Thermodynamic Analysis of Simple Mineral Systems

  • T. J. B. Holland
Part of the Advances in Physical Geochemistry book series (PHYSICAL GEOCHE, volume 1)


This chapter does not attempt a complete description of the thermodynamics of simple mineral equilibria, but rather explores some of the consequences and pitfalls of various methods of handling thermodynamic data and of making several of the common simplifying assumptions. In particular, methods are discussed of taking measured heat capacity data and refitting them to an equation that can be extrapolated with a minimum of danger to high temperatures.


Heat Capacity Thermodynamic Analysis Dehydration Reaction Solution Calorimetry Phase Equilibrium Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, P. A. M., and O. J. Kleppa, 1969, The thermochemistry of the kyanite-sillimanite equilibrium, Am. J. Sci. 267, 285–290.CrossRefGoogle Scholar
  2. Anderson, P. A. M., R. C. Newton, and O. J. Kleppa, 1977, The enthalpy change of the andalusite-sillimanite reaction and the Al2SiO5 diagram, Am. J. Sci. 277, 585–593.CrossRefGoogle Scholar
  3. Bulakh, A. G., 1979, Thermodynamic properties and phase transitions of H2O up to 1000°C and 100 kbar, Int. Geol. Rev. 21, 92–102.CrossRefGoogle Scholar
  4. Burnham, C. W., J. R. Holloway, and N. F. Davis, 1969, Thermodynamic properties of water to 1000°C and 10,000 bars, Geol. Soc. Am. Spec. Pap. 132.Google Scholar
  5. Charlu, T. V., R. C. Newton, and O. J. Kleppa, 1975, Enthalpies of formation at 970°K of compounds in the system MgO-Al2O3-SiO2 from high temperature solution calorimetry. Geochim, Cosmochim. Acta 39, 1487–1497.CrossRefGoogle Scholar
  6. Charlu, T. V., R. C. Newton, and O. J. Kleppa, 1978, Enthalpy of formation of some lime silicates by high-temperature solution calorimetry, with discussion of high pressure phase equilibria, Geochim, Cosmochim. Acta 42, 367–375.CrossRefGoogle Scholar
  7. Danckwerth, P., and R. C. Newton, 1978, Experimental determination of the spinel peridotite to garnet peridotite reaction in the system MgO-Al2O3-SiO2 in the range 900°C–1100°C and A12O3 isopleths of enstatite in the spinel field, Contrib. Mineral Petrol 66, 189–201.CrossRefGoogle Scholar
  8. Delany, J. M., and H. C. Helgeson, 1978, Calculation of the thermodynamic consequences of dehydration in subducting oceanic crust to 100 kb and > 800°C, Am. J. Sci. 278, 638–686.CrossRefGoogle Scholar
  9. Fisher, J. R., and E-An Zen, 1971, Thermochemical calculations from hydrothermal phase equilibrium data and the free energy of H2O, Am. J. Sci. 270, 297–314.CrossRefGoogle Scholar
  10. Goldsmith, J. R., 1979, personal communication.Google Scholar
  11. Haselton, H. T., Jr., W. E. Sharp, and R. C. Newton, 1978, CO2 fugacity at high temperatures and pressures from experimental decarbonation reactions, Geophys. Res. Lett. 5, 753–756.CrossRefGoogle Scholar
  12. Haselton, H. T., Jr., and E. F. Westrum, Jr., 1980, Low-temperature heat capacities of synthetic pyrope, grossular, and pyrope60grossular40, Geochim. Cosmochim. Acta 44, 701–709.CrossRefGoogle Scholar
  13. Hays, J. F., 1967, Lime-alumina-silica, Carnegie Inst. Wash. Yearbook 65, 234–239.Google Scholar
  14. Helgeson, H. C., J. M. Delany, H. W. Nesbitt, and D. K. Bird, 1978, Summary and critique of the thermodynamic properties of rock-forming minerals, Am. J. Sci. 278A, 1–299.Google Scholar
  15. Hemingway, B. S., and R. A. Robie, 1977, Enthalpies of formation of low albite (NaAlSi3O8), gibbsite (A1(OH)3), and NaAlO2; revised values for ΔH ° f,298 and ΔH ° f,298 of alumino-silicates, U.S. Geol. Surv. J. Res. 5, 413–429.Google Scholar
  16. Hlabse, T., and O. J. Kleppa, 1968, The thermochemistry of jadeite, Am. Mineral 53, 1281–1292.Google Scholar
  17. Holland, T. J. B., 1979, Experimental determination of the reaction paragonite = jadeite + kyanite + water, and internally consistent thermodynamic data for part of the system Na2O-Al2O3-SiO2-H2O, with applications to eclogites and blueschists, Contrib. Mineral Petrol 68, 293–301.CrossRefGoogle Scholar
  18. Holloway, J. R., 1977, Fugacity and activity of molecular species in supercritical fluids, in Thermodynamics in Geology, edited by D. G. Fraser, D. Reidel, Dordrecht, Holland, 161–181.Google Scholar
  19. Huckenholz, H. G., E. Hölzl, and W. Lindhuber, 1975, Grossularite, its solidus and liquidus relations in the CaO-Al2O3-SiO2-H2O system up to 10 kb. Neues Jb. Min. Abh. 124, 1–46.Google Scholar
  20. Jacobs, G. K., and D. M. Kerrick, 1979, Experimental and thermodynamic analysis of decarbonation equilibria and the high-temperature heat capacity of calcite, EOS Trans. Am. Geophys. Union 60, 406.Google Scholar
  21. Kleppa, O. J., and R. C. Newton, 1975, The role of solution calorimetry in the study of mineral equilibria, Fortsch. Mineral 52, 3–20.Google Scholar
  22. Krupka, K. M., D. M. Kerriek, and R. A. Robie, 1979a, Heat capacities of synthetic orthoenstatite and natural anthophyllite from 5 to 1000 K, EOS Trans. Am. Geophys. Union 60, 405.Google Scholar
  23. Krupka, K. M., R. A. Robie, and B. S. Hemingway, 1979b, High temperature heat capacities of corundum, periclase, anorthite, CaAl2Si2O8 glass, muscovite, pyrophyllite, KAlSi3O8 glass, grossular, and NaAlSi3O8 glass, Am. Mineral 64, 86–101.Google Scholar
  24. Kubaschewski, O. and H. Ünal, 1977, An empirical estimation of the heat capacities of inorganic compounds, High Temp. High Pressures 9, 361–365.Google Scholar
  25. Newton, R. C., 1966, Some calc-silicate equilibrium relations. Am. J. Sci. 264, 204–222.CrossRefGoogle Scholar
  26. Newton, R. C., T. V. Charlu, and O. J. Kleppa, 1974, A calorimetric investigation of the stability of anhydrous magnesian cordierite with application to granulite faciès metamorphism, Contrib. Mineral Petrol 44, 295–311.CrossRefGoogle Scholar
  27. Pankratz, L. B., and K. K. Kelley, 1964, High-temperature heat contents and entropies of andalusite, kyanite and sillimanite, U.S. Bur. Mines Rep. 6370.Google Scholar
  28. Perkins, D., III, E. F. Westrum, Jr., and E. J. Essene, 1980, The thermodynamic properties and phase relations of some minerals in the system CaO-Al2O3-SiO2-H2O, Geochim. Cosmochim. Acta 44, 61–84.CrossRefGoogle Scholar
  29. Powell, R., 1978, Equilibrium Thermodynamics in Petrology, Harper and Row, New York.Google Scholar
  30. Robie, R. A., B. S. Hemingway, and J. R. Fisher, 1978, Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures, U.S. Geol. Surv. Bull. 1452.Google Scholar
  31. Robie, R. A., and D. R. Waldbaum, 1968, Thermodynamic properties of minerals and related substances at 298.15°K (25.0°C) and one atmosphere (1.013 bars) pressure and at higher temperatures, U.S. Geol. Surv. Bull. 1259.Google Scholar
  32. Shmulovich, K. I., and V. M. Shmonov, 1975, Fugacity coefficients of CO2 from 1.0132 to 10000 bars and from 450° to 1300°K, Geochimiya 4, 551–555.Google Scholar
  33. Thompson, A. B., 1976, Calcite-andalusite-anorthite-quartz equilibria in H2O-CO2 mixtures, Prog. Exp. Pet. N.E.R.C. 3rd Rep. 6, 12–13.Google Scholar
  34. Touret, J., and Y. Bottinga, 1979, Equation d’état pour le CO2; application aux inclusions carboniques, Bull. Minéral. 102, 577–583.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1981

Authors and Affiliations

  • T. J. B. Holland

There are no affiliations available

Personalised recommendations