Isotopic Thermometry

  • R. N. Clayton
Part of the Advances in Physical Geochemistry book series (PHYSICAL GEOCHE, volume 1)


In his classic paper on “The thermodynamic properties of isotopic substances,” Harold Urey (1947) suggested that the small differences in chemical properties of the stable isotopes of light elements could be used for geological thermometry. In particular, he noted that the extent to which 18O was preferentially concentrated in calcium carbonate, relative to water from which it is precipitated, would be temperature dependent, and might therefore be used to determine past oceanic temperatures. Urey’s expectation was soon realized, and the method of isotopic thermometry has subsequently been extended to almost all areas of earth science. This paper is restricted to a discussion of the thermometric aspects of isotopic fractionation and makes no attempt to review the whole field of stable isotope geochemistry, in which the tracer aspects of isotopic abundances also play a large role. Most of the discussion deals with fractionation of oxygen isotopes since this element has been exploited for thermometry to a far greater extent than sulfur, carbon, and hydrogen.


Fluid Inclusion Oxygen Isotope Igneous Rock Calcium Carbonate Isotope Fractionation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addy, S. K., and G. D. Garlick, 1974, Oxygen isotope fractionation between rutile and water, Contrib. Mineral. Petrol. 45, 119–121.CrossRefGoogle Scholar
  2. Anderson, A. T., Jr., 1967, The dimensions of oxygen isotopic equilibrium attainment during prograde metamorphism, J. Geol., 75, 323–332.CrossRefGoogle Scholar
  3. Anderson, A. T., Jr., R. N. Clayton, and T. K. Mayeda, 1971, Oxygen isotope thermometry of mafic igneous rocks, J. Geol., 79, 715–729.CrossRefGoogle Scholar
  4. Bartell, L. S., and R. R. Roskos, 1966, Isotope effects on molar volume and surface tension: simple theoretical model and experimental data for hydrocarbons, J. Chem. Phys., 44, 457–463.CrossRefGoogle Scholar
  5. Batchelder, J., 1977, Light stable isotope and fluid inclusion study of the porphyry copper deposit at Copper Canyon, Nevada, Econ. Geol., 72, 60–70.CrossRefGoogle Scholar
  6. Becker, R. H., and R. N. Clayton, 1976, Oxygen isotope study of a Precambrian banded iron formation, Hammersley Range, Western Australia, Geochim. Cos-mochim. Acta, 40, 1153–1165.CrossRefGoogle Scholar
  7. Bertenrath, R., H. Friedrichsen, and E. Hellner, 1973, Die Fraktionierung der Sauerstoffisotope O18/O16 in System Eisenoxid-Wasser, Fortschr. Mineral. 50, 32–33.Google Scholar
  8. Blattner, P., 1972, Oxygen isotopic composition of minerals from Lepontine gneisses, Valle Bodengo (Prov. di Sondrio, Italia), Schweiz. Mineralog. Petrog. Mitt., 52, 33–37.Google Scholar
  9. Blattner, P., 1975, Oxygen isotopic composition of fissure-grown quartz, adularia and calcite from Broadlands geothermal field, New Zealand, Am. J. Sci., 275, 785–800.Google Scholar
  10. Bottinga, Y., 1969, Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-CO2-graphite-methane-hydrogen and water vapor, Geochim. Cosmochim. Acta, 33, 49–64.CrossRefGoogle Scholar
  11. Bottinga, Y., and M. Javoy, 1973, Comments on oxygen isotopic geothermometry, Earth Planet. Sci. Lett., 20, 250–265.CrossRefGoogle Scholar
  12. Bottinga, Y., and M. Javoy, 1975, Oxygen isotope partitioning among the minerals in igneous and metamorphic rocks, Rev. Geophys. Space Phys., 13, 401–418.CrossRefGoogle Scholar
  13. Clayton, R. N., 1959, Oxygen isotope fractionation in the system: calcium carbonate-water, J. Chem. Phys., 30, 1246–1250.CrossRefGoogle Scholar
  14. Clayton, R. N., 1961, Oxygen isotope fractionation between calcium carbonate and water, J. Chem. Phys., 34, 724–726.CrossRefGoogle Scholar
  15. Clayton, R. N., and S. Epstein, 1961, The use of oxygen isotopes in high-temperature geologic thermometry, J. Geol., 69, 447–452.CrossRefGoogle Scholar
  16. Clayton, R. N., L. J. P. Muffler, and D. E. White, 1968, Oxygen isotope study of calcite and silicates of the River Ranch No. 1 Well, Salton Sea geothermal field, California, Am. J. Sci., 266, 968–979.CrossRefGoogle Scholar
  17. Clayton, R. N., J. M. Hurd, and T. K. Mayeda, 1972a, Oxygen isotopic compositions and oxygen concentrations of Apollo 14 and Apollo 15 rocks and soils, Proc. Lunar Sci. Conf., 3, 1455–1463.Google Scholar
  18. Clayton, R. N., J. R. O’Neil, and T. K. Mayeda, 1972b, Oxygen isotope exchange between quartz and water, J. Geophys. Res., 77, 3057–3067.CrossRefGoogle Scholar
  19. Clayton, R. N., J. R. Goldsmith, K. J. Karel, T. K. Mayeda, and R. C. Newton, 1975, Limits on the effect of pressure on isotopic fractionation, Geochim. Cosmochim. Acta, 39, 1197–1201.CrossRefGoogle Scholar
  20. Clayton, R. N., and A. Steiner, 1975, Oxygen isotope studies of the geothermal system at Wairakei, New Zealand, Geochim. Cosmochim. Acta, 39, 1179–1186.CrossRefGoogle Scholar
  21. Clayton, R. N., N. Onuma, and T. K. Mayeda, 1976, A classification of meteorites based on oxygen isotopes, Earth Planet. Sci. Lett., 30, 10–18.CrossRefGoogle Scholar
  22. Craig, H., 1963, The isotopic geochemistry of water and carbon in geothermal areas, in Nuclear Geology in Geothermal Areas, edited by E. Tongiorgi, pp. 17–53, Consiglio Nazionale delle Ricerche, Pisa.Google Scholar
  23. Czamanske, G. K., and R. O. Rye, 1974, Experimentally determined sulfur isotope fractionations between sphalerite and galena in the temperature range 600 to 275°C, Econ. Geol., 69, 17–25.CrossRefGoogle Scholar
  24. Deines, P., 1977, On the oxygen isotope distribution among triplets in igneous and metamorphic rocks, Geochim. Cosmochim. Acta 41, 1709–1730.CrossRefGoogle Scholar
  25. Devereux, I., 1968, Oxygen isotope ratios of minerals from the regionally metamorphosed schists of Otago, New Zealand, N.Z. J. Sci., 11, 526–548.Google Scholar
  26. Elcombe, M. M., and J. R. Hulston, 1975, Calculations of sulphur isotope fractionation between sphalerite and galena using lattice dynamics, Earth Planet. Sci. Lett., 28, 447–452.CrossRefGoogle Scholar
  27. Emiliani, C., 1970, Pleistocene paleotemperatures, Science, 168, 822–825.CrossRefGoogle Scholar
  28. Emiliani, C., and N. J. Shackleton, 1974, The Brunhes epoch: Isotopic paleotemperatures and geochronology, Science, 183, 511–514.CrossRefGoogle Scholar
  29. Epstein, S., R. Buchsbaum, H. A. Lowenstam, and H. C. Urey, 1951, Carbonate-water isotopic temperature scale, Bull. Geol. Soc. Am., 62, 417–426.CrossRefGoogle Scholar
  30. Epstein, S., R. Buchsbaum, H. A. Lowenstam, and H. C. Urey, 1953, Revised carbonate-water isotopic temperature scale, Bull. Geol. Soc. Am., 64, 1315–1326.CrossRefGoogle Scholar
  31. Eslinger, E. V., S. M. Savin, and H.-W. Yeh, 1979, Oxygen isotope geothermometry of diagenetically altered shales, Soc. Econ. Paleont. Mineral. Spec. Pub. No. 26, 113–124.Google Scholar
  32. Frey, M., J. C. Hunziker, J. R. O’Neil, and H. W. Schwander, 1976, Equilibrium-disequilibrium relations in the Monte Rosa Granite, Western Alps: Petrological, Rb-Sr and stable isotope data, Contrib. Mineral. Petrol., 55, 147–179.CrossRefGoogle Scholar
  33. Friedman, I., and J. R. O’Neil, 1977, Compilation of stable isotope fractionation factors of geochemical interest, in Data of Geochemistry, edited by M. Fleischer, U.S. Geological Survey Professional Paper 440-KK.Google Scholar
  34. Garlick, G. D., and S. Epstein, 1966, The isotopic composition of oxygen and carbon in hydrothermal minerals at Butte, Montana, Econ. Geol., 65, 1325–1335.Google Scholar
  35. Garlick, G. D., and S. Epstein, 1967, Oxygen isotope ratios in coexisting minerals of regionally metamorphosed rocks, Geochim. Cosmochim. Acta, 31, 181–214.CrossRefGoogle Scholar
  36. Giletti, B., M. P. Semet, and R. A. Yund, 1978, Studies in diffusion: III. Oxygen in feldspars: an ion microprobe determination, Geochim. Cosmochim. Acta, 43, 45–57.CrossRefGoogle Scholar
  37. Gregory, R. T., and H. P. Taylor, Jr., 1980, An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: Evidence for δ18O-buffering of the oceans by deep (> 5 km) seawater-hydrothermal circulation at mid-ocean ridges (preprint).Google Scholar
  38. Grootenboer, J., and H. P. Schwarcz, 1969, Experimentally determined sulfur isotope fractionations between sulfide minerals, Earth Planet. Sci. Lett., 7, 162–166.CrossRefGoogle Scholar
  39. Hoernes, S., and H. Friedrichsen, 1974, Oxygen isotope studies on metamorphic rocks of the western Hohe Tauern area (Austria), Schweiz. Mineral. Petrol. Mitt., 54, 769–788.Google Scholar
  40. Hoernes, S., and H. Friedrichsen, 1978, Oxygen and hydrogen isotope study of the polymetamorphic area of the northern Ötztal-Stubai Alps (Tyrol), Contrib. Mineral. Petrol., 67, 305–315.CrossRefGoogle Scholar
  41. James, H. L., and R. N. Clayton, 1962, Oxygen isotope fractionation in metamorphosed iron-formations of the Lake Superior Region and in other iron-rich rocks, in Petrologic Studies: A Volume to Honor A. F. Buddington, pp. 217–239, Geological Society of America, Washington, D.C.Google Scholar
  42. Javoy, M., and C. J. Allègre, 1967, Etude de la composition de quelques éclogites: Conséquences pétrologiques et géophysiques, Bull. Soc. Geol. France, 9, 800–808.Google Scholar
  43. Kajiwara, Y., 1971, Sulfur isotope study of the Kuroko-ores of the Shakanai No. 1 deposits, Akita Prefecture, Japan, Geochem. J., 4, 157–181.CrossRefGoogle Scholar
  44. Kajiwara, Y., and H. R. Krouse, 1971, Sulfur isotope partitioning in metallic sulfide systems, Can. J. Earth Sci., 8, 1397–1408.CrossRefGoogle Scholar
  45. Kawabe, I., 1978, Calculation of oxygen isotopic fractionation in quartz-water system with special reference to the low temperature fractionation, Geochim. Cosmochim. Acta, 42, 613–621.CrossRefGoogle Scholar
  46. Kerrich, R., R. D. Beckinsale, and J. J. Durham, 1977, The transition between deformation regimes dominated by intercrystalline diffusion and intercrystalline creep evaluated by oxygen isotope thermometry, Tectonophysics, 38, 241–257.CrossRefGoogle Scholar
  47. Kiyosu, Y., 1973, Sulfur isotope fractionation among sphalerite, galena and sulfide ions, Geochem. J., 7, 191–199.CrossRefGoogle Scholar
  48. Knauth, L. P., and S. Epstein, 1976, Hydrogen and oxygen isotope ratios in nodular and bedded cherts, Geochim. Cosmochim. Acta, 40, 1095–1108.CrossRefGoogle Scholar
  49. Lowenstam, H. A., and S. Epstein, 1954, Paleotemperatures of the post-Aptian Cretaceous as determined by the oxygen isotope method, J. Geol., 62, 207–248.CrossRefGoogle Scholar
  50. Lusk, J., F. A. Campbell, and H. R. Krouse, 1975, Application of sphalerite geobarometry and sulfur isotope geothermometry to ores of the Quemont Mine, Noranda, Quebec, Econ. Geol., 70, 1070–1083.Google Scholar
  51. Matsuhisa, Y., J. R. Goldsmith, and R. N. Clayton, 1978, Mechanisms of hydrothermal crystallization of quartz at 250°C and 15 kbar, Geochim. Cosmochim. Acta, 42, 173–182.CrossRefGoogle Scholar
  52. Matsuhisa, Y., J. R. Goldsmith, and R. N. Clayton, 1979, Oxygen isotope fractionation in the system quartz-albite-anorthite-water. Geochim. Cosmochim. Acta, 43, 1131–1140.CrossRefGoogle Scholar
  53. Matthews, A., and A. Katz, 1977, Oxygen isotope fractionation during the dolomitiza-tion of calcium carbonate, Geochim. Cosmochim. Acta, 41, 1431–1438.CrossRefGoogle Scholar
  54. Matthews, A., and R. D. Beckinsale, 1979, Oxygen isotope equilibration systematics between quartz and water, Am. Mineral., 64, 232–240.Google Scholar
  55. Matthews, A., J. R. Goldsmith, and R. N. Clayton, 1980, 18O/16O and 17O/16O fractionation studies on Ca-Mg silicate minerals (Abstract), EOS, 61, 403.Google Scholar
  56. Muehlenbachs, K., and R. N. Clayton, 1972, Oxygen isotope geochemistry of submarine greenstones, Can. J. Earth Sci., 9, 471–478.CrossRefGoogle Scholar
  57. Muehlenbachs, K., and R. N. Clayton, 1976, Oxygen isotopic composition of the oceanic crust and its bearing on seawater, J. Geophys. Res., 81, 4365–4369.CrossRefGoogle Scholar
  58. Northrop, D. A., and R. N. Clayton, 1966, Oxygen isotope fractionation in systems containing dolomite, J. Geol., 74, 174–196.CrossRefGoogle Scholar
  59. O’Neil, J. R., and R. N. Clayton, 1964, Oxygen isotope thermometry, in Isotopic and Cosmic Chemistry, edited by H. Craig, S. L. Miller, and G. J. Wasserburg, pp. 157–168, North-Holland Publishing, Amsterdam.Google Scholar
  60. O’Neil, J. R., and H. P. Taylor, Jr., 1967, The oxygen isotope and cation exchange chemistry of feldspars, Am. Mineral., 52, 1414–1437.Google Scholar
  61. O’Neil, J. R., R. N. Clayton, and T. K. Mayeda, 1969, Oxygen isotope fractionation in divalent metal carbonates, J. Chem. Phys., 51, 5547–5558.CrossRefGoogle Scholar
  62. O’Neil, J. R., and H. P. Taylor, Jr., 1969, Oxygen isotope equilibrium between muscovite and water, J. Geophys. Res., 74, 6012–6022.CrossRefGoogle Scholar
  63. O’Neil, J. R., M. L. Silberman, B. P. Fabbi, and C. W. Chesterman, 1973, Stable isotope and chemical relations during mineralization in the Bodie mining district, Mono County, California, Econ. Geol., 68, 765–784.CrossRefGoogle Scholar
  64. O’Neil, J. R., and M. L. Silberman, 1974, Stable isotope relations in epithermal Au-Ag deposits, Econ. Geol., 69, 902–909.CrossRefGoogle Scholar
  65. O’Neil, J. R., and E. D. Ghent, 1975, Stable isotope study of coexisting metamorphic minerals from the Esplanade Range, British Columbia, Bull. Geol. Soc. Am., 86, 1708–1712.CrossRefGoogle Scholar
  66. O’Neil, J. R., and Y. K. Kharaka, 1976, Hydrogen and oxygen isotope exchange reactions between clay minerals and water, Geochim. Cosmochim. Acta, 40, 241–246.CrossRefGoogle Scholar
  67. O’Neil, J. R., and G. B. Bailey, 1979, Stable isotope investigation of gold-bearing jasperoid in the central Drum Mountains, Utah, Econ. Geol., 74, 852–859.Google Scholar
  68. Onuma, N., R. N. Clayton, and T. K. Mayeda, 1970, Apollo 11 rocks: Oxygen isotope fractionation between minerals, and an estimate of the temperature of formation, Proc. Apollo 11 Lunar Sci. Conf., 1429–1434.Google Scholar
  69. Onuma, N., R. N. Clayton, and T. K. Mayeda, 1972, Oxygen isotope temperature of “equilibrated” ordinary chondrites, Geochim. Cosmochim. Acta, 36, 157–168.CrossRefGoogle Scholar
  70. Perry, E. C., Jr., and B. Bonnichsen, 1966, Quartz and magnetite: Oxygen-18-oxygen-16 fractionation in metamorphosed Biwabik iron formation, Science, 153, 528–529.CrossRefGoogle Scholar
  71. Perry, E. C., Jr., S. N. Ahmad, and T. M. Swulius, 1978, The oxygen isotope composition of 3,800 M.Y. old metamorphosed chert and iron formation from Isukasia, West Greenland, J. Geol., 86, 223–239.Google Scholar
  72. Ripley, E. M., and H. Ohmoto, 1977, Mineralogic, sulfur isotope and fluid inclusion studies of the stratabound copper deposits at the Raul Mine, Peru, Econ. Geol., 72, 1017–1041.CrossRefGoogle Scholar
  73. Rubinson, M., and R. N. Clayton, 1969, Carbon-13 fractionation between aragonite and calcite, Geochim. Cosmochim. Acta, 33, 997–1002.CrossRefGoogle Scholar
  74. Rye, R. O., 1974, A comparison of sphalerite-galena sulfur isotope temperatures with filling temperatures of fluid inclusions, Econ. Geol., 69, 26–32.CrossRefGoogle Scholar
  75. Savin, S., 1977, The history of the earth’s surface temperature during the past 100 million years, Ann. Rev. Earth Planet. Sci., 5, 319–355.CrossRefGoogle Scholar
  76. Sawkins, F. J., J. R. O’Neil, and J. M. Thompson, 1979, Fluid inclusion and geochemical studies of vein gold deposits, Baguio District, Philippines, Econ. Geol., 74, 1420–1434.CrossRefGoogle Scholar
  77. Schwarcz, H. P., R. N. Clayton, and T. K. Mayeda, 1970, Oxygen isotopic studies of calcareous and pelitic metamorphic rocks, New England, Bull. Geol. Soc. Am., 81, 2299–2316.CrossRefGoogle Scholar
  78. Sheppard, S. M. F., and H. P. Schwarcz, 1970, Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite, Contrib. Mineral. Petrol., 26, 161–198.CrossRefGoogle Scholar
  79. Shieh, Y. N., and H. P. Taylor, Jr., 1969a, Oxygen and carbon isotope studies of contact metamorphism of carbonate rocks, J. Petrol., 10, 307–331.Google Scholar
  80. Shieh, Y. N., and H. P. Taylor, Jr., 1969b, Oxygen and hydrogen isotope studies of contact metamorphism in the Santa Rosa range, Nevada, and other areas, Contrib. Mineral. Petrol., 20, 306–356.CrossRefGoogle Scholar
  81. Shiro, Y., and H. Sakai, 1972, Calculation of the reduced partition function ratios of α-, β-quartz and calcite, Bull. Chem. Soc. Japan, 45, 2355–2359.CrossRefGoogle Scholar
  82. Smith, J. W., S. Doolan, and E. F. McFarlane, 1977, A sulfur isotope geothermometer for the trisulfide system galena-sphalerite-pyrite, Chem. Geol., 19, 83–90.CrossRefGoogle Scholar
  83. Tarutani, T., R. N. Clayton, and T. K. Mayeda, 1969, The effect of polymorphism and magnesium substitution on the oxygen isotope fractionation between calcium carbonate and water, Geochim. Cosmochim. Acta, 33, 987–996.CrossRefGoogle Scholar
  84. Taylor, B. E., and J. R. O’Neil, 1977, Stable isotope studies of metasomatic Ca-Fe-Al-Si skarns and associated metamorphic and igneous rocks. Osgood Mountains, Nevada, Contrib. Mineral. Petrol., 63, 1–49.CrossRefGoogle Scholar
  85. Taylor, H. P., Jr., and S. Epstein, 1962, Relationship between Ol8/O16 ratios in coexisting minerals of igneous and metamorphic rocks. Part 2. Application to petrologic problems, Bull. Geol. Soc. Am., 73, 675–694.CrossRefGoogle Scholar
  86. Taylor, H. P., Jr., A. L. Albee, and S. Epstein, 1963, O18/O16 ratios of coexisting minerals in three assemblages of kyanite-zone pelitic schists, J. Geol., 71, 513–522.CrossRefGoogle Scholar
  87. Taylor, H. P., Jr., 1968, The oxygen isotope geochemistry of igneous rocks, Contrib. Mineral. Petrol., 19, 1–71.CrossRefGoogle Scholar
  88. Taylor, H. P., Jr., and R. Coleman, 1968, O-18/O-16 ratios of coexisting minerals in glaucophane-bearing metamorphic rocks, Bull. Geol. Soc. Am., 79, 1727–1755.CrossRefGoogle Scholar
  89. Taylor, H. P., Jr., and S. Epstein, 1970, 18O/16O ratios of Apollo 11 lunar rocks and minerals, Proc. Apollo 11 Sci. Conf., 1613–1626.Google Scholar
  90. Taylor, H. P., Jr., and R. W. Forrester, 1971, Low O18 igneous rocks from the intrusive complexes of Skye, Mull and Ardnamurchan, Western Scotland, J. Petrol., 12, 465–497.Google Scholar
  91. Taylor, H. P., Jr., 1974, The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition, Econ. Geol., 69, 843–883.CrossRefGoogle Scholar
  92. Taylor, H. P., Jr., 1977, Water/rock interactions and the origin of H2O in granitic batholiths, J. Geol. Soc. London, 133, 509–558.CrossRefGoogle Scholar
  93. Taylor, H. P., Jr., and R. W. Forrester, 1979, An oxygen and hydrogen isotope study of the Skaergaard intrusion and its country rocks: A description of a 55-MY old fossil hydrothermal system, J. Petrol., 20, 355–419.Google Scholar
  94. Urey, H. C., 1947, The thermodynamics of isotopic substances, J. Chem. Soc. London, 562–581.Google Scholar
  95. Urey, H. C., H. A. Lowenstam, S. Epstein, and C. R. McKinney, 1951, Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark and the Southern United States, Bull. Geol. Soc. Am., 62, 399–416.CrossRefGoogle Scholar
  96. Vogel, D. E., and G. D. Garlick, 1970, Oxygen isotope ratios in metamorphic eclogites, Contrib. Mineral. Petrol., 28, 183–191.CrossRefGoogle Scholar
  97. Wilson, A. F., D. C. Green, and L. R. Davidson, 1970, The use of oxygen isotope geothermometry on the granulites and related intrusives, Musgrave ranges, Central Australia, Contrib. Mineral. Petrol., 27, 166–178.CrossRefGoogle Scholar
  98. Yamamoto, M., 1974, Distribution of sulfur isotopes in the Iwami Kuroko deposits. Geochem. J., 8, 27–35.CrossRefGoogle Scholar
  99. Yeh, H.-W., and S. Savin, 1977, The extent of oxygen isotope exchange between clay minerals and sea water, Geochim. Cosmochim. Acta, 40, 743–748.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1981

Authors and Affiliations

  • R. N. Clayton

There are no affiliations available

Personalised recommendations