Attapulgite-pesticide interactions

  • Ze’ev Gerstl
  • Bruno Yaron
Conference paper
Part of the Residue Reviews book series (RECT, volume 78)


As most pesticides are either insoluble or only slightly soluble in water and must be applied in relatively small amounts over large areas, they are formulated in such a way that a highly concentrated organic chemical can be put into a convenient-to-use and effective form for field use by blending it with additives and inert carriers. The formulation must be easy and economical to use, do the job it is meant for, have an adequate shelf-life, and have no undesirable side effects. In solid-based formulations, the inert materials used, called diluents or carriers, can be either botanicals (e.g., ground corn cobs, walnut shells), synthetics (both organic and inorganic), or minerals (carbonates, oxides, and clays). In 1976 nearly 300,000 tons of various clays were delivered to pesticide manufacturers in the United States alone for use in pesticide formulations (U.S. Department of Agriculture 1976). Of this amount, over 65% was attapulgite. The predominance of attapulgite in the formulation of pesticides in preference to more common clay minerals such as kaolinite and montmorillonite stems from the fact that it is not easily flocculated by electrolytes and does not cake at high relative humidities but remains free-flowing (HADEN and SCHWINT1967).


Methyl Parathion Hexane Solution Walnut Shell Zeolitic Water Magnesium Aluminum Silicate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamson, A. W.: Physical chemistry of surfaces. 3rd ed., p. 698. New York: Wiley (1976).Google Scholar
  2. Ark, P. A., and E. M. Wilson: Availability of streptomycin in dust formulations. Plant Dis. Reporter 40, 332 (1956).Google Scholar
  3. Barrer, R. M., and N. Mackenzie: Sorption by attapulgite. I. Availability of intra-crystalline channels. J. Phys. Chem. 58, 560 (1964).CrossRefGoogle Scholar
  4. Barthel, W. F., and C. S. Lofgren: A comparison of some granular carriers for chlordan and heptachlor against the imported fire ant. J. Agr. Food Chem. 12, 339 (1964).CrossRefGoogle Scholar
  5. Bell, A., and G. S. Kido: Hydroquinone and its derivatives as stabilizers for pyrethrun and allethrin. J. Agr. Food Chem. 4, 341 (1956).CrossRefGoogle Scholar
  6. Benesi, H. A., Y. P. Sun, E. S. Loeffler, and K. D. Detung: Stabilizer pesticidal compositions (assigned to Shell Development Co.) U.S. Patent 2, 868, 688 (1959).Google Scholar
  7. Bradley, W. F.: The structural scheme of attapulgite. Amer. Miner. 25, 405 (1940).Google Scholar
  8. Burchfield, H. P.: Performance of fungicides on plants and in soils—physical, chemical and biological considerations. In J. G. Horsfall and A. E. Dimond (eds.): Plant Physiology, vol. 3, p. 477 (1960).Google Scholar
  9. Burchfield, H. P. Chemical and physical interactions. In D. C. Torgeson (ed.): Fungicides, vol. 1, p. 463. New York: Academic Press (1967).Google Scholar
  10. Cosby, J. N., and M. M. Darley: Pesticides containing oxidized polyethylene wax. U.S. Patent 2,976,210 (1961).Google Scholar
  11. Caillere, S., and S. Henin: Palygorskite. In G. Brown (ed.): The X-ray identification and crystal structures of clays, p. 544. London: Mineralogical Society (1963).Google Scholar
  12. Daines, R. H., R. J. Lukens, E. Brennan, and I. A. Leone: Phytotoxicity of captan as influenced by formulation, environment and plant factors. Phytopathol. 47, 567 (1957).Google Scholar
  13. Davidson, J. M., and R. K. Chang: Transport of picloram in relation to physical conditions and pore-water velocity. Proc. Soil Sci. Soc. Amer. 36, 257 (1972).CrossRefGoogle Scholar
  14. De Lapparent, C. R.: Attapulgite. C. R. Acad. Sci. Paris 201, 481 (1935).Google Scholar
  15. Deschamps, A.: Polymerization and isomerization of pnene over fuller’s earth. Verre Silicates Ind. 13,57 (1948).Google Scholar
  16. Drits, V. A., and V. A. Alexsandrova: The crystallochemical nature of palygorskite. Zap. Vses. Miner. Obstich. 95, 551 (1966).Google Scholar
  17. Ebeling, W.: Physicochemical mechanisms for the removal of insect wax by means of finely divided powders. Hilgardia 30, 531 (1961).Google Scholar
  18. Ebeling, W., and R. E. Wagner: Relation of lipid adsorptivity of powders to their suitability as insecticide diluents. Hilgardia 30, 565 (1961).Google Scholar
  19. Fest, C., and K. J. Schmidt: The chemistry of organophosphorous pesticides, p. 339. Berlin: Springer Verlag (1973).Google Scholar
  20. Fowkes, F. M., H. A. Benest, L. B. Ryland, W. M. Sawyer, K. D. Detung, E. S. Loeffler, F. B. Folckemer, M. R. Johnson, and Y. P. Sun: Clay-catalyzed decomposition of insecticides. J. Agr. Food Chem. 8, 203 (1960).CrossRefGoogle Scholar
  21. Galloway, A. L.: Method of preparing pelletized pesticidal compositions (assigned to Diamond Alkali Co.). U.S. Patent 3,056,723 (1962).Google Scholar
  22. Gard, J. A., and E. A. C. Follett: A structural scheme for palygorskite. Clay Miner. 7,367 (1968).CrossRefGoogle Scholar
  23. Gerstl, Z.: Parathion-attapulgite interactions. Ph.D. dissertation, Hebrew Univ. Jerusalem, Israel (1979).Google Scholar
  24. Gerstl, Z., and B. Yaron: Adsorption and desorption of parathion from attapulgite as affected by the mineral structure. J. Agr. Food Chem. 26, 569 (1978).CrossRefGoogle Scholar
  25. Gerstl, Z., and B. Yaron: Stability of parathion on attapulgite as affected by structural and hydration changes. Clays and Clay Miner. (in press) (1980).Google Scholar
  26. Giles, C. H., A. P. D’silva, and I. A. Easton: A general treatment and classification of the solute adsorption isotherm. II. Experimental interpretation. J. Colloid Inter. Sci. 47, 766 (1974 a).CrossRefGoogle Scholar
  27. Giles, C. H., D. Smith, and A. Huitson: A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Inter. Sci. 47, 755 (1974 b).CrossRefGoogle Scholar
  28. Greenland, D. J., R. H. Laby, and J. P. Quirk: Adsorption of glyans and its di-, tri-and tetrapeptides by montmorillonite: Trans. Faraday Soc. 58, 829 (1962).CrossRefGoogle Scholar
  29. Haden, Jr., W. L.: Attapulgite: Its properties and uses. Clays and Clay Miner. 10, 284 (1963).CrossRefGoogle Scholar
  30. Haden, Jr., W. L., and I. A. Schwint: Attapulgite: Its properties and applications. Ind. Eng. Chem. 59, 58 (1967).CrossRefGoogle Scholar
  31. Hayashi, H. R., Otsuka, and N. Imai: Infrared study of sepiolite and palygorskite on heating. Amer. Mineral. 53, 1613 (1969).Google Scholar
  32. Henin, S., and S. Caillere: Fibrous minerals. In J. E. Gieseking (ed.): Soil components, vol. II, p. 335. New York: Springer Verlag (1975).CrossRefGoogle Scholar
  33. Imai, N., R. Otsuka, H. Kashide, and H. Hayashi: Dehydration of palygorskite and sepiolite from the Kuzuu district, Tochiyi. Pref., Central Japan. Proc. Internat. Clay Conf., Tokyo, Japan, p. 99 (1969).Google Scholar
  34. Kulbecki, G.: High temperature phases in sepiolite, attapulgite and saponite. Amer. Mineral. 44, 752 (1959).Google Scholar
  35. Longchambon, H.: X-ray diagram. C. R. Acad. Sci. Paris. 204, 55 (1937).Google Scholar
  36. Malina, M. A., A. Goldman, L. Trademan, and P. B. Polen: Deactivation of mineral carriers for stable heptachlor-dust formulations. J. Agr. Food Chem. 4, 1038 (1956).CrossRefGoogle Scholar
  37. Mccarter, W. S. W., K. A. Kriger, and H. Heinemann: Thermal activation of attapulgus clay: Effect on physical and adsorptive properties. Ind. Eng. Chem. 42, 528 (1950).CrossRefGoogle Scholar
  38. Mendelovicii, E.: Infrared study of attapulgite and HC1 treated attapulgite. Clays and Clay Miner. 21, 115 (1973).CrossRefGoogle Scholar
  39. Miller, J. G., W. L. Haden, Jr., and T. P. Oulton: Oxidizing power of the surface of attapulgite clay. Clays and Clay Miner. 12, 381 (1963).CrossRefGoogle Scholar
  40. Mingelgrin, U., and S. Saltzman: Surface reactions of parathion on clays. Clays and Clay Miner. 27, 72 (1979).CrossRefGoogle Scholar
  41. Mingelgrin, U., L. Kliger, and A. Banin: Personal communication (1978).Google Scholar
  42. Mingelgrin, U., S. Saltzman, and B. Yaron: A possible model for the surface-induced hydrolysis of organophosphorous pesticides on kaolinite clays. J. Soil Sci. Soc. Amer. 41, 519 (1977).CrossRefGoogle Scholar
  43. Muljadi, D., A. M. Posner, and J. P. Quirk: The mechanism of phosphate adsorption by kaolinite, gibbsite, and pseudoboemite. Part I. The isotherms and the effect of pH on adsorption. J. Soil Sci. 17, 212 (1966).CrossRefGoogle Scholar
  44. Nathan, Y.: Dehydration of palygorskites and sepiolites. Internat. Clay Conf., Tokyo, Japan, vol. 1, p. 91 (1969).Google Scholar
  45. Oucharenko, F. D., E. G. Kukovskii, S. P. Nichporenka, N. V. Vdovenko, V. Y. Tretinnik, N. N. Kruglitiskii, and A. A. Panasevich: The colloid chemistry of palygorskite. Acad. Sci. Ukranian SSR, Inst, of General and Inorganic Chemistry. Israel Program for Scientific Translations, Jerusalem, Israel (1964).Google Scholar
  46. Polon, J. A., and E. W. Sawyer: The use of stabilizing agents to decrease decomposition of malathion on high-sorptive carriers. J. Agr. Food Chem. 10, 244 (1962).CrossRefGoogle Scholar
  47. Preisinger, A.: Sepiolite and related compounds: Its stability and application. Clays and Clay Miner. 10, 365 (1963).CrossRefGoogle Scholar
  48. Prost, R.: Etude de Thydration des argiles: Interaction eau-minerai et mechanisme de la retention de l’eau. Ann. Agron. 26, 401 (1975).Google Scholar
  49. Prost, R., Z. Gerstl, B. Yaron, and J. Chaussidon: Infrared studies of parathion-attapulgite interactions. In M. Horowitz (ed.): Behavior of pesticides in soils. Israel-France Symposium. Volcani Center Special Pub. No. 62. Bet Dagan, Israel (1975).Google Scholar
  50. Rautureau, M., and C. T. Tchoubar: Structural analysis of sepiolite by selected area electron diffraction—relations with physico-chemical properties. Clays and Clay Miner. 24, 43 (1976).CrossRefGoogle Scholar
  51. Rosenfield, C., and W. Valkenburg: Decomposition of (O,O-dimethyl O-2,4,5 trichlorophenyl) phosphorothioate (Ronnel) adsorbed on bentonite and other clays. J. Agr. Food Chem. 13, 68 (1965).CrossRefGoogle Scholar
  52. Saltzman, S., and S. Yariv: Infrared and X-ray study of parathion-montmorillonite sorption complexes. J. Soil Sci. Soc. Amer. 40, 34 (1976).CrossRefGoogle Scholar
  53. Saltzman, S., U. Mingelgrin, and B. Yaron: The role of water in the hydrolysis of parathion and methyl parathion on kaolinite. J. Agr. Food Chem. 24, 739 (1976).CrossRefGoogle Scholar
  54. Saltzman, S., B. Yaron, and U. Mingelgrin: The surface catalyzed hydrolysis of parathion on kaolinite. Proc. Soil Sci. Soc. Amer. 38, 231 (1974).CrossRefGoogle Scholar
  55. Sawyer, Jr., E. W., and J. A. Polon: Toxicant carrier and pesticidal composition containing same (assigned to Minerals and Chemicals Philipp Corp.) U.S. Patent 2, 967,127 (1961).Google Scholar
  56. Schwint, I. A.: Stabilized pesticidal compositions containing attapulgite clay (assigned to Minerals and Chemicals Philipp Corp.). U.S. Patent 3, 232,831 (1966)Google Scholar
  57. Serna, C., E. VAN Scoyoc, and J. L. Ahlrichs: Hydroxyl groups and water in palygorskite. Amer. Mineral. 62, 784 (1977).Google Scholar
  58. Thorenz, J.: Practical identification of clay minerals, p. 90. Bison, Belgium: G. Lelotte (1976).Google Scholar
  59. Trademan, L., M. A. Malina, W. Wilks, and L. P. Wilks: Insecticide formulations and methods of making same (assigned to Velsicol Chemical Corp.). U.S. Patent 2, 927, 882 (1960).Google Scholar
  60. U. S. Department of Agriculture: Agricultural statistics. Washington, D.C.: U.S. Gov’t. Printing Office (1976).Google Scholar
  61. Van Scoyoc, G. E., C. J. Serna, and J. L. Ahlrichs: Structural changes in palygor-skite during dehydration and dehydroxylation. Amer. Mineral. 64, 215 (1979).Google Scholar
  62. Weaver, C. E., and L. O. Pollard: The chemistry of clay minerals, p. 213. Amsterdam: Elsevier (1973).Google Scholar
  63. Weber, W. J., and J. P. Gould: Sorption of organic pesticides from aqueous solutions. In R. F. Gould (ed.): Organic pesticides in the environment. Adv. Chem. Series 60, 309 (1965).Google Scholar
  64. Yaffe, J.: Stabilization of Aramite by glycols. J. Agr. Food Chem. 6, 903 (1958).CrossRefGoogle Scholar
  65. Zelazny, L. W., and F. G. Calhoun: Palygorskite (attapulgite), sepiolite, talc, pyrophyllite and zeolites. In J. B. Dixon and S. B. Weed (eds.): Minerals in soil environments, p. 948. Madison, Wisc.: Soil Sci. Soc. Amer. (1977).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • Ze’ev Gerstl
  • Bruno Yaron
    • 1
  1. 1.Division of Soil Residues ChemistryInstitute of Soils and Water Agricultural Research OrganizationBet DaganIsrael

Personalised recommendations