Volatile Interactions in Magmas

  • J. R. Holloway
Part of the Advances in Physical Geochemistry book series (PHYSICAL GEOCHE, volume 1)


Volatile interactions with magmas are the cause of many volcanic and plutonic phenomena and volatiles play a central role in the origin and evolution of volcanic and plutonic rocks. In the experimental investigation of silicate melts, volatiles have been used as probes of melt structure and chemistry. The purpose of this paper is to consider which volatiles are important in magma systems, to illustrate effects of pressure, temperature, and oxygen activity on the relative abundances of volatiles, review the experimental data available on their solubilities in melts, and finally to consider some mechanisms for the solution of CO2 and sulfur in silicate melts. Before beginning these tasks, it will be useful to define our subject.


Fluid Inclusion Supercritical Fluid Oxygen Fugacity Fluid Composition Volatile Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, A. T., 1975, Some basaltic and andesitic gases, Rev. Geophys. Space Phys., 13, 37–56.CrossRefGoogle Scholar
  2. Brey, G., 1976, CO2 solubility mechanisms in silicate melts at high pressures, Contrib. Mineral. Petrol., 57, 215–221.CrossRefGoogle Scholar
  3. Buchanan, Q. L., and J. Nolan, 1979, Solubility of sulfur and sulfide immiscibility in synthetic tholeiitic melts and their relevance to Bushveld-complex rocks, Can. Mineral., 17, 483–494.Google Scholar
  4. Burnham, C. W., 1979a, The importance of volatile constituents, in The Evolution of Igneous Rocks, Fiftieth Anniversary Perspectives, edited by H. S. Yoder, Jr., Chap. 16, Princeton University Press, Princeton, N.J.Google Scholar
  5. Burnham, C. W., 1979b, Magmas and hydrothermal fluids, in Geochemistry of Hydrothermal Ore Deposits, 2nd ed., John Wiley and Sons, New York.Google Scholar
  6. Burnham, C. W., and R. H. Jahns, 1962, A method for determining the solubility of water in silicate melts, Am. J. Sci., 260, 721–745.CrossRefGoogle Scholar
  7. Clark, S. P., and A. E. Ringwood, 1964, Density distribution and constitution of the mantle, Rev. Geophys., 2, 35–88.CrossRefGoogle Scholar
  8. Delaney, J. R., 1979, Ion microprobe determination of water in silicate glasses, EOS, 60, 966.Google Scholar
  9. Eggler, D. H., 1975, CO2 as a volatile component of the mantle: The system Mg2SiO4-SiO2-H2O-CO2, Phys. Chem. Earth, 9, 869–881.CrossRefGoogle Scholar
  10. Eggler, D. H., 1978, The effect of CO2 upon partial melting of peridotite in the system Na2O-CaO-Al2O3-MgO-SiO2-CO2 to 35 Kb, with an analysis of melting in a peridotite-H2O-CO2 system, Am. J. Sci., 278, 305–343.CrossRefGoogle Scholar
  11. Eggler, D. H., and J. R. Holloway, 1977, Partial melting of peridotite in the presence of H2O and CO2: Principles and review, Magma Genesis, Oregon Dept. Geol. Min. Ind. Bull., 96, 15–36.Google Scholar
  12. Eggler, D. H., B. O. Mysen, T. C. Hoerning, and J. R. Holloway, 1979, The solubility of carbon monoxide in silicate melts at high pressures and its effect on silicate phase relations, Earth Planet. Sci. Lett., 43, 321–330.CrossRefGoogle Scholar
  13. Eggler, D. H., and M. Rosenhauser, 1978, Carbon dioxide in silicate melts, II, Solubilities of CO2 and H2O in CaMgSi2O6 (diopside) liquids and vapors at pressures to 40 Kb, Am. J. Sci., 278, 64–94.CrossRefGoogle Scholar
  14. Fincham, C. J. B., and F. O. Richardson, 1954, The behaviour of sulfur in silicate and aluminate melts, Proc. Roy. Soc. London, A233, 40–62.Google Scholar
  15. Flowers, G. C., 1979, Correction of Holloway’s (1977) adaptation of the modified Redlich-Kwong equation of state for calculation of the fugacities of molecular species in supercritical fluids of geologic interest, Contrib. Mineral. Petrol., 69, 315–318.CrossRefGoogle Scholar
  16. Franck, E. U., 1973, Concentrated electrolyte solutions at high temperatures and pressures, J. Soln. Chem., 2, 339–353.CrossRefGoogle Scholar
  17. French, B. M., 1966, Some geological implications of equilibrium between graphite and a C-H-O gas phase at high temperatures and pressures, Rev. Geophys., 4, 223–253.CrossRefGoogle Scholar
  18. Gaskel, D. R., and B. K. D. P. Rao, 1980, Activities of MnO in MnO-SiO2 melts.Google Scholar
  19. Gerlach, T. M., 1979a, Evaluation and restoration of the 1970 volcanic gas analyses from Mount Etna, Sicily, J. Volc. Geotherm. Res., 6, 165–178.CrossRefGoogle Scholar
  20. Gerlach, T. M., 1979b, The gas phase of tholeiitic and alkaline magmas, Geol. Soc. Am. Abstract Programs, 11, 431.Google Scholar
  21. Gerlach, T. M., 1980, Evaluation of volcanic gas analyses from Surtsey volcano, Iceland, 1964-1967, J. Volc. Geotherm. Res.Google Scholar
  22. Gerlach, T. M., and B. E. Nordlie, 1975, The C-O-H-S gaseous system. Part III: Temperature, atomic composition, and molecular equilibria in volcanic gases, Am. J. Sci., 275, 377–394.CrossRefGoogle Scholar
  23. Haggerty, S. E., 1976, Opaque mineral oxides in terrestial igneous rocks, in Oxide Minerals, Mineral. Soc. Am. Short Course Notes 3, Chap. 8.Google Scholar
  24. Harris, D. M., 1979, Geobarometry and geothermometry of individual crystals using H2O, CO2, S and major element concentrations in silicate melt inclusions: 2. The 1959 eruption of Kilauca volcano, Hawaii, Geol. Soc. Am. Abstracts Programs, 11, 439.Google Scholar
  25. Holloway, J. R., 1976, Fluids in the evolution of granitic magmas: Consequences of finite CO2 solubility, Geol. Soc. Am. Bull., 87, 1513–1518.CrossRefGoogle Scholar
  26. Holloway, J. R., 1977, Fugacity and activity of molecular species in supercritical fluids, in Thermodynamics in Geology, edited by D. G. Fraser, pp. 161–181, D. Reidel, Dordrecht, Holland.Google Scholar
  27. Holloway, J. R., and R. L. Reese, 1974, The generation of N2-CO2-H2O fluids for use in hydrothermal experimentation. I. Experimental method and equilibrium calculations in the C-O-H-N system, Am. Mineral., 59, 589–597.Google Scholar
  28. Holloway, J. R., B. O. Mysen, and D. H. Eggler, 1976, The solubility of CO2 in liquids on the join CaO-MgO-SiO2-CO2, Carnegie Inst. Wash. Yb., 75, 626–630.Google Scholar
  29. Houghton, D. R., P. L. Roeder, and B. J. Skinner, 1974, Solubility of sulfur in mafic magmas, Econ. Geol., 69, 451–467.CrossRefGoogle Scholar
  30. Katsura, T., and S. Nagashima, 1974, Solubility of sulfur in some magmas at 1 atmosphere, Geochim. Cosmochim. Acta, 38, 517–531.CrossRefGoogle Scholar
  31. Kesson, S. E., and J. R. Holloway, 1974, The generation of N2-CO2-H2O fluids for use in hydrothermal experimentation. II. Melting of albite in a multispecies fluid, Am. Mineral., 59, 598–603.Google Scholar
  32. Kilinc, I. A., and C. W. Burnham, 1972, Partitioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kilobars, Econ. Geol., 67, 231–235.CrossRefGoogle Scholar
  33. Matthews, J. F., 1972, The critical constants of inorganic substances, Chem. Rev., 72, 71–100.CrossRefGoogle Scholar
  34. McClellan, A., 1963, Tables of Experimental Dipole Moments, W. H. Freeman Co., San Francisco.Google Scholar
  35. Murck, B. W., R. C. Burruss, and L. S. Hollister, 1978, Phase equilibria in fluid inclusions in ultramafic xenoliths, Am. Mineral., 63, 40–46.Google Scholar
  36. Mysen, B. O., 1977a, The solubility of H2O and CO2 under predicted magma genesis conditions and some petrological and geophysical implications, Rev. Geophys. Space Phys., 15, 351–361.CrossRefGoogle Scholar
  37. Mysen, B. O., 1977b, Solubility of volatiles in silicate melts under the pressure and temperature conditions of partial melting in the upper mantle, Magma Genesis, Oregon Dept. Geol. Min. Ind. Bull., 96, 1–14.Google Scholar
  38. Mysen, B. O., R. J. Arculus, and D. H. Eggler, 1975, Solubility of carbon dioxide in natural nephslinite, tholeiite and andesite melts to 30 kbar pressure, Contrib. Mineral Petrol., 53, 227–239.CrossRefGoogle Scholar
  39. Mysen, B. O., and A. L. Boettcher, 1975, Melting of a hydrous mantle. II. Geochemistry of crystals and liquids formed by anatexis of mantle peridotite at high pressures and high temperatures as a function of controlled activities of water, hydrogen, and carbon dioxide, J. Petrol., 16, 549–590.Google Scholar
  40. Mysen, B. O., D. H. Eggler, M. G. Seitz, and J. R. Holloway, 1976, Carbon dioxide solubility in silicate melts and crystals. Part I. Solubility measurements, Am. J. Sci., 276, 455–479.CrossRefGoogle Scholar
  41. Mysen, B. O., and R. K. Popp, 1980, Solubility of sulfur in CaMgSi2O6 and NaAlSi3O8 melts at high pressure and temperature with controlled f o2 and f o2. Am. J. Sci., 280, 78–92.CrossRefGoogle Scholar
  42. Nordlie, B. E., 1971, The composition of the magmafic gas of Kilauea and its behavior in the near surface environment, Am. J. Sci., 271, 417–463.CrossRefGoogle Scholar
  43. Oxtoby, S., and D. L. Hamilton, 1978a, The discrete association of water with Na2O and SiO2 in NaAl silicate melts, Contrib. Mineral. Petrol., 66, 185–188.CrossRefGoogle Scholar
  44. Oxtoby, S., and D. L. Hamilton, 1978b, Water in plagioclase melts, in Progress in Experimental Petrology, NERC series D, No. 11, edited by W. S. MacKenzie, pp. 36 and 37.Google Scholar
  45. Oxtoby, S., and D. L. Hamilton, 1978c, Calculation of the solubility of water in granitic melts, in Progress in Experimental Petrology, NERC Series D, No. 11, edited by W. S. MacKenzie, pp. 37–40.Google Scholar
  46. Prausnitz, J. M., 1969, Molecular Thermodynamics of Fluid-Phase Equilibria, pp. 523, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  47. Price, W. F., and D. K. Bailey, 1980, A carbon dioxide-rich volatile phase in Mount Etna volcanism, Min. Mag., 43, 675–677.CrossRefGoogle Scholar
  48. Ricci, J. E., 1951, The Phase Rule and Heterogeneous Equilibria, Dover, New York.Google Scholar
  49. Roeder, P. L., and R. F. Emslie, 1970, Olivine-Liquid equilibrium, Contrib. Mineral. Petrol., 29, 275–289.CrossRefGoogle Scholar
  50. Roedder, E., 1965, Liquid CO2 inclusions in olivine-bearing nodules and phenocrysts from basalts, Am. Mineral., 50, 1746–1782.Google Scholar
  51. Sharma, S. K., 1979, Structure and solubility of carbon dioxide in silicate glasses of diopside and sodium melilite compositions at high pressures from Raman spectro-scopic data, Carnegie Inst. Wash. Yb., 78, 532–537.Google Scholar
  52. Sharma, S. K., D. Virgo, and B. O. Mysen, 1979, Raman study of the coordination of aluminum in jadeite melts as a function of pressure, Am. Mineral., 64, 779–787.Google Scholar
  53. Smith, F. G., 1963, Physical Geochemistry, Addison-Wesley, Reading, Mass.Google Scholar
  54. Stull, D. R., and H. Prophet, 1971, JANAF Thermochemical Tables, 2nd ed., Vol. 37, National Bureau of Standards, Washington, D.C.Google Scholar
  55. Toksoz, M. N., J. W. Minear, and B. R. Julian, 1971, Temperature field and geophysical effects of a downgoing slab, J. Geophys. Res., 76, 1113–1138.CrossRefGoogle Scholar
  56. Toulmin, P., III, and P. B. Barton, Jr., 1964, A thermodynamie study of pyrite and pyrrhotite, Geochim. Cosmochim. Acta, 28, 641–671.CrossRefGoogle Scholar
  57. Wagner, C., 1975, The concept of the basicity of slags, Metall. Trans., 6B, 405–409.Google Scholar
  58. Wells, A. F., 1962, Structural Inorganic Chemistry, 3rd ed., Clarendon Press, Oxford.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1981

Authors and Affiliations

  • J. R. Holloway

There are no affiliations available

Personalised recommendations