Genetic engineering and biological detoxification of environmental pollutants

  • J. M. Pemberton
Conference paper
Part of the Residue Reviews book series (RECT, volume 78)


In modern agriculture and industry there is a heavy dependence on a wide range of synthetic chemical agents many of which appear to have no counterparts in nature. Many of these compounds, by their very nature and complexity, are resistant to degradation when released into soil, water, and air. Unfortunately the repeated use and release of such synthetics has become an everyday occurrance resulting in the phenomenon of environmental pollution. In a number of instances, as with the herbicide 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) and its potent contaminant TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), these pollutants can be mutagenic, teratogenic, and carcinogenic and any environmental accumulation poses a health hazard to both human and animal populations (SEILER 1978). A recognition of this problem has led to restrictions on the use and release of recalcitrant molecules, greater use of existing biodegradable compounds, and the development of nonpersistent, less toxic alternatives.


Genetic Engineering Degradative Pathway Phenoxyacetic Acid Synthetic Molecule Genetic Engineering Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, M.: Microbial degradation and biological effects of pesticides in soil. Soil Biology, Reviews of Research, Natural Resources Research UNESCO 9, 209 (1969).Google Scholar
  2. Brooks, G. T.: Chlorinated insecticides, p. 2. Cleveland: CRC Press (1974).Google Scholar
  3. Brown, A. W. A.: Pest resistance to pesticides. In: Pesticides in the environment, vol. I, part 2. New York: Marcel Dekker (1971).Google Scholar
  4. Chakrabarty, A. M.: Plasmids in Pseudomonas. Ann. Rev. Genetics 10, 7 (1976).CrossRefGoogle Scholar
  5. Chakrabarty, A. M., and I. C. Gunsalus: CAM plasmid in Pseudomonas: transfer polarity and genetic circularity. Bacteriol. Proa, p. 46 (1971).Google Scholar
  6. Cohen, S. N., A. C. Y. Chang, H. W. Boyer, and R. B. Helling: Construction of biologically functional bacterial plasmids in vitro. Proc. Nat. Acad. Sci. 70, 3240 (1973).PubMedCrossRefGoogle Scholar
  7. Friello, D. A., J. R. Mylroie, and A. M. Chakrabarty: Use of geneticallyengineered multi-plasmid microorganisms for rapid degradation of fuel hydrocarbons. In: Biodeterioration of materials, vol. 3. Essex Applied Sci. Publ. (1976).Google Scholar
  8. Goldsmith, E.: Can we control pollution? The Ecologist 9, 273 (1979).Google Scholar
  9. Hay, A.: What caused the Seveso explosion? Nature (London) 273, 582 (1978).CrossRefGoogle Scholar
  10. Horvath, R. S.: Microbial co-metabolism of 2,4,5-trichlorophenoxyacetic acid. Bull. Environ. Contam. Toxicol. 5, 537 (1970).CrossRefGoogle Scholar
  11. Kaufman, D. D., and P. C. Kearney: Microbial transformations in the soil. In: Herbicides; physiology, biochemistry and ecology, pp. 29–64. London: Academic Press (1976).Google Scholar
  12. Low, K. B., and D. D. Porter: Modes of gene transfer and recombination in bacteria. Ann. Rev. Genetics 12, 249 (1978).CrossRefGoogle Scholar
  13. Munnecke, D. M.: Chemical, physical, and biological methods for the disposal and detoxification of pesticides. Residue Reviews 71, 1 (1979).Google Scholar
  14. Femberton, J. M., and P. R. Fisher: 2,4-D plasmids and persistence. Nature (London) 268,732 (1977).CrossRefGoogle Scholar
  15. Femberton, J. M., B. Corney, and R. H. Don: Evolution and spread of pesticide degrading ability among soil microorganisms. In: Plasmids of medical, environmental and commercial importance, vol. 1, p. 287. Elsevier/North Holland Biomedical Press (1979).Google Scholar
  16. Pfaender, F. K., and M. Alexander: Effect of nutrient addition on the apparent co-metabolism of DDT. Agr. Food Sci. 196, 1187 (1973).Google Scholar
  17. Reineke, W., and H.-J. Knackmuss: Construction of haloaromatics utilising bacteria. Nature (London) 277, 385 (1979).CrossRefGoogle Scholar
  18. Rebrough, R. W., P. Rieche, S. G. Herman, D. E. Peakall, and M. N. Kirven: Polychlorinated biphenyls in the global ecosystem. Nature (London) 220, 1098 (1968).CrossRefGoogle Scholar
  19. Seiler, J. P.: The genetic toxicology of phenoxy acids other than 2,4,5-T. Mutation Res. 55, 197 (1978).PubMedGoogle Scholar
  20. Somerville, H. J.: Pesticides, microorganisms and the environment. Span 21, 35 (1978).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • J. M. Pemberton
    • 1
  1. 1.Department of MicrobiologyUniversity of QueenslandSt. LuciaAustralia

Personalised recommendations