Lambda Transitions in Minerals

  • A. B. Thompson
  • E. H. Perkins
Part of the Advances in Physical Geochemistry book series (PHYSICAL GEOCHE, volume 1)


Despite the vast increase in the collection and use of thermochemical and crystallographic data in recent years, understanding of phase transitions in minerals has not advanced as much as has understanding of the transformations in other inorganic crystals or fluids. The limitations result partly from the relatively sluggish transformation kinetics of the complex structure of rock-forming minerals, partly from the relatively crude experimental techniques used in most mineralogical studies and partly from an unawareness of developments in other branches of physical sciences, especially the theoretical developments since the classical thermodynamic work of Gibbs. We have made a crude attempt to follow developments associated with the various transitions in many different chemical systems and thermodynamic reference frames and present aspects from the more comprehensive works on phase transitions. We hope that they may find wider application in mineralogy and petrology. Because of lack of space, we refer often to the review articles rather than original sources. To avoid confusion with established conventions, we use the terms transformation, transition, and inversion synonomously.


Differential Scanning Calorimetry Heat Capacity Tricritical Point Antiferromagnetic Transition Displacive Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allegret, F., F. L. Deneuville, C. Chatillon-Collinet, and J. C. Mathieu, 1978, Mise au point, étalonnage et applications d’un calorimètre à diphényl-êther adapté à l’nthalpiemétrie à haute température, High Temp. High Pressures, 10, 537–551.Google Scholar
  2. Allen, S. M., and J. W. Cahn, 1976, On tricritical points resulting from the intersection of lines of higher-order transitions with spinodals, Scr. Metall. 10, 451–454.CrossRefGoogle Scholar
  3. Allen, S. M., and J. W. Cahn, 1976b, Mechanisms of phase transformations within the miscibility gap of Fe-rich Fe-Al alloys. Acta Metall., 24, 425–437.CrossRefGoogle Scholar
  4. Amelinckx, S., and J. Van Landuyt, 1976, Contrast effects at planar surfaces, in Electron Microscopy in Mineralogy, edited by H.-R. Wenk, pp. 68–112, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  5. Bartis, F. J., 1969, Application of Pippard’s relations to phase transitions of NH4C1 and SiO2, J. Chem. Phys., 51, 5176–5177.CrossRefGoogle Scholar
  6. Bethe, H. A., 1935, Statistical theory of superlattices, Proc. Roy. Soc. London, Ser. A, 151, 552–575.Google Scholar
  7. Bloch, D., and A. S. Pavlovic, 1969, Magnetically ordered materials at high pressures, Adv. High Pressure Res., 3, 41–147.Google Scholar
  8. Boettcher, A. L., and P. J. Wyllie, 1969, The quartz-coesite transitions measured in the presence of a silicate liquid and the calibration of piston-cylinder apparatus, Contrib. Mineral. Petrol., 17, 224–232.CrossRefGoogle Scholar
  9. Buckingham, M. J., and W. M. Fairbank, 1961, The nature of the lambda-transition in liquid helium, in Progress in Low Temperature Physics, edited by C. J. Gartner, Vol. 3, North-Holland, Amsterdam.Google Scholar
  10. Buerger, M. J., 1961, Polymorphism and phase transformations, Fortschr. Mineral., 29, 9–24.Google Scholar
  11. Buerger, M. J., 1951, Crystallographic aspects of phase transformations, in Phase Transformations in Solids, edited by R. Smoluchowski, J. E. Mayer, and W. S. Weyl, John Wiley and Sons, New York.Google Scholar
  12. Buerger, M. J., 1949, Disorder in crystals of non-metals, Acad. Brasileira Ciencias, 21, 245–266.Google Scholar
  13. Burnham, C. W., 1973, Order-disorder relationships in some rock-forming silicate minerals, Ann. Rev. Earth Planet. Sci., 1, 313–338.CrossRefGoogle Scholar
  14. Callen, H. B., 1960, Thermodynamics, John Wiley and Sons, New York.Google Scholar
  15. Carpenter, M. A., 1980, Mechanisms of exsolution in sodic pyroxenes, Contrib. Mineral. Petrol., 71, 289–300.CrossRefGoogle Scholar
  16. Coe, R. S., and M. S. Paterson, 1969, The alpha-beta inversion in quartz; A coherent phase transition under nonhydrostatic stress, J. Geophys. Rev., 74, 4921–4948.CrossRefGoogle Scholar
  17. Cohen, L. H., and W. Klement, Jr., 1967, High-low quartz inversion: Determination to 35 kbar, J. Geophys. Rev., 72, 4245–4251.CrossRefGoogle Scholar
  18. Cohen, L. H., and W. Klement, Jr., 1973, Determination of high-temperature transition in calcite to 5 kbars by differential thermal analysis in hydrostatic apparatus, J. Geol., 81, 724–726.CrossRefGoogle Scholar
  19. Cohen, L. H., and W. Klement, Jr., 1980, Tridymite, Effect of hydrostatic pressure of two rapidly reversible transitions, Contrib. Mineral. Petrol., 71, 401–405.CrossRefGoogle Scholar
  20. Domb, C., and M. S. Green, 1976, Phase Transitions and Critical Phenomena, Vol. l6, Academic Press, New York.Google Scholar
  21. Cracknell, A. P., and A. O. Tooke, 1979, The specific heats of magnetically-ordered materials. Contemp. Phys., 20, 55–82.CrossRefGoogle Scholar
  22. Ehrenfest, P., 1933, Phasenumwandlunsen im ueblichen und erweiterten Sinn, klassifiziert nach den entsprechenden Singularitaeten des thermodynamischen Potentiales, Proc. Amsterdam Acad., 36, 153.Google Scholar
  23. Elcock, E. W., 1956, Order-Disorder Phenomena, Metheun, London.Google Scholar
  24. Garland, C. W., 1964, Generalized Pippard equations, J. Chem. Phys., 41, 1005–1008.CrossRefGoogle Scholar
  25. Garland, C. W., 1970, Ultrasonic investigation of phase transitions and critical points, Physical Acoustics, edited by W. P. Mason, Vol. VII, Academic Press, New York.Google Scholar
  26. Garland, C. W., and R. Renard, 1965, Order-disorder phenomena. III. Effect of temperature and pressure on the elastic constants of ammonium chloride, J. Chem. Phys., 44, 1130.CrossRefGoogle Scholar
  27. Ghiorso, M. S., I. S. E. Carmichael, and K. L. Moret, 1979, Inverted high-temperature quartz, Contrib. Mineral. Petrol., 68, 307–323.CrossRefGoogle Scholar
  28. Goldsmith, J. R., 1972, Cadmium dolomite and the system CdCO3-MgCO3, J. Geol., 80, 617–626.CrossRefGoogle Scholar
  29. Goldsmith, J. R., and H. C. Heard, 1961, Subsolidus phase relations in the system CaCO3-MgCO3, J. Geol., 69, 45–74.CrossRefGoogle Scholar
  30. Goodstein, D. L., 1975, States of Matter. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  31. Gopal, E. S. R., 1966, Specific Heats at Low Temperatures, Plenum Press, New York.Google Scholar
  32. Griffiths, R. B., 1974, Thermodynamic model for tricritical points in ternary and quaternary fluid mixtures, J. Chem. Phys., 60, 195–206.CrossRefGoogle Scholar
  33. Grønvold, F., and A. Sveen, 1974, Heat capacity and thermodynamic properties of synthetic magnetite (Fe3O4) from 300 to 1050 K. Ferrimagnetic transition and zero-point entropy. J. Chem. Thermodynam., 6, 859–872.CrossRefGoogle Scholar
  34. Haas, J. L., Jr., and J. R. Fisher, 1976, Simultaneous evaluation and correlation of thermodynamic data, Am. J. Sci., 276, 525–545.CrossRefGoogle Scholar
  35. Haasen, P., 1978, Physical Metallurgy, Cambridge University Press, London.Google Scholar
  36. Helgeson, H. C., J. M. Delany, H. W. Nesbitt, and D. M. Bird, 1978, Summary and critique of the thermodynamic properties of rock-forming minerals, Am. J. Sci., 278-A, 1–229.Google Scholar
  37. Henderson, C. M. B., and A. B. Thompson, 1980, An investigation of the low-temperature inversion in nepheline using differential scanning calorimetry and x-ray methods, Am. Mineral., to appear.Google Scholar
  38. Heuer, A. H., and G. L. Nord, 1976, Polymorphic phase transitions in minerals, in Electron Microscopy in Mineralogy, edited by H.-R. Wenk, pp. 274–303, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  39. Huebner, J. S., 1976, The manganese oxides&3x2014;a bibliographic commentary, in Oxide Minerals, edited by D. Rumble III, pp. SH1–SH17, Mineralogical Society of America, Washington, D.C.Google Scholar
  40. Hughes, A. J., and A. W. Lawson, 1962, Cylindrical approximation and the alpha-beta quartz transition, J. Chem. Phys., 36, 2098–2100.CrossRefGoogle Scholar
  41. Iishi, K., 1978, Lattice dynamical study of the alpha-beta quartz phase transition, Am. Mineral., 63, 1190–1197.Google Scholar
  42. Jayaraman, A., 1972, Influence of pressure on phase transitions, Ann. Rev. Mater. Sci., 2, 121–139.CrossRefGoogle Scholar
  43. Kadanoff, L. P., W. Goetze, D. Hamblen, R. Hecht, E. Lewis, V. Palcianskas, M. Rayl, J. Swift, D. Aspnes, and J. Kane, 1967, Static phenomena near critical points: theory and experiment. Rev. Mod. Phys., 39, 395–431.CrossRefGoogle Scholar
  44. Kaufman, L., and Bernstein, H., 1970, Computer Calculation of Phase Diagrams, Academic Press, New York.Google Scholar
  45. Kelley, K. K., 1960, Contributions to the data on theoretical metallurgy XIII. High temperature heat-content, heat-capacity, and entropy data for the elements and inorganic compounds, U.S. Bur. Mines Bull., 584.Google Scholar
  46. Kieffer, S. W., 1979, Thermodynamics and lattice vibrations of minerals: Mineral heat capacities and their relationships to simple lattice vibrational models, Rev. Geophys. Space Phys., 17, 1–19.CrossRefGoogle Scholar
  47. Vibration characteristics of silicates, Rev. Geophys. Space Phys., 17, 20–34.Google Scholar
  48. Lattice dynamics and an approximation for minerals with application to simple substances and framework silicates, Rev. Geophys. Space Phys., 17, 35–59.Google Scholar
  49. Kiement, W., and L. H. Cohen, 1968, High-low quartz inversion: thermodynamics of the lambda-transition, J. Geophys. Res., 73, 2249–2259.CrossRefGoogle Scholar
  50. Koster van Groos, A. F., and J. P. Ter Heege, 1973, The high-low quartz transition up to 10 kbar pressure, J. Geol., 81, 717-7-724.Google Scholar
  51. Landau, L. D., and E. M. Lifshitz, 1958, 1969, Statistical Physics, 2nd ed. Pergamon Press, New York.Google Scholar
  52. Lander, J. J., 1949, Polymorphism and anion rotational disorder in the alkaline earth carbonates, J. Chem. Phys., 17, 892–901.CrossRefGoogle Scholar
  53. Lindsley, D. H., 1976, The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides, in Oxide Minerals, edited by D. Rumble III, pp. L1–L60, Mineralogical Society of America, Washington, D.C.Google Scholar
  54. Maier, C. G., and K. K. Kelley, 1932, An equation for the representation of high temperature heat content data, J. Amer. Chem. Soc., 54, 3243–3246.CrossRefGoogle Scholar
  55. McConnell, J. D. C., 1978, K-space symmetry rules and their application to ordering behaviour in non-stoichimetric (metal-enriched) chalcopyrite, Phys. Chem. Minerals, 2, 253–265.CrossRefGoogle Scholar
  56. Moser, H., 1936, Messung der wahren spezifischen Waerme von Silber, Nickel, Beta-Messing, Quarzkristall und Quarzglas zwichen +50 und 700 C nach einer verfeinerten Methoden, Phys. Z., 37, 737–753.Google Scholar
  57. Navrotsky, A., and Louks, D., 1977, Calculation of subsolidus phase relations in carbonates and pyroxenes, Phys. Chem. Minerals, 1, 109–127.CrossRefGoogle Scholar
  58. Nowick, A. S., and B. S. Berry, 1972, Anelastic Relaxation in Crystalline Solids, Academic Press, New York.Google Scholar
  59. Nukui, A., H. Nakazawa, and M. Akao, 1978, Thermal changes in monoclinic tridymite, Am. Mineral., 63, 1252–1259.Google Scholar
  60. Papike, J. J., C. T. Prewitt, S. Sueno, and M. Cameron, 1973, Pyroxenes: comparislons of real and ideal structural topologies, Z. Kristallogr., 138, 254–2743.CrossRefGoogle Scholar
  61. Parsonage, N. G. P., and L. A. K. Staveveley, 1978, Disorder in Crystals, Oxford University Press, London.Google Scholar
  62. Pippard, A. B., 1956, Thermodynamic relations applicable near a lambda-transition, Philos. Mag., 1, 473–476.CrossRefGoogle Scholar
  63. Pippard, A. B., 1957, Elements of classical thermodynamics for advanced students of physics, Cambridge University Press, London.Google Scholar
  64. Rao, C. N. R., and K. J. Rao, 1978, Phase Transitions in Solids, McGraw-Hill, New York.Google Scholar
  65. Rao, C. N. R., and G. V. Subba Rao, 1974, Transition Metal Oxides: Crystal Chemistry, Phase Transition and Related Aspects, U.S. Nat. Bur. Stds. Ref. Data Series, US GPO, Washington, D.C.Google Scholar
  66. Rhines, F. N., and J. B. Newkirk, 1953, The order-disorder transformation viewed as a classical phase change, Trans. Am. Soc. Metals, 45, 1029–1055.Google Scholar
  67. Robie, R. A., B. S. Hemingway, and J. R. Fisher, 1978, Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at high temperatures, U.S. Geol. Surv. Bull., 1452.Google Scholar
  68. Sack, R. O., 1980, Some constraints on the thermodynamic mixing properties of Fe-Mg orthopyroxenes and olivines, Contrib. Mineral. Petrol., 71, 257–269.CrossRefGoogle Scholar
  69. Sato, H., 1970, Order-disorder transformations, in Physical Chemistry: An advanced treatise, Vol. X, Solid State, edited by W. Jost, Chap. 10, pp. 579–718, Academic Press, New York.Google Scholar
  70. Smit, J., and H. P. J. Wijn, 1959, Ferrites, John Wiley and Sons, New York.Google Scholar
  71. Stanley, H. E., 1971, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, New York.Google Scholar
  72. Sueno, S., J. J. Papike, C. T. Prewitt, and G. E. Brown, 1972, Crystal structure of high cummingtonite, J. Geophys. Res., 77, 5767–5777.CrossRefGoogle Scholar
  73. Thompson, A. B., and M. Wennemer, 1979, Heat capacities and inversions in tridymite, cristobalite and tridymite-cristobalite mixed phases, Am. Mineral., 64, 1018–1026.Google Scholar
  74. Thompson, J. B., Jr., 1969, Chemical reactions in crystals, Am. Mineral., 54, 341–375.Google Scholar
  75. Thompson, J. B., Jr., and G. L. Hovis, 1979, Structural-thermodynamic relations of the alkali feldspars, Trans. Am. Crystallogr. Assoc., 15, 1–26.Google Scholar
  76. Tisza, L., 1951, On the general theory of phase transitions, in Phase Transformations in Solids, edited by R. Smoluchowski, J. E. Mayer, and W. A. Weyl, John Wiley and Sons, New York.Google Scholar
  77. Tisza, L., 1961, The thermodynamics of phase equilibrium, Ann. Phys., 13, 1–92.CrossRefGoogle Scholar
  78. Touloukian, Y. S., and E. H. Buyco, 1970, Specific Heat—Nonmetallic solids, Vol. 5, Thermophysical Properties of Matter. IFI/Plenum, New York.Google Scholar
  79. Ubbelohde, A. R., 1957, Thermal transformations in solids, Quart. Rev. Chem. Soc. London, 11, 246–272.CrossRefGoogle Scholar
  80. Ulbrich, H. H., and D. R. Waldbaum, 1976, Structural and other contributions to the third-law entropies of silicates, Geochim. Cosmochim. Acta, 40, 1–24.CrossRefGoogle Scholar
  81. Verma, A. R., and Krishna, P., 1966, Polymorphism and Polytypism in Crystals, John Wiley and Sons, New York.Google Scholar
  82. Wallace, D. C., 1972, Thermodynamics of Crystals, John Wiley and Sons, New York.Google Scholar
  83. Westrum, E. F., 1974, Calorimetry of phase and ordering transitions, Pure Appl. Chem., 38, 539–555.CrossRefGoogle Scholar
  84. Yamamoto, T., O. Tanimoto, Y. Yasuda, and K. Okada, 1965, Anomalous specific heats associated with phase transitions of the second kind, in Critical Phenomena, Proceedings of a Conference, edited by M. S. Green and J. V. Sengers, U.S. Natl. Bur. Stds. Misc. Pub. 273, US GPO, Washington, D.C.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1981

Authors and Affiliations

  • A. B. Thompson
  • E. H. Perkins
    • 1
  1. 1.Dept. of Geological SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations