Advertisement

Expression and Replication of the Influenza Virus Genome

  • Robert M. Krug
  • Firelli V. Alonso-Caplen
  • Ilkka Julkunen
  • Michael G. Katze
Chapter
Part of the The Viruses book series (VIRS)

Abstract

The genome of influenza A viruses is composed of eight segments of negative polarity (see Chapter 1). In infected cells, these virion RNAs (vRNAs) are both transcribed into messenger RNAs (mRNAs) and replicated. The distinctive feature of influenza viral mRNA synthesis is that it is primed by 5′ capped (m7GpppNm-containing) fragments derived from newly synthesized host-cell RNA polymerase II transcripts (Bouloy et al., 1978, 1979; Krug et al.,1979; Plotch et al., 1979, 1981; Krug, 1981, 1983; Herz et al., 1981). The mRNA chains are elongated until a stretch of uridine residues is reached 17–22 nucleotides before the 5′ ends of the vRNAs, where transcription terminates and polyadenylate [poly(A)] is added to the mRNAs (Hay et al., 1977a; Robertson et al., 1981). For replication to occur, an alternative type of transcription is required that results in the production of full-length copies of the vRNAs. The full-length transcripts, or template RNAs, are initiated without a primer and are not terminated at the poly(A) site used during mRNA synthesis (Hay et al., 1977a, 1982). The second step in replication is the copying of the template RNAs into vRNAs. This synthesis also occurs without a primer, since the vRNAs contain 5′ triphosphorylated ends (Young and Content, 1971). The three types of virus-specific RNAs—mRNAs, template RNAs, and vRNAs— are all synthesized in the nucleus of infected cells (Herz et al., 1981; Jackson et al., 1982; Shapiro et al., 1987). During the early phase of infection, the synthesis of these three types of virus-specific RNAs is coupled (Hay et al., 1977a; G. L. Smith and Hay, 1982; Shapiro et al., 1987), whereas during the later phase of infection essentially only vRNAs are synthesized (Shapiro et al., 1987).

Keywords

Influenza Virus Vesicular Stomatitis Virus Viral mRNA Antiviral State Influenza Virus Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agris, C. H., Nemeroff, M. E., and Krug, R. M., 1989, A block in mammalian splicing occurring after formation of large complexes containing Ul, U2, U4, U5 and U6 small nuclear ribonucleoproteins, Mol. Cell. Biol. 9: 259–267.PubMedGoogle Scholar
  2. Akkina, R. K., Chambers, T. M., Londo, D. R., and Nayak, D. P., 1987, Intracellular localization of the viral polymerase proteins in cells infected with influenza virus and cells expressing PB1 protein from cloned cDNA, J. Virol. 61: 2217–2224.PubMedGoogle Scholar
  3. Aloni, Y., Dhar, R., and Khoury, G., 1979, Methylation of nuclear simian virus 40 RNAs, J. Virol. 32: 52–60.PubMedGoogle Scholar
  4. Alonso-Caplen, F. V., Katze, M. G., and Krug, R. M., 1988, Efficient transcription, not translation, is dependent on adenovirus tripartite leader sequences at late times of infection, J. Virol. 62: 1606–1616.PubMedGoogle Scholar
  5. Anderson, C. W., Baum, P. R., and Gesteland, R. F., 1973, Processing of adenovirus 2-induced proteins, J. Virol. 12: 241–252.PubMedGoogle Scholar
  6. Arnheiter, H., and Haller, O., 1988, Antiviral state against influenza virus neutralized by microinjection of antibodies to interferon induced Mx proteins, EMBO J. 5: 1315–1320.Google Scholar
  7. Arnheiter, H., and Staehli, P., 1983, Expression of interferon dependent resistance to influenza virus in mouse embryo cells, Arch. Virol. 76: 127–137.PubMedGoogle Scholar
  8. Arnheiter, H., Haller, O., and Lindenmann, J., 1980, Host gene influence on interferon action in adult mouse hepatocytes: Specificity for influenza virus, Virology 103: 11–20.PubMedGoogle Scholar
  9. Arrigo, S., and Beemon, K., 1988, Regulation of Rous sarcoma virus RNA splicing and stability, Mol. Cell. Biol. 8: 4858–4867.PubMedGoogle Scholar
  10. Babich, A., Feldman, L., Nevins, J., Darnell, J., and Weinberger, C., 1983, Effects of adenovirus on metabolism of specific host mRNAs: Transport control and specific translation discrimination, Mol. Cell. Biol. 3: 1212–1221.PubMedGoogle Scholar
  11. Banerjee, A. K., 1980, 5’-terminal cap structure in eukaryotic messenger ribonucleic acids, Microbiol. Rev. 44: 175–205.PubMedGoogle Scholar
  12. Barrett, T., Wolstenholme, A. J., and Mahy B. W. J., 1979, Transcription and replication of influenza virus RNA, Virology 98: 211–225.PubMedGoogle Scholar
  13. Beaton, A. R., and Krug, R. M., 1984, Synthesis of the templates for influenza virion RNA replication in vitro, Proc. Natl. Acad. Sci. USA 81: 4682–4686.PubMedGoogle Scholar
  14. Beaton, A. R., and Krug, R. M., 1986, Transcription antitermination during influenza viral template RNA synthesis requires the nucleocapsid protein and the absence of a 5’ capped end, Proc. Natl. Acad. Sci. USA 83: 6282–6286.PubMedGoogle Scholar
  15. Beemon, K., and Keith, J., 1977, Localization of N6-methyladenosine in the Rous sarcoma virus genome, J. Mol. Biol. 113: 165–179.PubMedGoogle Scholar
  16. Bello, J., and Ginsberg, H. S., 1976, Inhibition of host protein synthesis in type 5 adenovirusinfected cells, J. Virol. 1: 843–850.Google Scholar
  17. Beltz, G. A., and Flint, S. J., 1979, Inhibition of HeLa cell protein synthesis in type 5 adenovirus infection, J. Mol. Biol. 131: 353–373.PubMedGoogle Scholar
  18. Berget, S. M., Moore, C., and Sharp, P. A., 1977, Spliced segments at the 5’ terminus of adenovirus 2 late mRNA, Proc. Natl. Acad. Sci. USA 74: 3171–3175.PubMedGoogle Scholar
  19. Berkner, K. L., and Sharp, P. A., 1985, Effect of the tripartite leader on synthesis of a nonviral protein in an adenovirus 5 recombinant, Nucl. Acids Res. 13: 841–857.PubMedGoogle Scholar
  20. Bindereif, A., and Green, M. R., 1986, Ribonucleoprotein complex formation during premRNA splicing in vitro, Mol. Cell. Biol. 6: 2582–2592.PubMedGoogle Scholar
  21. Bindereif, A., and Green, M. R., 1987, An ordered pathway of snRNP binding during mammalian pre-mRNA splicing complex assembly, EMBO J. 6: 2415–2424.PubMedGoogle Scholar
  22. Blaas, D., Patzelt, E., and Keuchler, E., 1982, Identification of the cap binding protein of influenza virus, Nucl. Acids Res. 10: 4803–4812.PubMedGoogle Scholar
  23. Black, L. D., Chabot, B., and Steitz, J. A., 1985, U2 as well as U1 small nuclear ribonucleoproteins are involved in pre-messenger RNA splicing, Cell 42: 737–750.PubMedGoogle Scholar
  24. Bouloy, M., Plotch, S. J., and Krug, R. M., 1978, Globin mRNAs are primers for the transcrip- tion of influenza viral RNA in vitro, Proc. Natl. Acad. Sci. USA 75: 4886–4890.PubMedGoogle Scholar
  25. Bouloy, M., Morgan, M. A., Shatkin, A. J., and Krug, R. M., 1979, Cap and internal nucleotides of reovirus mRNA primers are incorporated into influenza viral complementary RNA during transcription in vitro, J. Virol. 32: 895–904.PubMedGoogle Scholar
  26. Bouloy, M., Plotch, S. J., and Krug, R. M., 1980, Both the 7-methyl and 2’-O-methyl groups in the cap of an mRNA strongly influence its ability to act as a primer for influenza viral RNA transcription, Proc. Natl. Acad. Sci. USA 77: 3952–3956.PubMedGoogle Scholar
  27. Braam, J., Ulmanen, I., and Krug, R. M., 1983, Molecular model of a eukaryotic transcription complex: Functions and movements of influenza P proteins during capped RNA-primed transcription, Cell 34: 609–618.PubMedGoogle Scholar
  28. Brendler, T., Godefroy-Colburn, J., Yu, S., and Thach, R. E., 1981, The role of mRNA competition in regulating translation, J. Biol. Chem. 256: 11755–11761.PubMedGoogle Scholar
  29. Briedis, D. J., and Lamb, R. A., 1982, Influenza B virus genome: sequences and structural organization of RNA segment 8 and the mRNAs coding for the NS1 and NS2 proteins, J. Virol. 42: 186–193.PubMedGoogle Scholar
  30. Briedis, D. J., Lamb, R. A., and Choppin, P. W., 1982, Sequence of RNA segment 7 of the influenza B virus genome: Partial amino acid homology between the membrane proteins (M1) of influenza A and B viruses and conservation of a second open reading frame, Virology 116: 581–588.PubMedGoogle Scholar
  31. Brody, E., and Abelson, J., 1985, The spliceosome: Yeast pre-messenger RNA associates with a 40S complex in a splicing dependent reaction, Science 228: 963–967.PubMedGoogle Scholar
  32. Canaani, D., Kahana, C., Lavi, C. S., and Groner, Y., 1979, Identification and mapping of N6methyladenosine containing sequences in Simian Virus 40 RNA, Nucl. Acids Res. 6: 2879–2899.PubMedGoogle Scholar
  33. Carroll, A. R., and Wagner, R. R., 1979, Role of the membrane (M) protein in endogenous inhibition of in vitro transcription by vesicular stomatitis virus, J. Virol. 29: 134–142.PubMedGoogle Scholar
  34. Chabot, B., Black, L. D., LeMaster, D. M., and Steitz, J. A., 1985, The 3’ splice site of pre-messenger RNA is recognized by a small nuclear ribonucleoprotein, Science 230: 1344–1349.PubMedGoogle Scholar
  35. Chen-Kiang, S., Nevins, J. R., and Darnell, J. E., 1973, N-6-methyladenosine in adenovirus type 2 nuclear RNA is conserved in the formation of messenger RNA, J. Mol. Biol. 135: 733–752.Google Scholar
  36. Cheng, S.-C., and Abelson, J., 1987, Spliceosome assembly in yeast, Genes Dev. 1: 1014–1027.PubMedGoogle Scholar
  37. Clinton, G. M., Little, S. P., Hagen, F. S., and Huang, A. S., 1978, The matrix (M) protein of vesicular stomatitis protein regulates transcription, Cell 15: 1455–1462.PubMedGoogle Scholar
  38. Compans, R. W., Content, J., and Duesburg, P. H., 1972, Structure of the ribonucleoprotein of influenza virus, J. Virol. 10: 795–800.PubMedGoogle Scholar
  39. Compans, R. W., Bishop, D. H., and Meier-Ewert, H., 1977, Structural components of influenza C virions, J. Virol. 21: 658–665.PubMedGoogle Scholar
  40. Davey, J., Colman, A., and Dimmock, N. J., 1985a, Location of influenza virus M, NP and NS1 proteins in microinjected cells, J. Gen. Virol. 66: 2319–2334.PubMedGoogle Scholar
  41. Davey, J., Dimmock, N. J., and Colman, A., 1985b, Identification of the sequence responsible for nuclear accumulation of the influenza virus nucleoprotein in Xenopus oocytes, Cell 40: 657–667.Google Scholar
  42. Davis, A. R., Kostek, B., Mason, B. B., Hsiao, C. L., Morin, J., Dheer, S. K., and Hung, P. P., 1985, Expression of hepatitis B surface antigen with a recombinant adenovirus, Proc. Natl. Acad. Sci. USA 82: 7560–7564.PubMedGoogle Scholar
  43. De, B. P., Thornton, G. B., Luk, D., and Banerjee, A. K., 1982, Purified matrix protein in vesicular stomatitis virus blocks viral transcription in vitro, Proc. Natl. Acad. Sci. USA 79: 7137–7141.PubMedGoogle Scholar
  44. Desselberger, U., Racaniello, V. R., Zazra, J. J., and Palese, P., 1980, The 3’ and 5’ end terminal sequences of influenza A, B, and C virus RNA segments are highly conserved and show partial inverted complementarity, Gene 8: 315–328.PubMedGoogle Scholar
  45. Detjen, B. M., St. Angelo, C., Katze, M. G., and Krug, R. M., 1987, The three influenza virus polymerase (P) proteins not associated with viral nucleocapsids in the infected cell are in the form of a complex, J. Virol. 61: 16–22.PubMedGoogle Scholar
  46. Dimock, K., and Stoltzfus, C. M., 1977, Sequence specificity of internal methylation in B77 avian sarcoma virus RNA subunits, Biochemistry 16: 471–478.PubMedGoogle Scholar
  47. Dreiding, P., Staehli, P., and Haller, O., 1985, Interferon-induced protein Mx accumulates in nuclei of mouse cells expressing resistance to influenza viruses, Virology 140: 192–196.PubMedGoogle Scholar
  48. Emerson, S. U., and Yu, Y.-H., 1975, Both NS and L proteins are required for in vitro RNA synthesis by vesicular stomatitis virus, J. Virol. 15: 1348–1356.PubMedGoogle Scholar
  49. Flint, S. J., Beltz, G. A., and Linzer, D. I. H., 1983, Synthesis and processing of simian virus 40-specific RNA in adenovirus-infected simian virus 40-transformed human cells, J. Mol. Biol. 167: 335–359.PubMedGoogle Scholar
  50. Frendeway, D., and Keller, W., 1985, Stepwise assembly of a pre-mRNA splicing complex requires U-snRNPs and specific intron sequences, Cell 42: 355–367.Google Scholar
  51. Frendeway, D., Kramer, A., and Keller, W., 1987, Different small nuclear ribonucleoprotein particles are involved in different steps of splicing complex formation, Cold Spring Harbor Symp. Quant. Biol. 52: 287–298.Google Scholar
  52. Fumeaux, H. M., Perkins, K. K., Freyer, G. A., Arenas, J., and Hurwitz, J., 1985, Isolation and characterization of two fractions from HeLa cells required for mRNA splicing in vitro, Proc. Natl. Acad. Sci. USA 82: 4351–4355.Google Scholar
  53. Grabowski, P. J., and Sharp, P. A., 1986, Affinity chromatography of splicing complexes: U2, U5, and U4 + U6 small nuclear ribonucleoprotein particles in the spliceosome, Science 233: 1294–1299.PubMedGoogle Scholar
  54. Grabowski, P. J., Seller, S. R., and Sharp, P. A., 1985, A multicomponent complex is involved in the splicing of messenger RNA precursors, Cell 42: 345–353.PubMedGoogle Scholar
  55. Greenspan, D., Krystal, M., Nakada, S., Arnheiter, H., Lyles, D. S., and Palese, P., 1985, Expression of influenza virus NS2 nonstructural protein in bacteria and localization of NS2 in infected eucaryotic cells, J. Virol. 54: 833–843.PubMedGoogle Scholar
  56. Greenspan, D., Palese, P., and Krystal, M., 1988, Two nuclear location signals in the influenza virus NSl nonstructural protein, J. Virol. 62: 3020–3026.PubMedGoogle Scholar
  57. Gregoriades, A., 1977, Influenza virus-induced proteins in nuclei and cytoplasm of infected cells, Virology 79: 449–454.PubMedGoogle Scholar
  58. Gupta, K. C., and Kingsbury, D. W., 1982, Conserved polyadenylation signals in two negative-strand RNA virus families, Virology 12: 951–961.Google Scholar
  59. Haller, 0., 1981, Inborn resistance of mice to orthomyxoviruses, Curr. Top. Microbiol. Immunol. 92: 25–52.Google Scholar
  60. Haller, O., Arnheiter, H., Gresser, I., and Lindenmann, J., 1979, Genetically determined, interferon-dependent resistance to influenza virus in mice, J. Exp. Med. 149: 601–612.PubMedGoogle Scholar
  61. Haller, O., Amheiter, H., Lindenmann, J., and Gresser, I., 1980, Host gene influences sensitivity to interferon action selectively for influenza virus, Nature (Lond.)283:660–662.PubMedGoogle Scholar
  62. Haller, O., Amheiter, H., Gresser, I., and Lindenmann, J., 1981, Virus-specific interferon action: Protection of newborn Mx carriers against lethal-infection with influenza virus, J. Exp. Med. 154: 199–203.PubMedGoogle Scholar
  63. Haller, O., Acklin, M., and Staehli, P., 1987, Influenza virus resistance of wild mice: Wildtype and mutant Mx alleles occur at comparable frequencies, J. Interferon Res. 7: 647656.Google Scholar
  64. Hay, A. J., and Skehel, J. J., 1975, Studies on the synthesis of influenza virus proteins, in: Negative Strand Viruses, Vol. 2 ( B. W. J. Mahy and R. D. Barry, eds.), pp. 635–655, Academic, London.Google Scholar
  65. Hay, A. J., Lomnicizi, B., Bellamy, A. R., and Skehel, J. J., 1977a, Transcription of the influenza virus genome, Virology 83: 337–355.PubMedGoogle Scholar
  66. Hay, A. J., Abraham, G., Skehel, J. J., Smith, J. C., and Fellner, P., 1977b, Influenza virus messenger RNAs are incomplete transcripts of the genome RNA, Nucl. Acids Res. 4: 4197–4209.PubMedGoogle Scholar
  67. Hay, A. J., Skehel, J. J., and McCauley, J., 1982, Characterization of influenza virus RNA complete transcripts, Virology 116: 517–522.PubMedGoogle Scholar
  68. Herz, C., Stavnezer, E., Krug, R. M., and Gurney, T., Jr., 1981, Influenza virus, an RNA virus, synthesizes its messenger RNA in the nucleus of infected cells, Cell 26: 391–400.PubMedGoogle Scholar
  69. Hiebert, S. W., Williams, M. A., and Lamb, R. A., 1986, Nucleotide sequence of RNA segment 7 of influenza B/Singapore/222/79: Maintenance of a second large open reading frame, Virology 155: 747–751.PubMedGoogle Scholar
  70. Horisberger, M. A., 1988, The action of recombinant bovine interferons on influenza virus replication correlates with the induction of two Mx-related proteins in bovine cells, Virology 162: 181–186.PubMedGoogle Scholar
  71. Horisberger, M. A., Haller, O., and Arnheiter, H., 1980, Interferon-dependent genetic resistance to influenza virus in mice: Virus replication in macrophages is inhibited at an early step, J. Gen. Virol. 50: 205–210.PubMedGoogle Scholar
  72. Horisberger, M. A., Staehli, P., and Haller, O., 1983, Interferon induces a unique protein in mouse cells bearing a gene for resistance to influenza virus, Proc. Natl. Acad. Sci. USA 80: 1910–1914.PubMedGoogle Scholar
  73. Horisberger, M. A., and Hochkeppel, H. K., 1987, IFN-a induced human 78 kD protein: Purification and homologies with the mouse Mx protein, production of monoclonal antibodies and potentiation effect of IFN-y, J. Interferon Res. 7: 331–343.PubMedGoogle Scholar
  74. Horowitz, S., Horowitz, A., Nilsen, T. W., Munns, T. W., and Rottman, F. M., 1984, Mapping of N6-methyladenosine residues in bovine prolactin mRNA, Proc. Natl. Acad. Sci. USA 81: 5667–5671.PubMedGoogle Scholar
  75. Hsu, M.-T., Parvin, J. D., Gupta, S., Krystal, M., and Palese, P., 1987, Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle, Proc. Natl. Acad. Sci. USA 84: 8140–8144.PubMedGoogle Scholar
  76. Hug, H., Costas, M., Staehli, P., Aebi, M., and Weissmann, C., 1988, Organization of the murine Mx gene and characterization of its interferon-and virus-inducible promoter, Mol. Cell. Biol. 8: 3065–3079.PubMedGoogle Scholar
  77. Inglis, S. C., and Brown, C. M., 1981, Spliced and unspliced RNAs encoded by virion RNA segment 7 of influenza virus, Nucl. Acids Res. 9: 2727–2740.PubMedGoogle Scholar
  78. Inglis, S. C., and Brown, C. M., 1984, Differences in the control of virus mRNA splicing during permissive or abortive infection with influenza A (Fowl Plague) virus, J. Gen. Virol. 65: 153–164.PubMedGoogle Scholar
  79. Inglis, S. C., Carroll, A. R., Lamb, R. A., and Mahy, B. W. J., 1976, Polypeptides specified by the influenza virus genome. I. Evidence for eight distinct gene products specified by fowl plague virus, Virology 74: 489–503.PubMedGoogle Scholar
  80. Jackson, D. A., Caton, A. J., McCready, S. J., and Cook, P. R., 1982, Influenza virus RNA is synthesized at a fixed site in the nucleus, Nature (Lond.) 296: 366–368.Google Scholar
  81. Jagus, R., Anderson, W. F., and Safer, B., 1981, The regulation of initiation of mammalian protein synthesis, Prog. Nucl. Acid Res. 25: 127–185.Google Scholar
  82. Jen, G., and Thach, R. E., 1982, Inhibition of host translation in encephalomyocarditis virus infected L cells: A novel mechanism, J. Virol. 43: 250–261.PubMedGoogle Scholar
  83. Jones, I. M., Reay, P. A., and Philpott, K. L., 1986, Nuclear location of all three influenza polymerase proteins and a nuclear signal in polymerase PB2, EMBO J. 5: 2371–2376.PubMedGoogle Scholar
  84. Kane, S. E., and Beemon, K., 1985, Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: Implications for RNA processing, Mol. Cell. Biol. 5: 2298–2306.PubMedGoogle Scholar
  85. Kato, A., Mixumoto, K., and Ishihama, A., 1985, Purification and enzymatic properties of an RNA-polymerase—RNA complex from influenza virus, Virus Res. 3: 115–127.PubMedGoogle Scholar
  86. Katz, R. A., Kotler, M., and Skalka, A. M., 1988, cis-Acting intron mutations that affect the efficiency of avian retroviral RNA splicing: Implication for mechanisms of control, J. Virol. 62: 2686–2695.Google Scholar
  87. Katze, M. G., and Krug, R. M., 1984, Metabolism and expression of RNA polymerase II transcripts in influenza virus-infected cells, Mol. Cell. Biol. 4: 2198–2206.PubMedGoogle Scholar
  88. Katze, M. G., Chen, Y. T., and Krug, R. M., 1984, Nuclear-cytoplasmic transport and VAI RNA independent translation of influenza viral messenger RNAs in late adenovirusinfected cells, Cell 37: 483–490.PubMedGoogle Scholar
  89. Katze, M. G., Detjen, B. M., Safer, B., and Krug, R. M., 1986a, Translational control of influenza virus: Suppression of the kinase that phosphorylates the alpha subunit of initiation factor eIF-2 and selective translation of influenza viral mRNAs, Mol. Cell. Biol. 6: 1741–1750.PubMedGoogle Scholar
  90. Katze, M. G., DeCorato, D., and Krug, R. M., 1986b, Cellular mRNA translation is blocked at both initiation and elongation after infection by influenza virus or adenovirus, J. Virol. 60: 1027–1039.PubMedGoogle Scholar
  91. Katze, M. G., DeCorato, D., Safer, B., Galabru, J., and Hovanessian, A. G., 1987, The adenovirus VAl RNA complexes with the P68 protein kinase to regulate its autophosphorylation and activity, EMBO J. 6: 689–697.PubMedGoogle Scholar
  92. Katze, M. G., Tonvita, J., Black, T., Krug, R. M., Safer, B., and Hovanessian, A., 1988, Influenza virus regulates protein synthesis during infection by repressing the autophosphorylation and activity of the cellular 68,000 Mr protein kinase, J. Virol. 62: 3710–3717.PubMedGoogle Scholar
  93. Katze, M. G., Lara, J., and Wamback, M., 1989, Nontranslated cellular mRNAs are associated with the cytoskeletal framework in influenza virus or adenovirus infected cells, Virology (in press).Google Scholar
  94. Kawakami, K., and Ishihama, A., 1983, RNA polymerase of influenza virus. III. Isolation of RNA polymerase—RNA complexes from influenza virus PR8, J. Biochem. 93: 989–996.PubMedGoogle Scholar
  95. Kingsbury, D. W., Jones, I. M., and Murti, K. G., 1987, Assembly of influenza ribonucleoprotein in vitro using recombinant nucleoprotein, Virology 156: 396–403.PubMedGoogle Scholar
  96. Kitajewski, J., Schneider, R. J., Safer, B., Muenmitsu, M., Samuel, C. E., Thimmappaya, B., and Shenk, T., 1986, Adenovirus VAl RNA antagonizes the antiviral action of interferon by preventing activation of the interferon-induced eIF-2 kinase, Cell 45: 195–200.PubMedGoogle Scholar
  97. Konarska, M. M., and Sharp, P. A., 1986, Electrophoretic separation of complexes involved in the splicing of precursors of mRNAs, Cell 46: 845–855.PubMedGoogle Scholar
  98. Konarska, M. M., and Sharp, P. A., 1987, Interactions between small nuclear ribonucleoprotein particles in the formation of spliceosomes, Cell 49: 763–774.PubMedGoogle Scholar
  99. Konieczny, A., and Safer, B., 1983, Purification of the eukaryotic initiation factor 2-eukaryotic initiation factor 2B complex and characterization of its guanine nucleotide exchange activity during protein synthesis, J. Biol. Chem. 256: 3402–3408.Google Scholar
  100. Kozak, M., 1986, Regulation of protein synthesis in virus-infected animal cells, Adv. Virus Res. 31: 229–292.PubMedGoogle Scholar
  101. Krug, R. M., 1972, Cytoplasmic and nucleoplasmic viral RNPs in influenza virus-infected MDCK cells, Virology 50: 103–136.PubMedGoogle Scholar
  102. Krug, R. M., 1981, Priming of influenza viral RNA transcription by capped heterologous RNAs, Curr. Top. Microbiol. Immunol. 93: 125–150.PubMedGoogle Scholar
  103. Krug, R. M., 1983, Transcription and replication of influenza virus, in: Genetics of Influenza Virus ( P. Palese and D. Kingsbury, eds.), pp. 70–98, Springer-Verlag, New York.Google Scholar
  104. Krug, R. M., and Etkind, P., 1973, Cytoplasmic and nuclear virus-specific proteins in influenza virus-infected MDCK cells, Virology 56: 334–348.PubMedGoogle Scholar
  105. Krug, R. M., and Soeiro, R., 1975, Studies on the intranuclear localization of influenza virus-specific proteins, Virology 64: 378–387.PubMedGoogle Scholar
  106. Krug, R. M., Ueda, M., and Palese, P., 1975, Temperature-sensitive mutants of influenza WSN virus defective in virus-specific RNA synthesis, J. Virol. 16: 790–796.PubMedGoogle Scholar
  107. Krug, R. M., Broni, B. B., and Bouloy, M., 1979, Are the 5’ ends of influenza viral mRNAs synthesized in vivo donated by host mRNAs?, Cell 18: 329–334.PubMedGoogle Scholar
  108. Krug, R. M., Broni, B. A., Lafiandra, A. J., Morgan, M. A., and Shatkin, A. J., 1980, Priming and inhibitory activities of RNAs for the influenza viral transcriptase do not require base pairing with the virion template RNA, Proc. Natl. Acad. Sci. USA 77: 5874–5878.PubMedGoogle Scholar
  109. Krug, R. M., Shaw, M., Broni, B., Shapiro, G., and Haller, O., 1985, Inhibition of influenza viral messenger RNA synthesis in cells expressing the interferon-induced Mx gene product, J. Virol. 56: 201–206.PubMedGoogle Scholar
  110. Krug, R. M., St. Angelo, C., Broni, B., and Shapiro, G., 1987, Transcription and replication of influenza virion RNA in the nucleus of infected cells, Cold Spring Harbor Symp. Quant. Biol. III: 353–358.Google Scholar
  111. Lamb, R. A., and Lai, C.-J., 1980, Sequence of interrupted and uninterrupted mRNAs and cloned DNA coding for the two overlapping nonstructural proteins of influenza virus, Cell 21: 475–485.PubMedGoogle Scholar
  112. Lamb, R. A., and Lai, C.-J., 1982, Spliced and unspliced messenger RNAs synthesized from cloned influenza virus M DNA in an SV40 vector: Expression of the influenza virus membrane protein, Virology 123: 237–256.PubMedGoogle Scholar
  113. Lamb, R. A., and Lai, C.-J., 1984, Expression of unspliced NS1 mRNA, spliced NS2 mRNA, and a spliced chimera mRNA from cloned influenza virus NS DNA in an SV40 vector, Virology 135: 139–147.PubMedGoogle Scholar
  114. Lamb, R. A., Choppin, P. W., Channock, R. M., and Lai, C.-J., 1980, Mapping of the two overlapping genes for polypeptides NS1 and NS2 on RNA segment 8 of influenza virus genome, Proc. Natl. Acad. Sci. USA 77: 1857–1861.PubMedGoogle Scholar
  115. Lamb, R. A., Lai, C.-J., and Choppin, P. W., 1981, Sequences of mRNAs derived from genome RNA segment 7 of influenza virus: Colinear and interrupted mRNAs code for overlapping proteins, Proc. Natl. Acad. Sci. USA 78: 4170–4174.PubMedGoogle Scholar
  116. Lamb, R. A., Zebedee, S. L., and Richardson, C. D., 1985, Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface, Cell 40: 627–633.PubMedGoogle Scholar
  117. Lamond, A. I., Konarska, M. M., Grabowski, P. J., and Sharp, P. A., 1988, Spliceosome assembly involves the binding and release of U4 small nuclear ribonucleoprotein, Proc. Natl. Acad. Sci. USA 85: 411–415.PubMedGoogle Scholar
  118. Lawrence, C. B., and Jackson, K. J., 1982, Translation of adenovirus serotype 2 late mRNAs, J. Mol. Biol. 162: 317–334.PubMedGoogle Scholar
  119. Lazarowitz, S. G., Compans, R. W., and Choppin, P. W., 1971, Influenza virus structural and nonstructural proteins in infected cells and their plasma membranes, Virology 46: 830–843.PubMedGoogle Scholar
  120. Lengyel, P., 1982, Biochemistry of interferons and their actions, Annu. Rev. Biochem. 51: 251–282.PubMedGoogle Scholar
  121. Lenk, R., Ransom, L., Kaufmann, Y., and Penman, S., 1977, A cytoskeletal structure with associated polyribosomes obtained from HeLa cells, Cell 10: 67–78.PubMedGoogle Scholar
  122. Lenk, R., and Penman, S., 1979, The cytoskeleton framework and poliovirus metabolism, Cell 16: 289–301.PubMedGoogle Scholar
  123. Lewis, E. D., and Manley, J. L., 1985, Control of adenovirus late promoter expression in two human cell lines, Mol. Cell. Biol. 5: 2433–2442.PubMedGoogle Scholar
  124. Lindenmann, J., 1962, Resistance of mice to mouse adapted influenza A virus, Virology 16: 203–204.PubMedGoogle Scholar
  125. Lindenmann, J., 1964, Inheritance of resistance to influenza in mice, Proc. Soc. Exp. Biol. Med. 116: 505–509.Google Scholar
  126. Lindenmann, J., and Klein, P. A., 1966, Further studies on the resistance of mice to myxoviruses, Arch. Ges. Virusforsch 19: 1–12.Google Scholar
  127. Lindenmann, J., Lance, C. A., and Hobson, D., 1963, The resistance of A2G mice to myxoviruses, J. Immunol. 90: 942–951.PubMedGoogle Scholar
  128. Lodish, H. F., 1976, Translational control of protein synthesis, Annu. Rev. Biochem. 45: 3972.Google Scholar
  129. Lodish, H., and Froshauer, S., 1977, Rates of initiation of protein synthesis by two purified species of vesicular stomatitis virus messenger RNA, J. Biol. Chem. 52: 8804–8811.Google Scholar
  130. Lodish, H. F., and Porter, M., 1980, Translational control of protein synthesis after infection by vesicular stomatitis virus, J. Virol. 36: 719–733.PubMedGoogle Scholar
  131. Logan, J., and Shenk, T., 1984, Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection, Proc. Natl. Acad. Sci. USA 81: 3655–3659.PubMedGoogle Scholar
  132. Mahy, B. W. J., Barrett, T., Nichol. S. T., Penn, C. R., and Wolstenholme, A. J., 1981, Analysis of the functions of influenza virus genome RNA segments by use of temperature-sensitive mutants of fowl plague virus, in: The Replication of Negative-Stranded Viruses ( D. H. L. Bishop and R. W. Compans, eds.), pp. 379–387, Elsevier/North-Holland, New York.Google Scholar
  133. Mandler, J., and Scholtissek, C., 1989, Determination of the mutations responsible for the temperature sensitive defects in the nucleoproteins (NP) of two influenza A virus mutants with different phenotypes, in: Genetics and Pathogenecity of Negative Strand Viruses (B. W. J. Mahy, D. Kolakofsky, and A. Flammand, eds.) (in press).Google Scholar
  134. Maniatis, T., and Reed, R., 1987, The role of small nuclear ribonucleoprotein particles in pre-mRNA splicing, Nature (Lond.) 325: 673–678.Google Scholar
  135. Mansour, S. L., Grodzicker, T., and Tjian, R., 1986, Downstream sequences affect transcription initiation from the adenovirus major late promoter, Mol. Cell. Biol. 6: 2684–2694.PubMedGoogle Scholar
  136. Mark, G. E., Taylor, J. M., Broni, B., and Krug, R. M., 1979, Nuclear accumulation of influenza viral RNA and the effects of cyclohexamide actinomycin D and alpha amanitin, J. Virol. 29: 744–752.PubMedGoogle Scholar
  137. McGeoch, D., and Kitson, N., 1974, Influenza virion RNA-dependent RNA polymerase: Stimulation by guanosine and related compounds, J. Virol. 15: 686–695.Google Scholar
  138. Meier, E., Fah, J., Grob, M. S., End, R., Staehli, P., and Haller, O., 1988, A family of interferon-induced Mx-related mRNAs encodes cytoplasmic and nuclear proteins in rat cells, J. Virol. 62: 2386–2393.PubMedGoogle Scholar
  139. Meyer, T., and Horisberger, M. A., 1984, Combined action of mouse a and 13 interferons in influenza virus-infected macrophages carrying the resistance gene Mx, J. Virol. 49: 709–716.PubMedGoogle Scholar
  140. Mortier, C., and Haller, O., 1987, Homologs to mouse Mx protein induced by interferon in various species, in: The Biology of the Interferon System ( K. Cantell and H. Schellekens, eds.), pp. 79–84, Martinus Nijhoff, Dordrecht.Google Scholar
  141. Mowshowitz, S. L., 1981, RNA synthesis of temperature-sensitive mutants of WSN influenza virus, in: The Replication of Negative-Strand Viruses ( D. H. L. Bishop and R. W. Compans, eds.), pp. 317–323, Elsevier/North-Holland, New York.Google Scholar
  142. Murti, K. G., Webster, R. G., and Jones, I. M., 1988, Localization of RNA polymerase on influenza viral ribonucleoproteins by immunogold labeling, Virology 164: 562–566.PubMedGoogle Scholar
  143. Narayan, P., Ayers, D. F., Rottman, F. M., Maroney, P. A., and Nilsen, T. W., 1987, Unequal distribution of N6-methyladenosine in influenza virus mRNAs, Mol. Cell. Biol. 7: 1572–1575.PubMedGoogle Scholar
  144. Noteborn, M., Arnheiter, H., Richter-Mann, L., Browing, H., and Weissmann, C., 1987, Transport of the murine Mx protein into the nucleus is dependent on a basic carboxy terminal sequence, J. Interferon Res. 7: 657–669.PubMedGoogle Scholar
  145. O’Malley, R. P., Mariano, T. M., Siekierka, J., and Mathews, M. B., 1986, A mechanism for the control of protein synthesis by adenovirus VA RNAI, Cell 44: 391–400.PubMedGoogle Scholar
  146. Oxford, J. S., and Schild, G. C., 1975, Immunological studies with influenza virus matrix protein, in: Negative Strand Viruses ( B. W. J. Mahy and R. D. Barry, eds.), pp. 611–620, Academic, Orlando, Florida.Google Scholar
  147. Padgett, R. A., Konarska, M. M., Grabowski, P. J., and Sharp, P. A., 1984, Lariat RNAs as intermediates and products in the splicing of messenger RNA precursors, Science 225: 898–903.PubMedGoogle Scholar
  148. Pal, R., Grinnell, B. W., Snyder, R. M., and Wagner, R. R., 1985, Regulation of viral transcription by the matrix protein of vesicular stomatitis virus probed by monoclonal antibodies and temperature-sensitive mutants, J. Virol. 56: 386–394.PubMedGoogle Scholar
  149. Panniers, R., and Henshaw, E. C., 1983, A GDP/GTP exchange factor essential for eukaryotic initiation factor 2 cycling in Ehrlich ascites tumor cells and its regulation by eukaryotic initiation factor 2 phosphorylation, J. Biol. Chem. 258: 7982–7934.Google Scholar
  150. Patton, J. T., Davis, N. L., and Wertz, G., 1983, Cell-free synthesis and assembly of vesicular stomatitis virus nucleocapsids, J Virol. 45: 155–164.PubMedGoogle Scholar
  151. Patton, J. T., Davis, N. L., and Wertz, G., 1984, N protein alone satisfies the requirement for protein synthesis during RNA replication of vesicular stomatitis virus, J. Virol. 49: 303–309.PubMedGoogle Scholar
  152. Peluso, R. W., and Moyer, S. A., 1983, Initiation and replication of vesicular stomatitis virus genome RNA in a cell-free system, Proc. Natl. Acad. Sci. USA 80: 3198–3202.PubMedGoogle Scholar
  153. Peluso, R. W., and Moyer, S. A., 1984, Vesicular stomatitis virus proteins required for the in vitro replication of defective interfering particle genome RNA, in: Nonsegmented Negative Strand Viruses ( D. H. L. Bishop and R. Compans, eds.), pp. 153–160, Academic, Orlando, Florida.Google Scholar
  154. Perkins, K. K., Furneaux, H. M., and Hurwitz, J., 1986, RNA splicing products formed with isolated fractions from HeLa cells are associated with fast-sedimenting complexes, Proc. Natl. Acad. Sci. USA 83: 887–981.PubMedGoogle Scholar
  155. Plotch, S. J., and Krug, R. M., 1977, Influenza virion transcriptase: Synthesis in vitro of large, polyadenylic acid-containing complementary RNA, J. Virol. 21: 24–34.PubMedGoogle Scholar
  156. Plotch, S. J., and Krug, R. M., 1978, Segments of influenza virus complementary RNA synthesized in vitro, J. Virol. 25: 579–586.Google Scholar
  157. Plotch, S. J., and Krug, R. M., 1986, In vitro splicing of influenza viral NS1 mRNA and NS1–13-globin chimeras: Possible mechanisms for the control of viral mRNA splicing, Proc. Natl. Acad. Sci. USA 83: 5444–5448.Google Scholar
  158. Plotch, S., Bouloy, M., and Krug, R. M., 1979, Transfer of 5’ terminal cap of globin mRNA to influenza viral complementary RNA during transcription in vitro, Proc. Natl. Acad. Sci. USA 76: 1618–1622.Google Scholar
  159. Plotch, S. J., Bouloy, M., Ulmanen, I., and Krug, R. M., 1981, A unique cap(m7GpppXm)dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription, Cell 23: 847–858.PubMedGoogle Scholar
  160. Pons, M. W., 1971, Isolation of influenza virus ribonucleoprotein from infected cells: Demonstration of the presence of negative-stranded RNA in viral RNP, Virology 46: 149160.Google Scholar
  161. Portela, A., Meleor, J. A., Martinez, C, Domingo, E., and Oritin, J., 1985, Oriented synthesis and cloning of influenza virus nucleoprotein cDNA that leads to its expression in mammalian cells, Virus Res. 4: 69–82.PubMedGoogle Scholar
  162. Reed, R., and Maniatis, T., 1988, The role of the mammalian branchpoint sequence in premRNA splicing, Genes Dev. 2: 1268–1276.PubMedGoogle Scholar
  163. Reed, R., Griffith, J., and Maniatis, T., 1988, Purification and visualization of native spliceosomes, Cell 53: 949–961.PubMedGoogle Scholar
  164. Reeves, R. H., O’Hara, B. F., Pavan, W. J., Gearhart, J. D., and Haller, O., 1988, Genetic mapping of the Mx influenza virus resistance gene within the region of mouse chromosome 16 that is homologous to human chromosome 21, J. Virol. 62: 4372–4375.PubMedGoogle Scholar
  165. Reichel, P. A., Merrick, W. C., Siekierka, J., and Mathews, M. B., 1985, Regulation of a protein synthesis initiation factor by adenovirus virus-associated RNAI, Nature (Lond.) 313: 196–200.Google Scholar
  166. Robertson, J. S., 1979, 5’ and 3’ terminal nucleotide sequences of the RNA genome segments of influenza virus, Nucl. Acids Res. 6: 3745–3757.PubMedGoogle Scholar
  167. Robertson, J. S., Schubert, M., and Lazzarini, R. A., 1981, Polyadenylation sites for influenza virus mRNA, J. Virol. 38: 157–163.PubMedGoogle Scholar
  168. Ruskin, B., Krainer, A. R., Maniatis, T., and Green, M. R., 1984, Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro, Cell 38: 317–331.Google Scholar
  169. Ruskin, B., Zamore, P. D., and Green, M. R., 1988, A factor U2AF is required for U2 snRNP binding and splicing complex assembly, Cell 52: 207–219.PubMedGoogle Scholar
  170. Rychlik, W., Domier, L. L., Gardner, P. R., Hellman, G. M., and Rhoads, R. E., 1987, Amino acid sequence of the mRNA cap-binding protein from human tissues, Proc. Natl. Acad. Sci. USA 84: 945–949.PubMedGoogle Scholar
  171. Safer, B., 1983, 2B or not 2B: Regulation of the catalytic utilization of eIF-2, Cell 33: 7–8.PubMedGoogle Scholar
  172. Schibler, U., Kelley, D. E., and Perry, R. P., 1977, Comparison of methylated sequences in messenger RNA and heterogeneous nuclear RNA from mouse L cells, J. Mol. Biol. 115: 696–714.Google Scholar
  173. Schneider, R. J., Safer, B., Munemitsu, S., Samuel, C., and Shenk, T., 1985, Adenovirus VAl RNA prevents phosphorylation of the eukaryotic initiation factor 2 a subunit subsequent to infection, Proc. Natl. Acad. Sci. USA 82: 4321–4325.PubMedGoogle Scholar
  174. Scholtissek, C., 1978, The genome of influenza virus, Curr. Top. Microbiol. Immunol. 80: 139–169.PubMedGoogle Scholar
  175. Scholtissek, C., and Bowles, A. L., 1975, Isolation and characterization of temperature-sensitive mutants of fowl plague virus, Virology 67: 576–587.PubMedGoogle Scholar
  176. Schubert, M., Keene, J. D., Herman, R. C., and Lazzarini, R. A., 1980, Site on the vesicular stomatitis virus genome specifying polyadenylation and the end of the L gene mRNA, J. Virol. 34: 550–559.PubMedGoogle Scholar
  177. Shapiro, G. I., and Krug, R. M., 1988, Influenza virus RNA replication in vitro: Synthesis of viral template RNAs and virion RNAs in the absence of an added primer, J. Virol. 62: 2285–2290.PubMedGoogle Scholar
  178. Shapiro, G. I., Gurney, T., Jr., and Krug, R. M., 1987, Influenza virus gene expression: Control mechanisms at early and late times of infection and nuclear cytoplasmic transport of virus specific RNAs, J. Virol. 61: 764–773.PubMedGoogle Scholar
  179. Siekierka, J., Mariano, T. M., Reichel, P. A., and Mathews, M. B., 1985, Translational control by adenovirus: Lack of virus-associated RNAI during adenovirus infection results in phosphorylation of initiation factor eIF-2 and inhibition of protein synthesis, Proc. Natl. Acad. Sci. USA 82: 1959–1963.PubMedGoogle Scholar
  180. Skehel, J. J., 1972, Polypeptide synthesis in influenza virus-infected cells, Virology 49: 23–36.PubMedGoogle Scholar
  181. Skehel, J. J., and Hay, A. J., 1978, Nucleotide sequence of the 5’ termini of influenza virus RNAs and their transcripts, Nucl. Acids Res. 5: 1207–1219.PubMedGoogle Scholar
  182. Smith, D. B., and Inglis, S. C., 1985, Regulated production of an influenza virus spliced mRNA mediated by virus-specific products, EMBO J. 4: 2313–2319.PubMedGoogle Scholar
  183. Smith, G. L., and Hay, A. J., 1982, Replication of the influenza virus genome, Virology 118: 96–108.PubMedGoogle Scholar
  184. Smith, G. L., Levin, J. Z., Pales, P., and Moss, B., 1987, Synthesis and cellular location of the ten influenza polypeptides individually expressed by recombinant vaccinia viruses, Virology 160: 336–345.PubMedGoogle Scholar
  185. St. Angelo, C., 1988, Expression of the influenza viral polymerase and nucleocapsid proteins and reconstitution studies with the expressed proteins. Ph.D. thesis, Cornell University Graduate School of Medical Sciences, New York, New York.Google Scholar
  186. St. Angelo, C., Smith, G. E., Summers, M. D., and Krug, R. M., 1987, Two of the three influenza viral polymerase proteins expressed by using baculovirus vectors form a complex in insect cells, J. Virol. 61: 361–365.Google Scholar
  187. Staehli, P., and Haller, O., 1985, Interferon-induced human protein with homology to protein Mx of influenza virus-resistant mice, Mol. Cell. Biol. 5: 2150–2153.Google Scholar
  188. Staehli, P., and Haller, O., 1987, Interferon-induced Mx protein: A mediator of cellular resistance to influenza virus, Interferon 8: 1–23.Google Scholar
  189. Staehli, P., Horisberger, M. A., and Haller, 0., 1984, Mx-dependent resistance to influenza virus is induced by mouse interferons alpha and beta but not gamma, Virology 132: 456461.Google Scholar
  190. Staehli, P., Dreiding, P., Haller, O., and Lindenmann, J., 1985, Polyclonal and monoclonal antibodies to the interferon-inducible protein Mx of influenza virus-resistant mice, J. Biol. Chem. 260: 1823–1825.Google Scholar
  191. Staehli, P., Haller, O., Boll, W., Lindenmann, J., and Weissmann, C., 1986a, Mx protein: Constitutive expression in 3T3 cells transformed with cloned Mx cDNA confers selective resistance to influenza virus, Cell 44: 147–158.Google Scholar
  192. Staehli, P., Pravtcheva, D., Lundin, L.-G., Acklin, M., Ruddle, F., Lindenmann, J., and Haller, O., 1986b, Interferon-related influenza virus resistance gene Mx is localized on mouse chromosome 16, J. Virol. 58: 967–969.Google Scholar
  193. Staehli, P., Grob, R., Meier, E., Sutcliffe, J. G., and Haller, O., 1988, Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation, Mol. Cell. Biol. 8: 4518–4523.Google Scholar
  194. Stoltzfus, C. M., and Dane, R. W., 1982, Accumulation of spliced avian retrovirus mRNA is inhibited in S-adenosylmethionine-depleted chicken embryo fibroblasts, J. Virol. 42: 918–931.PubMedGoogle Scholar
  195. Sugawara, K., Nakamura, K., and Homma, M., 1983, Analyses of structural polypeptides of seven different isolates of influenza C virus, J. Gen. Virol. 64: 579–587.PubMedGoogle Scholar
  196. Sugiura, A., Ueda, M., Tobita, K., and Enomoto, C., 1975, Further isolation and characteriza- tion of temperature-sensitive mutants of influenza virus, Virology 65: 363–373.PubMedGoogle Scholar
  197. Szewczyk, B., Laver, W. G., and Summers, D. F., 1988, Purification, thioredoxin renaturation, and reconstituted activity of the three subunits of the influenza A virus RNA polymerase, Proc. Natl. Acad. Sci. USA 85: 7907–7911.PubMedGoogle Scholar
  198. Thimmappaya, B., Weinberger, C., Schneider, R. J., and Shenk, T., 1982, Adenovirus VA1 RNA is required for efficient translation of viral mRNAs at late times after infection, Cell 31: 543–551.PubMedGoogle Scholar
  199. Thomas, G. P., and Mathews, M. B., 1984, Alterations of transcription and translation in HeLa cells exposed to amino acid analogs, Mol. Cell. Biol. 4: 1063–1072.PubMedGoogle Scholar
  200. Ulmanen, I., Broni, B. A., and Krug, R. M., 1981, The role of two of the influenza virus core P proteins in recognizing cap 1 structures (m7GpppNm) on RNAs and in initiating viral RNA transcription, Proc. Natl. Acad. Sci. USA 78: 7355–7359.PubMedGoogle Scholar
  201. Ulmanen, I, Broni, B. A., and Krug, R. M., 1983, Influenza virus temperature-sensitive cap(m7GpppNm)-dependent endonuclease, J. Virol. 45: 27–35.PubMedGoogle Scholar
  202. Varmus, H., and Swanstrom, R., 1983, Replication of retroviruses, in: RNA Tumor Viruses ( R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 369–512, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  203. Walden, W. E., Godefroy-Colburn, T., and Thach, R. E., 1981, The role of mRNA competition in regulating translation, J. Biol. Chem. 256: 11739–11746.PubMedGoogle Scholar
  204. Wei, C.-M., and Moss, B., 1977, Nucleotide sequence at the N6-methyladenosine sites of HeLa cell messenger ribonucleic acid, Biochemistry 16: 1672–1676.PubMedGoogle Scholar
  205. Wolstenholme, A. J., Barrett, T., Nichol, S. T., Mahy, B. W. J., 1980, Influenza virus-specific RNA and protein synthesis in cells infected with temperature-sensitive mutants defective in the genome segment encoding nonstructural protein, J. Virol. 35: 1–7.PubMedGoogle Scholar
  206. Yamashita, M., Krystal, M., and Palese, P., 1988, Evidence that the matrix protein of influenza C virus is coded for by a spliced mRNA, J. Virol. 62: 3348–3355.PubMedGoogle Scholar
  207. Yokota, M., Nakamura, K., Sugawara, K., and Homma, M., 1983, The synthesis of polypeptides in influenza C virus-infected cells, Virology 130: 105–117.PubMedGoogle Scholar
  208. Young, R. J., and Content, J., 1971, 5’ terminus of the influenza virus RNA, Nature (Loud.) 230: 140–142.Google Scholar
  209. Zain, S., Sambrook, J., Roberts, R., Keller, W., Fried, M., and Dunn, A. R., 1979, Nucleotide sequence analysis of the leader segments in a cloned copy of adenovirus 2 fiber mRNA, Cell 16: 851–861.PubMedGoogle Scholar
  210. Zebedee, S. L., and Lamb, R. A., 1988, Influenza A virus M2 protein: Monoclonal antibody restriction of virus growth and detection of M2 in virions, J. Virol. 62: 2762–2772.PubMedGoogle Scholar
  211. Zeitlin, S., and Efstratiadis, A., 1984, In vivo splicing products of the rabbit ß-globin premRNA, Cell 39: 589–602.Google Scholar
  212. Zhuang, Y., and Weiner, A. M., 1986, A compensatory base change in Ul snRNA suppresses 5’ splice site mutations, Cell 46: 827–835.PubMedGoogle Scholar
  213. Zillman, M., Zapp, L. M., and Berget, S. M., 1988, Gel electrophoretic isolation of splicing complexes containing Ul small nuclear ribonucleoprotein particles, Mol. Cell. Biol. 8: 814–821.Google Scholar
  214. Zvonarjev, A. Y., and Ghendon, Y. Z., 1980, Influence of a membrane (M) protein on influenza A virus virion transcriptase in vitro and its susceptibility to rimantadine, J. Virol. 33: 583–586.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Robert M. Krug
    • 1
  • Firelli V. Alonso-Caplen
    • 1
  • Ilkka Julkunen
    • 1
  • Michael G. Katze
    • 2
  1. 1.Graduate Program in Molecular BiologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.Department of Microbiology, School of MedicineUniversity of WashingtonSeattleUSA

Personalised recommendations