in the stem tissue of Avena sativa. Nature 204, 286 (1964).CrossRefGoogle Scholar
  156. Tsukamato, M., and J. E. Casida: Metabolism of methylcarbamate insecticides by the NADPH-requiring enzyme system from houseflies. Nature (London) 213, 49 (1967).CrossRefGoogle Scholar
  157. Umetsu, N., M. A. H. Fahmy, and T. R. Fukuto: Metabolism of 2,3-dihydro-2,2-dimethyl-7-benzofuranyl (dibutylaminosulfenyl) (methyl)carbamate in cotton and corn plants. Pest. Biochem. Physiol. 10, 104 (1979).CrossRefGoogle Scholar
  158. Waggoner, T. B.: Metabolism of nemacur and identification of two metabolites in plants. J. Agr. Food Chem. 20, 157 (1972).CrossRefGoogle Scholar
  159. Wargo, J. P., R. C. Honeycutt, and I. L. Adler: Characterization of bound residues of nitrofen in cereal grains. J. Agr. Food Chem. 23, 1095 (1975).CrossRefGoogle Scholar
  160. Whitacre, D. M., and C. W. Whitehead: New herbicides. Weeds Today 7(2), 27 (1976).Google Scholar
  161. Wiedmann, J. L., G. G. Ecke, and G. G. Still: Synthesis and isolation of 1-hydroxy-2-propyl-3-chlorocarbanilate from soybean plants treated with isopropyl-3-chlorocarbanilate. J. Agr. Food Chem. 24, 588 (1976).CrossRefGoogle Scholar
  162. Wittwer, S. H.: Growth regulants in agriculture. Outlook 6, 205 (1971).Google Scholar
  163. Wright, A. N., T. R. Roberts, A. J. Dutton, and M. V. Doig: The metabolism of cypermethrin in plants: The conjugation of the cyclopropyl moiety. Pest. Biochem. Physiol. 13, 71 (1980).CrossRefGoogle Scholar
  164. Yih, R. Y., D. H. McRae, and H. F. Wilson: The mechanism of selective action of 3,4-dichloropropionanilide. Plant Physiol. 43, 1291 (1968 a).PubMedCrossRefGoogle Scholar
  165. Yih, R. Y., D. H. McRae, and H. F. Wilson: Metabolism of 3,4-dichloropropionanilide: 3,4-Dichloroaniline lignin complex in rice plants. Science 161, 376 (1968 b).PubMedCrossRefGoogle Scholar
  166. Yu, S. J., U. Kiigemagi, and L. C. Terriere: Oxidative metabolism of aldrin and isodrin by bean root fractions. J. Agr. Food Chem. 19, 5 (1971).CrossRefGoogle Scholar
  167. Zemskaya, V. A., and Y. V. Rakitin: Detoxification of isopropyl-phenylcarba-mate in sunflower and oat plants. Fiziol. Rastenii. 8, 220 (1961).Google Scholar
  168. Zurqiyah, A. A., L. S. Jordan, and V. A. Jolliffe: Metabolism of propham in alfalfa grown in nutrient solution. Pest. Biochem. Physiol. 6, 35 (1976).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1982

Authors and Affiliations

  • Jean Rouchaud
    • 1
  • Joseph A. Meyer
    • 1
  1. 1.Université Catholique de Louvain, Laboratorie de PhytopathologieLouvain-la-NeuveBelgium

Personalised recommendations