Thermodynamics of Mixing in Silicate Glasses and Melts

  • A. Navrotsky
Part of the Advances in Physical Geochemistry book series (PHYSICAL GEOCHE, volume 1)


In recent years great progress has been made in applying thermodynamics to geology, that is, in obtaining and using thermodynamic data to predict and interpret petrologic phase relations. However, the application of thermodynamics has often been limited by the lack of reliable thermochemical data and the use of oversimplified models to derive approximate equations. This is especially true for equilibria involving silicate melts, for which, at present, there are still much less data than for crystalline phases. The purpose of this paper is to review both the available data and some concepts needed to begin to understand silicate melt thermodynamics. Although thermodynamics can be treated as a purely phenomenological subject dealing with bulk properties, much additional useful insight can be gained by correlating thermodynamic properties with structure on an atomic scale through statistical models. For silicate melts the questions of structure are extremely complex and only partially answered, but, inasmuch as possible, I shall point out the structural basis of observed thermodynamic behavior. This review is meant to be a relatively brief overview stressing recent data and new approaches rather than an exhaustive survey of the literature.


Heat Capacity Glass Transition Temperature Silicate Glass Supercooled Liquid Aluminosilicate Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aksay, I. A., J. A. Pask, and R. F. Davis, 1979, Densities of SiO2-Al2O3 melts, J. Am. Ceram. Soc., 62, 332–335.CrossRefGoogle Scholar
  2. Angell, C. A., 1970, The data gap in solution chemistry. The ideal glass transition puzzle. J. Chem. Educ., 47, 583–587.CrossRefGoogle Scholar
  3. Angell, C. A., and W. Sichina, 1976, Thermodynamics of the glass transition; empirical aspects, Ann. N.Y. Acad. Sci., 279, 53–66.CrossRefGoogle Scholar
  4. Arndt, J., and F. Häberle, 1973, Thermal expansion and glass transition temperatures of synthetic glasses of plagioclase-like compositions, Contrib. Mineral. Petrol., 39, 175–183.CrossRefGoogle Scholar
  5. Bacon, C. R., 1973, High temperature heat content and heat capacity of silicate glasses: experimental determination and a model for calculation, Am. J. Sci., 277, 109–135.CrossRefGoogle Scholar
  6. Bottinga, Y., and P. Richet, 1978, Thermodynamics of liquid silicates, a preliminary report, Earth Planet. Sci. Lett., 40, 382–400.CrossRefGoogle Scholar
  7. Bottinga, Y., and D. F. Weill, 1972, The viscosity of magmatic silicate liquids: a model for calculation, Am. J. Sci., 272, 438–475.CrossRefGoogle Scholar
  8. Brawer, S. A., and W. B. White, 1977, Raman spectroscopic studies of silicate glasses (II). Soda-alkaline earth-alumina ternary and quaternary glasses, J. Non-Crystall. Solids, 23, 261–278.CrossRefGoogle Scholar
  9. Briggs, J., 1975, Thermodynamics of the glass transition temperature in the system CaO-MgO-Al2O3-SiO2, Glass Ceram. Bull., 22, 73–82.Google Scholar
  10. Burnham, C. W., 1975, Water and magmas: a mixing model, Geochim. Cosmochim. Acta, 39, 1077–1084.CrossRefGoogle Scholar
  11. Carmichael, I. S., J. Nicholls, F. J. Spera, B. J. Wood, and S. A. Nelson, 1977, High temperature properties of silicate liquids: applications to the equilibration and ascent of basaltic magma, Philos. Trans. Roy. Soc. London Ser. A, 286, 373–431.CrossRefGoogle Scholar
  12. Charles, R. J., 1969, The origin of immiscibility in silicate solutions, Phys. Chem. Glasses, 10, 169–178.Google Scholar
  13. Day, D. E., and G. E. Rindone, 1962, Properties of soda aluminosilicate glasses(I), J. Am. Ceram. Soc., 45, 489–581.CrossRefGoogle Scholar
  14. Ferrier, A., 1971, Etude experimentale de l’enthalpie de cristallisation du diopside et de l’anorthite synthétique, Rev. Int. Hautes Temper. Refract., 8, 31–36.Google Scholar
  15. Gaskell, D. R., 1973, The thermodynamic properties of the Masson polymerization models of liquid silicates, Metall. Trans., 4, 185–192.CrossRefGoogle Scholar
  16. Gaskell, D. R., 1977, Activities and free energies of mixing in binary silicate melts, Metall. Trans., 8B, 131–145.Google Scholar
  17. Haller, W., D. H. Blackburn, and J. H. Simmons, 1974, Miscibility gaps in alkali silicate binaries—data and thermodynamic interpretation, J. Am. Ceram. Soc., 57, 120–126.CrossRefGoogle Scholar
  18. Hess, P. C., 1971, Polymer model of silicate melts, Geochim. Cosmochim. Acta, 35, 289–306.CrossRefGoogle Scholar
  19. Holm, J. L., O. J. Kleppa, and E. F. Westrum, Jr., 1967, Thermodynamics of polymorphic transformations in silica. Therrnal properties from 5 to 1070°K and pressure-temperature stability fields for coesite and stishovite, Geochim. Cosmochim. Acta, 31, 2289–2307.CrossRefGoogle Scholar
  20. Hummel, C., and R. Schwiete, 1959, Thermochemische Untersuchungen im System Na2O-SiO2, Glastech Ber., 32, 327–335.Google Scholar
  21. Kleppa, O. J., 1972, Oxide melt solution calorimetry, Colloq. Int. C.N.R.S., 201, 119–127.Google Scholar
  22. Kleppa, O. J., 1977, Thermodynamic properties of molten salt solutions, in Thermodynamics in Geology, edited by D. G. Fraser, pp. 279–300, D. Reidel Publishing Co., Dordrecht, HollaGoogle Scholar
  23. Kohler, F., 1960, Zur Berechnung der thermodynamischen Daten eines ternären Systems aus den zugehörigen binären Systemen, Monatsch. Chem., 91, 738–740.CrossRefGoogle Scholar
  24. Kracek, F. C., 1953, Contributions of thermochemical and x-ray data to the problem of mineral stability, Carnegie Inst. Wash. Yb., 52, 69–75.Google Scholar
  25. Krupka, K. M., R. A. Robie, and B. S. Hemingway, 1979, High temperature heat capacities of corundum, periclase, anorthite, CaAl2Si2O8 glass, muscovite, pyrophyllite, KAlSi3O8 glass, grossular, and NaAlSi3O8 glass, Am. Mineral., 64, 86–101.Google Scholar
  26. Kushiro, I., 1976, Changes in viscosity and structure of melts of NaAlSi2O6 composition at high pressure, J. Geophys. Res., 84, 6347–6350.CrossRefGoogle Scholar
  27. Macedo, P. B., and J. H. Simmons, 1974, Theoretical analysis of miscibility gaps in the alkali borates, J. Res. Natl. Bur. Stand., 78A, 53–58.Google Scholar
  28. Masson, C. R., 1965, An approach to the problem of ionic distribution in liquid silicates, Proc Roy. Soc. London, A287, 201–221.Google Scholar
  29. McMillan, P. F., J. R. Holloway, and A. Navrotsky, 1979 A study of Ab-An-Di glasses by Raman spectroscopy,Geol. Soc. Am. Abstracts Programs Google Scholar
  30. Murphy, W. M., 1977, An experimental study of solid-liquid equilibria in the albite-anorthite-diopside system, M.S. Thesis, University of Oregon.Google Scholar
  31. Navrotsky, A., 1977, Progress and new directions in high temperature calorimetry, Phys. Chem. Mineral., 2, 89–104.CrossRefGoogle Scholar
  32. Navrotsky, A., and Coons, W. E., 1976, Thermochemistry of some pyroxenes and related compounds, Geochim. Cosmochim. Acta, 40, 1281–1288.CrossRefGoogle Scholar
  33. Navrotsky, A., R. Hon, D. F. Weill, and D. Henry, 1980, Thermochemistry of glasses and liquids in the systems CaMgSi2O6-CaAl2Si2O8-NaAlSi3O8, SiO2-CaAl2Si2O8-NaAlSi3O8 and SiO2-Al2O3-CaO-Na2O, Geochim. Cosmochim. Acta., 44, 1409–1423.CrossRefGoogle Scholar
  34. Østvold, T., and O. J. Kleppa, 1969, Thermochemistry of the liquid sYstem lead oxide-silica at 900°, Inorg. Chem., 8, 78–82.CrossRefGoogle Scholar
  35. Rein, R. H., and J. Chipman, 1965, Activities in the liquid solution SiO2-CaO-MgO-A12O3 at 1600°C, Trans. Metall. Soc. AIME, 233, 415–425.Google Scholar
  36. Riebling, E. F., 1966, Structure of aluminosilicate melts containing at least 50 mol% SiO2 at 1500°C, J. Chem. Phys., 44, 2857–2865.CrossRefGoogle Scholar
  37. Risbud, S. H., and J. A. Pask, 1977, Calculated thermodynamic data and metastable immiscibility in the system SiO2-Al2O3, J. Am. Ceram. Soc., 60, 418–423.CrossRefGoogle Scholar
  38. Robie, R. A., B. S. Hemingway, and J. R. Fisher, 1978, Thermodynamic properties of minerals and related substances at 298.15 K and one bar pressure and at higher temperatures, U.S. Geol. Survey Bull., 1452.Google Scholar
  39. Robie, R. A., B. S. Hemingway, and W. H. Wilson, 1978, Low temperature heat capacities and entropies of feldspar glasses and anorthite, Am. Mineral., 63, 109–123.Google Scholar
  40. Sakka, S., and A. Senga, 1978, Studies on Si-O bonding in silicate and aluminosilicate glasses based on SiKβ emission X-rays, J. Mater. Sci., 13, 505–512.CrossRefGoogle Scholar
  41. Sanders, D. M., D. H. Blackburn, and W. K. Haller, 1977, Effect of water vapor on sodium vaporization from two silica-based glasses, J. Am. Ceram. Soc., 60, 38–41.CrossRefGoogle Scholar
  42. Correction: 60, 472.Google Scholar
  43. Sharma, S. K., D. Virgo, and B. Mysen, 1978a, Structure of melts along the join SiO2-NaAlSiO4 by Raman spectroscopy, Carnegie Inst. Wash. Yb., 77, 652–658.Google Scholar
  44. Sharma, S. K., D. Virgo, and B. Mysen, 1979, Raman study of structure and coordination of aluminum in jadeite melts as a function of pressure, Am. Mineral., 64, 779–787.Google Scholar
  45. Taylor, M., and G. E. Brown, Jr., 1979a, Structure of mineral glasses, I. The feldspar glasses NaAlSi3O8, KAlSi3O8, and CaAl2Si2O8, Geochim. Cosmochim. Acta, 43, 61–76.CrossRefGoogle Scholar
  46. Taylor, M., and G. E. Brown, Jr., 1979b, Structure of mineral glasses, II. The SiO2-NaAlSiO4 join, Geochim. Cosmochim. Acta, 43, 1467–1473.CrossRefGoogle Scholar
  47. Verweij, H., and W. L. Konijnendijk, 1976, Structural units in K2O-PbO-SiO2 glasses by Raman spectroscopy, J. Am. Ceram. Soc., 59, 511–521.CrossRefGoogle Scholar
  48. Waff, H. S., 1975, Pressure induced coordination changes in magrnatic liquids, Geophys. Res. Lett., 2, 193–196.CrossRefGoogle Scholar
  49. Waseda, Y., and J. M. Toguri, 1978, The structure of the molten FeO-SiO2 systemGoogle Scholar
  50. Metall. Trans., 9B, 595-601.Google Scholar
  51. Weill, D. F., R. Hon, and A. Navrotsky, 1980, The igneous system CaMgSi2O6-CaAl2Si2O8-NaAlSi3O8: variations on a classic theme by Bowen, in Physics of Magmatic Processes, edited by R. B. Hargraves, pp. 49–92, Princeton University Press, Princeton, N.J.Google Scholar
  52. Wunderlich, B., 1960, Study of the change in specific heat of monomeric and polymeric glasses during the glass transition, J. Phys. Chem., 64, 1052–56.CrossRefGoogle Scholar
  53. Yoder, H. S., 1975, Heat of melting in simple systems related to basalts and eclogites, Carnegie Inst. Wash. Yb., 74, 515–519.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1981

Authors and Affiliations

  • A. Navrotsky

There are no affiliations available

Personalised recommendations