Advertisement

Membrane Insertion and Intracellular Transport of Influenza Virus Glycoproteins

  • Michael G. Roth
  • Mary-Jane Gething
  • Joe Sambrook
Chapter
Part of the The Viruses book series (VIRS)

Abstract

While the major features of the intracellular route traveled by the hemagglutinin (HA) and neuraminidase (NA) glycoproteins of influenza virus were established more than a decade ago by a synthesis of studies of virus morphogenesis with investigations of the secretory pathway in mammalian cells, our understanding of the biosynthesis of these viral envelope glycoproteins has expanded dramatically during the past 5 years. This progress has depended in part on the availability of detailed information on the structure of the HA and NA glycoproteins, and on the ability to express cloned genes encoding these polypeptides. These advances rest on a foundation of more than half a century of investigation of the nature of the surface antigens of a virus that remains one of the uncontrolled pathogens of man.

Keywords

Influenza Virus Golgi Apparatus Golgi Complex Endoplasmic Reticulum Membrane Vesicular Stomatitis Virus Glycoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, G. A., and Rose, J. K., 1985, Incorporation of a charged amino acid into the membrane-spanning domain blocks cell surface expression but not membrane anchoring of a viral glycoprotein, Mol. Cell Biol. 5: 1442.PubMedGoogle Scholar
  2. Adelman, M. R., Sabatini, D. D., and Blobel, G., 1973, Ribosome—membrane interaction. Nondestructive disassembly of rat liver rough microsomes into ribosomal and membranous components, J. Cell Biol. 56: 206.PubMedGoogle Scholar
  3. Air, G. M., and Compans, R. W., 1983. Influenza B and Influenza C viruses, in Genetics of Influenza Viruses ( P. Palese and D. W. Kingsbury, eds), pp. 280–304, Springer-Verlag, New York.Google Scholar
  4. Alonso-Caplan, F. V., and Compans, R. W., 1983, Modulation of glycosylation and transport of viral membrane glycoproteins by a sodium ionophore, J. Cell Biol. 97: 659.Google Scholar
  5. Amar-Costesec, A., Todd, J. A., and Kreibich, G., 1984, Segregation of the polypeptide translocation apparatus to regions of the endoplasmic reticulum containing ribophorins and ribosomes. I. Functional tests on rat liver microsomal subfractions, J. Cell Biol. 99: 247.Google Scholar
  6. Anderson, R. G. W., and Pathak, R. K., 1985, Vesicles and cisternae in the trans Golgi apparatus of human fibroblasts are acidic compartments, Cell 40: 635.PubMedGoogle Scholar
  7. Anderson, R. G. W., Brown, M. S., and Goldstein, J. L., 1977, Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts, Cell 10: 351.PubMedGoogle Scholar
  8. Atkinson, P. H., and Lee J. T., 1984, Co-translational excision of a-mannose in nascent vesicular stomatitis virus G protein, J. Cell Biol. 98: 2245.PubMedGoogle Scholar
  9. Bachi, T., Gerhard, W., Lindenmann, J., Muhlethaler, K., 1969, Morphogenesis of influenza A virus in Ehrlich ascites tumor cells as revealed by thin-sectioning and freeze-etching, J. Virol. 4: 769.PubMedGoogle Scholar
  10. Bachi, T., Gerhard, W., and Yewdell, J. W., 1985, Monoclonal antibodies detect different forms of influenza virus during viral penetration and biosynthesis, J. Virol. 55: 307.PubMedGoogle Scholar
  11. Balch, W. E., Glick, B. S., and Rothman, J. E., 1984, Sequential intermediates in the pathway of intercompartmental transport in a cell-free system, Cell 39: 525.PubMedGoogle Scholar
  12. Basak, S., and Compans, 1983, Studies on the role of glycosylation in the functions and antigentic properties of influenza virus glycoproteins, Virology 128: 77.PubMedGoogle Scholar
  13. Basak, S., Compans, R. W., and Oldstone, M. B. A., 1984, Restricted mobility of influenza hemagglutinin on HeLa cell plasma membranes, in: Segmented Negative Strand Viruses ( D. H. L. Bishop and R. W. Compans, eds.), pp. 361–364, Academic, Orlando, Florida.Google Scholar
  14. Bergman, L. W., and Kuehl, W. M., 1979, Formation of an intrachain disulfide bond on nascent immunoglobulin light chains, J. Biol. Chem. 254: 8869.PubMedGoogle Scholar
  15. Bergmann, J. E., and Singer, S. J., 1983, Immunoelectron microscopic studies of the intracellular transport of the membrane glycoprotein (G) of vesicular stomatitis virus in infected chinese hamster ovary cells, J. Cell Biol. 97: 1777.PubMedGoogle Scholar
  16. Bergmann, J. E., Tokuyasu, K. T., and Singer, S. J., 1981, Passage of an integral membrane protein, the vesicular stomatitis virus glycoprotein, through the Golgi apparatus en route to the plasma membrane, Proc. Natl. Acad. Sci. USA 78: 1746.PubMedGoogle Scholar
  17. Bischoff, J., and Kornfeld, R., 1983, Evidence for an a-mannosidase in endoplasmic reticulum of rat liver, J. Biol. Chem. 258: 7907.PubMedGoogle Scholar
  18. Bishop, D. H. L., Obijeski, J. F., and Simpson, R. W., 1971, Transcription of the influenza ribonucleic acid genome by a virion polymerase. II. Nature of the in vitro polymerase product, J. Virol. 8: 74.PubMedGoogle Scholar
  19. Blobel, G., 1980, Intracellular protein topogenesis, Proc. Natl. Acad. Sci. USA 77: 1496.PubMedGoogle Scholar
  20. Blobel, G., and Doberstein, B., 1975a, Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma, J. Cell Biol. 67: 835.PubMedGoogle Scholar
  21. Blobel, G., and Dobberstein, B., 1975b, Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components, J. Cell Biol. 67: 852.PubMedGoogle Scholar
  22. Blobel, G., and Sabatini, D. D., 1970, Controlled proteolysis of nascent polypeptides in rat liver cell fractions. I. Location of the polypeptides within ribosomes, J. Cell Biol. 45: 130.PubMedGoogle Scholar
  23. Blobel, G., and Sabatini, D. D., 1971, Ribosome—membrane interaction in eukaryotic cells, in Biomembranes, Vol. 2, ( L. A. Manson, ed.), pp. 193–195, Plenum, New York.Google Scholar
  24. Blok, J., and Air, G. M., 1982a, Variation in the membrane-insertion and “stalk” sequences in eight subtypes of influenza A virus neuraminidase, Biochemistry 21: 4001.PubMedGoogle Scholar
  25. Blok, J., and Air, G. M., 1982b, Block deletions in the neuraminidase genes from some influenza A viruses of the N1 subtype, Virology 118: 229.PubMedGoogle Scholar
  26. Blok, J., Air, G. M., Laver, W. G., Ward, C. W., Lilley, G. G., Woods, E. F., Roxburgh, C. M., and Inglis, A. S., 1982c, Studies on the size, chemical composition and partial sequence of the neuraminidase (NA) from type A influenza virus show that the N-terminal region of the NA is not processed and serves to anchor the NA in the viral membrane, Virology 199: 109.Google Scholar
  27. Bole, D. G., Hendershot, L. M., and Kearney, J. F., 1986, Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas, J. Cell Biol. 102: 1558.PubMedGoogle Scholar
  28. Borgese, N., Mok, W., Kreibich, G., and Sabatini, D. D., 1974, Ribosome—membrane interaction: In vitro binding of ribosomes to microsomal membranes, J. Mol. Biol. 88: 559.PubMedGoogle Scholar
  29. Bos, T. S., Davis, A. R., and Nayak, D. P., 1984, NH2-terminal hydrophobic region of influenza virus neuraminidase provides the signal function in translocation, Proc. Natl. Acad. Sci. USA 81: 3976.Google Scholar
  30. Brand, C. M., and Skehel, J. J., 1972, Crystalline antigen from the influenza virus envelope, Nature New Biol. 238: 145.PubMedGoogle Scholar
  31. Brands, R., Snider, M. D., Hino, Y., Park, S. S., Gelboin, H. V., and Rothman, J. E., 1985, Retention of membrane proteins by the endoplasmic reticulum, J. Cell Biol. 101: 1724.PubMedGoogle Scholar
  32. Breuning, A., and Scholtissek, D., 1986, A reassortant between influenza A viruses (H7N2) synthesizing an enzymatically inactive neuraminidase at 40° which is not incorporated into infectious particles, Virology 150: 65.PubMedGoogle Scholar
  33. Burke, B., Matlin, K., Bause, E., Legler, G., Peyrieras, N., and Ploegh, H., 1984, Inhibition of N-linked oligosaccharide trimming does not interfere with surface expression of certain integral membrane proteins, EMBO J. 3: 551.PubMedGoogle Scholar
  34. Caton, A. J., Brownlee, G. G., Yewdell, J. W., and Gerhard, W., 1982, The antigentic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype), Cell 31: 417.PubMedGoogle Scholar
  35. Chatis, A., and Morrison, T. G,. 1981, Mutational changes in the vesicular stomatitis virus glycoprotein affect the requirement of carbohydrate in morphogenesis, J. Virol. 37: 307.PubMedGoogle Scholar
  36. Colman, P. M., and Ward, C. W., 1985, Structure and diversity of influenza virus neuraminidase. Curr. Top. Microb Immunol. 114: 178.Google Scholar
  37. Compans, R. W., 1973a, Influenza virus proteins II. Association with components of the cytoplasm, Virology 51: 56.PubMedGoogle Scholar
  38. Compans, R. W., 1973b, Distinct carbohydrate components of influenza virus glycoproteins in smooth and rough cytoplasmic membranes, Virology 55: 541.PubMedGoogle Scholar
  39. Compans, R. W., and Choppin, P. W., 1971, The structure and assembly of influenza and parainfluenza viruses, in: Comparative Virology ( K. Maramorosch and F. Kurstak, eds), pp. 407–432, Academic, New York.Google Scholar
  40. Compans, R. W., and Dimmock, N. J., 1969, An electron microscopic study of single-cycle infection of chick embryo fibroblasts by influenza virus, Virology 39: 499.PubMedGoogle Scholar
  41. Compans, R. W., and Klenk, H.-D., 1979, Viral membranes, in: Comprehensive Virology Vol. 13 ( H. Fraenkel-Conrat and R. R. Wagner, eds.), pp. 293–385, Plenum, New York.Google Scholar
  42. Compans, R. W., and Pinter, A., 1975, Incorporation of sulfate into influenza virus glycoproteins, Virology 66: 151.PubMedGoogle Scholar
  43. Compans, R. W., Dimmock, N. J., and Meier-Ewert, H., 1969, Effect of antibody to neuraminidase on the maturation and hemagglutinating activity of an influenza virus A2, J. Virol. 4: 528.PubMedGoogle Scholar
  44. Compans, R. W., Klenk, H.-D., Caliguiri, L. A., and Choppin, P. W., 1970, Influenza virus proteins I. Analysis of polypeptides of the virion and identification of spike glycoproteins, Virology 42: 880.PubMedGoogle Scholar
  45. Copeland, C., Doms, R. W., Bolzau, E. M., Webster, R. G., and Helenius, A., 1986, Assembly of influenza hemagglutinin trimers and its role in intracellular transport, J. Cell Biol. 103: 1179.PubMedGoogle Scholar
  46. Daniels, R. S., Downie, J. C., Hay, A. J., Knossow, M., Skehel, J. J., Wang, M. L., and Wiley, D. C., 1985, Fusion mutants of the influenza virus hemagglutinin glycoprotein, Cell 40: 431.PubMedGoogle Scholar
  47. Davey, J., Dimmock, N. J., and Colman, A., 1985, Identification of the sequence responsible for the nuclear accumulation of the influenza virus nucleoprotein in Xenopus oocytes, Cell 40: 667.PubMedGoogle Scholar
  48. Davis, A. R., Bos, T. J., and Nayak, D. P., 1983, Active influenza virus neuraminidase is expressed in monkey cells from cDNA cloned in simian virus 40 vectors, Proc. Natl. Acad. Sci. USA 80: 3976.PubMedGoogle Scholar
  49. Davis, N. G., and Model, P., 1985, An artificial anchor domain: hydrophobicity suffices to stop transfer, Cell 41: 607.PubMedGoogle Scholar
  50. Deom, C. M., and Schultz, I. T., 1985, Oligosaccharide composition of an influenza virus hemagglutinin with host-determined binding protperties, J. Biol. Chem. 260: 14771.PubMedGoogle Scholar
  51. Deom, C. M., Caton, A. J., and Schultz, I. T., 1986, Host cell-mediated selection of a mutant influenza A virus that has lost a complex oligosaccharide from the tip of the hemagglutinin, Proc. Natl. Acad. Sci. USA 83: 3771.PubMedGoogle Scholar
  52. Dimmock, N. J., 1969, New virus-specific antigens in cells infected with influenza virus, Virology 39: 224.PubMedGoogle Scholar
  53. Dingwall, C., Sharnick, S. V., and Laskey, R. A., 1982, A polypeptide domain that specifies migration of nucleoplasmin into the nucleus, Cell 30: 449.PubMedGoogle Scholar
  54. Doms, R. W., Gething, M.-J., Henneberry, J. H., White, J., and Helenius, A., 1986, A variant influenza hemagglutinin that induces fusion at elevated pH, J. Virol. 57: 603.PubMedGoogle Scholar
  55. Doyle, C., Roth, M. G., Sambrook, J., and Gething, M.-J., 1985, Mutations in the cytoplasmic domain of the influenza virus hemagglutinin affect different stages of intracellular transport, J. Cell Biol. 100: 704.PubMedGoogle Scholar
  56. Doyle, C., Sambrook, J., and Gething, M.-J., 1986, Progressive deletions of the transmembrane and cytoplasmic domains of influenza hemagglutinin, J. Cell Biol. 103: 1193.PubMedGoogle Scholar
  57. Dunphy, W. G., and Rothman, J. E., 1985, Compartmental organization of the Golgi stack, Cell 42: 13.PubMedGoogle Scholar
  58. Elder, K. T., Bye, J. M., Skehel, J. J., Waterfield, M. D., and Smith, A. E., 1979, In vitro synthesis, glycosylation and membrane insertion of influenza virus hemagglutinin, Virology 95: 343.Google Scholar
  59. Engelman, D. M., and Steitz, T. A, 1981, The spontaneous insertion of proteins into and across membranes the helical hairpin hypothesis, Cell 23: 411.PubMedGoogle Scholar
  60. Evans, E. A., Gilmore, R., and Blobel, G., 1986, Purification of microsomal signal peptidase as a complex, Proc. Natl. Acad. Sci. USA 83: 581.PubMedGoogle Scholar
  61. Farquhar, M. G., 1985, Progress in unraveling pathways of Golgi traffic, Annu. Rev. Cell Biol. 1: 447.PubMedGoogle Scholar
  62. Farquhar, M. G., and Palade, G. E., 1981, The Golgi apparatus (complex—(1954–1981)from artifact to center stage, J. Cell Biol. 91: 77s.PubMedGoogle Scholar
  63. Fields, S., Winter, G., and Brownlee, G. G., 1981, Structure of the neuraminidase in human influenza virus A/PR/8/34, Nature (Lond.) 290: 213.Google Scholar
  64. Fitting, T., and Kabat, D., 1982, Evidence for a glycoprotein “signal” involved in transport between subcellular organelles, J. Biol. Chem. 257: 14011.PubMedGoogle Scholar
  65. Fries, E. Gustafsson, L., and Peterson, P. A., 1984, Four secretory proteins synthesiszed by hepatocytes are transported from endoplasmic reticulum to Golgi complex at different rates, EMBO J. 3: 147.PubMedGoogle Scholar
  66. Fuller, S. D., Bravo, R., and Simons, K., 1985, An enzymatic assay reveals that proteins destined for the apical or basolateral domains of an epithelial cell line share the same late Golgi compartments, EMBO J. 4: 4297.Google Scholar
  67. Gething, M.-J., and Sambrook, J., 1982, Construction of influenza hemagglutinin genes that code for intracellular and secreted forms of the protein, Nature (Lund.) 300: 598.Google Scholar
  68. Gething, M.-J., and Sambrook, J., 1983, Expression of Cloned Influenza Virus Genes, in: Genetics of Influenza Viruses ( P. Palese and D. W. Kingsbury, eds.), pp. 169–191, Springer-Verlag, Vienna.Google Scholar
  69. Gething, M.-J., Bye, J., Skehel, J. J., and Waterfield, M. D., 1980, Cloning and DNA sequence of double-stranded copies of hemagglutinin genes from H2 and H3 strains elucidates antigenic shift and drift in human influenza virus, Nature (Lond.) 287: 301.Google Scholar
  70. Gething, M.-J., White, J. M., and Waterfield, M. D., 1978, Purification of the fusion protein of Sendai virus: Analysis of the NH2-terminal sequence generated during precursor activation, Proc. Natl. Acad. Sci. USA 75: 2737.PubMedGoogle Scholar
  71. Gething, M.-J., Doyle, C., Roth, M., and Sambrook, J., 1985, Mutational analysis of the structure and function of the influenza virus hemagglutinin, in: Current Topics in Membranes and Transport, Vol. 23, ( E. A. Adelberg and C. W. Slayman, eds.), pp. 17–41, Academic, Orlando, Florida.Google Scholar
  72. Gething, M.-J., Doms, R. W., York, D., and White, J., 1986a, Studies on the mechanism of membrane fusion: Site specific mutations of the hemagglutinin of influenza virus, J. Cell Biol. 102: 11.PubMedGoogle Scholar
  73. Gething, M.-J., McCammon, K., and Sambrook, J., 1986b, Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in the intracellular transport, Cell 46: 939.PubMedGoogle Scholar
  74. Gilmore, R., and Blobel, G., 1983, Transient involvement of signal recognition particle and its receptor in the microsomal membrane prior to protein translocation, Cell 35: 677.PubMedGoogle Scholar
  75. Gilmore, R., and Blobel, G., 1985, Translocation of secretory proteins across the microsomal membrane occurs through an environment accessible to aqueous perturbants, Cell 42: 497.PubMedGoogle Scholar
  76. Gilmore, R., Blobel, G., and Walter, P., 1982a, Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle, J. Cell Biol. 95: 463.PubMedGoogle Scholar
  77. Gilmore, R., Walter, P., and Blobel, G., 1982b, Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor, J. Cell Biol. 95: 470.PubMedGoogle Scholar
  78. Glabe, C. G., Hanover, J. A., and Lennarz, W. J., 1980, Glycosylation of ovalbumin nascent chains, J. Biol. Chem. 255: 9236.PubMedGoogle Scholar
  79. Goldstein, J. L., Anderson, R. G. W., and Brown, M. S., 1979, Coated pits, Coated pits, coated vesicles receptor-mediated endocytosis, Nature (Lond.) 279: 679.Google Scholar
  80. Gottlieb, T. A., Gonzalez, A., Rizzolo, L., Rindler, M. J., Adesnik, M., and Sabatini, D. D., 1986, Sorting and endocytosis of viral glycoproteins in transfected polarized epithelial cells, J. Cell Biol. 102: 1242.PubMedGoogle Scholar
  81. Gottschalk, A., 1957, Neuraminidase: The specific enzyme of influenza virus and Vibrio cholerae, Biochem. Biophys. Acta 23: 645.PubMedGoogle Scholar
  82. Green, J., Griffiths, G., Louvard, D., Quinn, P., and Warren, G., 1981a, Passage of viral membrane proteins through the Golgi complex, J. Mol. Biol. 152: 663.PubMedGoogle Scholar
  83. Green, R. F., Meiss, H. K., and Rodriguez-Boulan, E., 1981b, Glycosylation does not determine segregation of viral glycoproteins in the plasma membrane of epithelial cells, J. Cell Biol. 89: 230.PubMedGoogle Scholar
  84. Griffith, I. P., 1975, The fine structure of influenza virus, in: Negative Strand Viruses ( R. D. Barry and B. W. J. Mahy, eds.), pp. 121–136, Academic, Orlando, Florida.Google Scholar
  85. Griffiths, G., Pfeiffer, S., Simons, K., and Matlin, K., 1985, The exit of newly synthesized membrane proteins from the trans cistemal of the Golgi complex to the plasma membrane, J. Cell Biol. 101: 949.PubMedGoogle Scholar
  86. Griffiths, G., Quinn, P., and Warren, G., 1983, Dissection of the Golgi complex. I. Monensin inhibits the transport of viral membrane proteins from medial to trans Golgi cistemae in baby hampster kidney cells infected with Semliki Forest virus, J. Cell Biol. 96: 835.PubMedGoogle Scholar
  87. Guan, J.-L., and Rose, J. K., 1984, Conversion of a secretory protein into a transmembrane protein results in its transport to the Golgi complex but not to the cell surface, Cell 37: 779.PubMedGoogle Scholar
  88. Haas, I. G., and Wabl, M., 1983, Immunoglobulin heavy chain binding protein, Nature (Lond.) 306: 287.Google Scholar
  89. Hall, M. N., Hereford, L., and Herskowitz, I., 1984, Targeting of Escherichia coli ß-galactosidase to the nucleus in yeast, Cell 36: 1057.PubMedGoogle Scholar
  90. Hand, A. R., and Oliver, C., 1977, Relationship between the Golgi apparatus, GERL, and secretory granules in acinar cells of the rat exorbital lacrimal gland, J. Cell Biol. 74: 399.PubMedGoogle Scholar
  91. Haslam, E. A., Hampson, A. W., Egan, J. A., and White, D. O., 1970, The polypeptides of influenza virus. III. Identification of the hemagglutinin, neuraminidase and nucleocapsid proteins, Virology 42: 566.PubMedGoogle Scholar
  92. Hauri, H.-P., Sterchi, E. E., Bienz, D., Fransen, J. A. M., and Marxer, A., 1985, Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells, J. Cell Biol. 101: 838.PubMedGoogle Scholar
  93. Hay, A. J., 1974, Studies on the formation of the influenza virus envelope, Virology 60: 398.PubMedGoogle Scholar
  94. Helenius, A., Mellman, I., Wall, D., and Hubbard, A., 1983, Endosomes, TIBS 8: 245.Google Scholar
  95. Herrler, G., Nagele, A., Meier-Ewert, H., Bhown, A. S., and Compans, R. W., 1981, Isolation and structural analysis of influenza virus C virion glycoproteins, Virology 113: 439.PubMedGoogle Scholar
  96. Hickman, S., and Kornfeld, S., 1978, Effect of tunicamycin on IgM, IgA, and IgG secretion by mouse plasmacytoma cells, J. Immunol. 121: 990.PubMedGoogle Scholar
  97. Hirst, G. K., 1941, The agglutination of red cells by allantoic fluid of chick embryos infected with influenza virus, Science 94: 22.PubMedGoogle Scholar
  98. Hirst, G. K., 1942, Adsorption of influenza hemagglutinins and virus by red blood cells, J. Exp. Med. 76: 195.PubMedGoogle Scholar
  99. Hirst, G. K., 1943, The nature of the virus receptors of red cells. I. Evidence on the chemical nature of the virus receptors of red cells and of the existence of a closely analogous substance in normal serum, J. Exp. Med. 87: 301.Google Scholar
  100. Home, R. W., Waterson, A. P., Wildy, P., and Famham, A. E., 1960, The structure and composition of the myxoviruses. I. Electron microscopic studies on the structure of myxovirus particles by negative staining techniques, Virology 11: 79.Google Scholar
  101. Hubbard, S. C., and Ivatt, R. J., 1981, Asparagine-linked oligosaccharides, Annu. Rev. Biochem. 50: 555.PubMedGoogle Scholar
  102. Hubbard, S. C., and Robbins, P. W., 1979, Synthesis and processing of protein-linked oligosaccharides in vivo, J. Biol. Chem. 254: 4568.PubMedGoogle Scholar
  103. Inouye, S., Wang, S., Sekizawa, J., Halegoua, S., and Inouye, M., 1977, Amino acid sequence for the peptide extension on the prolipoprotein of Escherichia coli outer membrane, Proc. Natl. Acad. Sci. USA 74: 1004.PubMedGoogle Scholar
  104. Jackson, R., and Blobel, G., 1977, Posttranslational cleavage of presecretory proteins with an extract of rough microsomes from dog pancreas containing signal peptidase activity, Proc. Natl. Acad. Sci. USA 74: 5598.PubMedGoogle Scholar
  105. Jamieson, J. D., and Palade, G. E., 1968, Intracellular transport of secretory proteins in the pancreatic exocrine cell. IV. Metabolic requirements, J. Cell Biol. 39: 589.PubMedGoogle Scholar
  106. Jones, L. V., Compans, R. W., Davis, A. R., Bos, T. J., and Nayak, D. P., 1985, Surface expression of influenza virus neuraminidase, an amino-terminally anchored viral membrane glycoprotein, in polarized epithelial cells, Mol. Cell. Biol. 5: 2181.PubMedGoogle Scholar
  107. Kalderon, D., Richardson, W., Markham, A., and Smith, A, 1984, Sequence requirements for nuclear location of SV40 large-T, Nature (Loud.) 311: 33.Google Scholar
  108. Kawaoka, Y., Naeve, C. W., and Webster, R. G., 1984, Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin?, Virology 139: 303.PubMedGoogle Scholar
  109. Keil, W., Klenk, H.-D., and Schwarz, R. T., 1979, Carbohydrates of influenza virus. III. Nature of oligosaccharide—protein linkage in viral glycoproteins, J. Virol. 31: 253.PubMedGoogle Scholar
  110. Keil, W., Niemann, H., Schwarz, R. T., and Klenk, H.-D., 1984, Carbohydrates of influenza virus. V. Oligosaccharides attached to individual glycosylation sites of the hemagglutinin of fowl plague virus, Virology 133: 77.PubMedGoogle Scholar
  111. Keil, W., Geyer, R., Dabrowski, J., Niemann, H., Stirm, S., and Klenk, H.-D., 1985, Carbohydrates of influenza virus. Structural elucidation of the individual glycans of the FPV hemagglutinin by two-dimensional 1H n.m.r. and methylation analysis, EMBO J. 4: 2711.PubMedGoogle Scholar
  112. Klenk, H.-D., Wollert, W., Rott, R., and Scholtissek, C., 1974, Association of influenza virus proteins with cytoplasmic fractions, Virology 57: 28.PubMedGoogle Scholar
  113. Klenk, H.-D., Rott, R., Orlich, M., and Blodom, J., 1975, Activation of influenza A viruses by trypsin treatment, Virology 68: 426.PubMedGoogle Scholar
  114. Klenk, H.-D., Garten, W., Keil, W., Niemann, H., Bosch, F. X., Schwarz, R. T., Scholtissek, C., and Rott, R., 1981, Processing of the hemagglutinin, in Genetic Variation among Influenza Viruses ( D. P. Nayak ed.), pp. 193–211, Academic, New York.Google Scholar
  115. Kornfeld, R., and Kornfeld, S., 1985, Assembly of asparagine-linked oligosaccharides, Annu. Rev. Biochem. 54: 631.PubMedGoogle Scholar
  116. Kreibich, G., Ulrich, B. L., and Sabatini, D. D., 1978a, Proteins of rough microsomal membranes related to ribosome binding. I. Identification of ribophorins I and II, membrane proteins characteristic of rough microsomes, J. Cell Biol. 77: 464.PubMedGoogle Scholar
  117. Kreibich, G., Freienstein, C. M., Pereyra, B. N., Ulrich, B. L., and Sabatini, D. D., 1978b, Proteins of rough microsomal membranes related to ribosome binding. II. Cross-linking of bound ribosomes to specific membrane proteins exposed at the binding sites, J. Cell Biol. 77: 488.PubMedGoogle Scholar
  118. Kupfer, A., Louvard, D., and Singer, S. J., 1982, Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound, Proc. Natl. Acad. Sci. USA 79: 2603.PubMedGoogle Scholar
  119. Kyte, J., and Doolittle, R. F., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157: 105.PubMedGoogle Scholar
  120. Lamb, R. A., 1983, The influenza virus RNA segments and their encoded proteins, in: Genetics of Influenza Viruses ( P. Palese and D. W. Kingsbury, eds.), pp. 21–69, Springer-Verlag, Berlin.Google Scholar
  121. Laver, W. G., 1963, The structure of influenza viruses. 3. Disruption of the virus particle and separation of neuraminidase activity, Virology 20: 251.Google Scholar
  122. Laver, W. G., 1964, Structural studies on the protein subunits from three strains of influenza virus, J. Mol. Biol. 9: 109.PubMedGoogle Scholar
  123. Laver, W. G., 1971, Separation of two polypeptide chains from the hemagglutinin subunit of influenza virus, Virology 45: 275.PubMedGoogle Scholar
  124. Laver, W. G., 1973, The polypeptides of influenza virus, Adv. Virus Res. 18: 57.Google Scholar
  125. Laver, W. G., and Kilbourne, E. D., 1966, Identification in a recombinant influenza virus of structural proteins derived from both parents, Virology 30: 493.PubMedGoogle Scholar
  126. Laver, W. G., and Valentine, R. C., 1969, Morphology of the isolated hemagglutinin and neuraminidase subunits of influenza virus, Virology 38: 105.PubMedGoogle Scholar
  127. Laver, W. G., and Webster, R. G., 1968, Selection of antigenic mutants of influenza viruses: Isolation and peptide mapping of their hemagglutinating proteins, Virology 34: 193.PubMedGoogle Scholar
  128. Lazarowitz, S. G., and Choppin, P. W., 1975, Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide, Virology 68: 440.PubMedGoogle Scholar
  129. Lazarowitz, S. G., Compans, R. W., and Choppin, P. W., 1971, Influenza virus structural and nonstructural proteins in infected cells and their plasma membranes, Virology 46: 830.PubMedGoogle Scholar
  130. Lazarowitz, S. G., Goldberg, A. R., and Choppin, P. W., 1973, Proteolytic cleavage by plasmin of the HA polypeptide of influenza virus: Host cell activation of serum plasminogen, Virology 56: 172.PubMedGoogle Scholar
  131. Leavitt, R., Schlesinger, R., and Kornfeld, S., 1977a, Tunicamycin inhibits glycosylation and multiplication of Sindbis and vesicular stomatitis viruses, J. Virol. 21: 375.PubMedGoogle Scholar
  132. Leavitt, R., Schlesinger, R., and Kornfeld, S., 1977b, Impaired intracellular migration and altered solubility of nonglycosylated glycoproteins of vesicular stomatitis virus and Sinbis virus, J. Biol. Chem. 252: 9018.PubMedGoogle Scholar
  133. Lewandowski, L. J., Content, J., and Leppla, S. H., 1971, Characterization of the subunit structure of the ribonucleic acid genome of influenza virus, J. Virol. 8: 701.PubMedGoogle Scholar
  134. Lewis, M. J., Turco, S. J., and Green, M., 1985, Structure and assembly of the endoplasmic reticulum. Biosynthetic sorting of endoplasmic reticulum proteins, J. Biol. Chem. 260: 6926.PubMedGoogle Scholar
  135. Lingappa, V. R., Katz, F. N., Lodish H. F., and Blobel, G., 1978, A signal sequence for the insertion of a transmembrane glycoprotein. Similarities to the signals of secretory proteins in primary structure and function, J. Biol. Chem. 253: 8667.PubMedGoogle Scholar
  136. Lodish, H. F., and Kong, N., 1984, Glucose removal from N-linked oligosaccharides is required for efficient maturation of certain secretory glycoproteins from the rough endoplasmic reticulum to the Golgi complex, I. Cell Biol. 98: 1720.Google Scholar
  137. Lodish, H. F., Kong, N., Snider, M., and Strous, G. J. A. M., 1983, Hepatoma secretory proteins migrate from the rough endoplasmic reticulum to the Golgi at characteristic rates, Nature (Land.) 304: 80.Google Scholar
  138. Lohmeyer, r., and Klenk, H.-D., 1979, A mutant of influenza virus with a temperature-sensitive defect in the posttranslational processing of the hemagglutinin, Virology 93: 134.PubMedGoogle Scholar
  139. Marcantonio, E. E., Amar-Costesec, A. A., and Kreibich, G., 1984, Segregation of the polypeptide translocation apparatus to regions of the endoplasmic reticulum containing ribophorins and ribosomes. II. Rat liver microsomal subfractions contain equimolar amounts of ribophorins and ribosomes, J. Cell Biol. 99: 2254.PubMedGoogle Scholar
  140. Markoff, L., Lin, B.-C., Sveda, M. M., and Lai, C.-J., 1983. Glycosylation and surface expression of the influenza virus neuraminidase requires the N-terminal hydrophobic region, Mol. Cell. Biol. 4: 8.Google Scholar
  141. Matlin, K., and Simons, K., 1983, Reduced temperature prevents transfer of a membrane glycoprotein to the cell surface but does not prevent terminal glycosylation, Cell 34: 233.PubMedGoogle Scholar
  142. Matlin, K., and Simons, K., 1984, Sorting of an apical plasma membrane glycoprotein occurs before it reaches the cell surface in cultured epithelial cells, J. Cell Biol. 99: 2131.PubMedGoogle Scholar
  143. Matlin, K., Bainton, D. F., Personen, M., Louvard, D., Genty, N., and Simons, K., 1983, Transepithelial transport of a viral membrane glycoprotein implanted into the apical plasma membrane of Madin—Darby canine kidney cells. I. Morphological evidence, J. Cell Biol. 97: 627.PubMedGoogle Scholar
  144. Matsumoto, A., Yoshima, H., and Kobata, A., 1983, Carbohydrates of influenza virus hemagglutinin: Structures of the whole neutral sugar chains, Biochemistry 22:188 (abst.).Google Scholar
  145. McCauley, J., Bye, J., Elder, K., Gething, M.-J., Skehel, J. J., Smith, A., and Waterfield, M. D., 1979, Influenza virus hemagglutinin signal sequences, FEBS Lett. 108: 422.PubMedGoogle Scholar
  146. McCauley, J., Skehel, J., Elder, K., Gething, M.-J., Smith, A., and Waterfield, M., 1980, Hemagglutinin biosynthesis, in: Structure and Variation in Influenza Virus ( G. Laver and G. Air, eds.), pp. 97–104, Elsevier/North-Holland, New York.Google Scholar
  147. McClelland, L., and Hare, R., 1941, The adsorption of influenza virus by red cells and a new in vitro method of measuring antibodies for influenza virus, Can. J. Public Health 32: 530.Google Scholar
  148. Meiss, H. K., Green, R., and Rodriguez-Boulan, E. J., 1982, Lectin resistant mutants of polarized epithelial cells, Mol. Cell Biol. 2: 1287.PubMedGoogle Scholar
  149. Meyer, D. I., Louvard, D., and Dobberstein, 1982, Characterization of molecules involved in protein translocation using a specific antibody, J. Cell Biol. 92: 579.PubMedGoogle Scholar
  150. Milstein, C., Brownlee, G. G., Harrison, T. M., and Mathews, B. A., 1972, A possible precursor of immunoglobulin light chains, Nature New Biol. 239: 117.PubMedGoogle Scholar
  151. Misek, D. E., Bard, E., and Rodriguez-Boulan, E., 1984, Biogenesis of epithelial cell polarity: Intracellular sorting and vectorial exocytosis of an apical plasma membrane glycoprotein, Cell 39: 537.PubMedGoogle Scholar
  152. Moore, D. J., Kartenbeck, J., and Franke, W. W., 1979, Membrane flow and intercoversions among endomembranes, Biochem. Biophys. Acta 559: 71.Google Scholar
  153. Morgan, C., Rose, H. M., and Moore, D. H., 1956, Structure and development of viruses observed in the electron microscope. III. Influenza virus, J. Exp. Med. 103: 171.Google Scholar
  154. Morrison, S. L., and Scharff, M. D., 1975, Heavy chain-producing variants of a mouse myeloma cell line, J. Immunol. 114: 655.PubMedGoogle Scholar
  155. Murphy, J. S., and Bang, F. B., 1952, Observations with the electron microscope on cells of the chick chorio-allantoic membrane infected with influenza virus, J. Exp. Med. 95: 259.PubMedGoogle Scholar
  156. Murti, K. G., and Webster, R. G., 1986, Distribution of hemagglutinin and neuraminidase on influenza virions as revealed by immunoelectron microscopy, Virology 149: 36.PubMedGoogle Scholar
  157. Nakada, S., Creager, R. S., Krystal, M., Aaronson, R. P., and Palese, P., 1984, Influenza C virus hemagglutinin: Comparison with influenza A and B virus hemagglutinins, J. Virol. 50: 118.PubMedGoogle Scholar
  158. Nakamura, K., and Compans, R. W., 1977, The cellular site of sulfation of influenza virus glycoproteins, Virology 71: 381.Google Scholar
  159. Nakamura, K., and Compans, R. W., 1978a, Glycopeptide components of influenza viral glycoproteins, Virology 86: 482.Google Scholar
  160. Nakamura, K., and Compans, R. W., 1978b, Effects of glucosamine, 2-deoxy-D-glucose and tunicamycin on glycosylation, sulfation and assembly of influenza virus glycoproteins, Virology 84: 303.PubMedGoogle Scholar
  161. Nakamura, K., and Compans, R. W., 1979a, Host cell-and virus strain-dependent differences in oligosaccharides of hemagglutinin glycoproteins of influenza A viruses, Virology 93: 8.Google Scholar
  162. Nakamura, K., and Compans, R. W., 1979b, Biosynthesis of the oligosaccharides of influenza virus glycoproteins, Virology 93: 31.PubMedGoogle Scholar
  163. Nakamura, K., Herrler, G., Petri, T., Meier-Ewert, H., and Compans, R. W., 1979, Carbohydrate components of influenza C virions, J. Virol. 29: 997.PubMedGoogle Scholar
  164. Novikoff, A. B., 1976, The endoplasmic reticulum: a cytochemist’s view. (Review.), Proc. Natl. Acad. Sci. USA 73: 2781.PubMedGoogle Scholar
  165. Novikoff, A. B., Mori, M., Quintana, N., and Yam, A., 1977, Studies of the secretory process in the mammalian exocrine pancreas. I. The condensing vacuoles, J. Cell Biol. 75: 148.PubMedGoogle Scholar
  166. Palade, G. E., 1975, Intracellular aspects of the process of protein synthesis, Science 189: 347.PubMedGoogle Scholar
  167. Palese, P., Tobita, K., Ueda, M., and Compans, R. W., 1974, Characterization of temperature sensitive influenza virus mutants defective in neuraminidase, Virology 61: 397.PubMedGoogle Scholar
  168. Palmiter, R. D., Gagnon, J., Ericsson, L. H., and Walsh, K. A., 1977, Precusor of egg white lysosyme. Amino acid sequence of an NH2-terminal extension, J. Biol. Chem. 252: 6368.Google Scholar
  169. Pan, H., Hori, H., Saul, R., Sanford, B. A., Molyneux, R. J., and Elbein, A. D., 1983, Castanospermine inhibits the processing of the oligosaccharide portion of the influenza viral hemagglutinin, Biochemistry 22: 3975.PubMedGoogle Scholar
  170. Panicali, D., Davis, S. W., Weinberg, L., and Paoletti, E., 1984, Construction of live vaccines using genetically engineered poxviruses: Biological activity of recombinant vaccinia virus expressing the influenza virus hemagglutinin, Proc. Natl. Acad. Sci. USA 80: 5364.Google Scholar
  171. Personen, M., and Simons, K., 1984, Transcytosis of the G protein of vesicular stomatitis virus after implantation into the apical membrane of Madin-Darby canine kidney cells. I. Involvement of endosomes and lysosomes, J. Cell Biol. 99: 796.Google Scholar
  172. Peyrieras, N., Bause, E., Lefler, G., Vasilov, R., Claesson, L., Peterson, P., and Ploegh, H., 1983, Effects of the glucosidase inhibitors nojirimycin and desoxynojirimycin on the biosynthesis of membrane and secretory glycoproteins, EMBO J. 2: 823.PubMedGoogle Scholar
  173. Pfeiffer, J. B., and Compans, R. W., 1984, Structure of the influenza C glycoprotein gene as determined from cloned DNA, Virus Res. 1: 281.Google Scholar
  174. Pfeiffer, S., Fuller, S. D., and Simons, K., 1985, Intracellular sorting and basolateral appearance of the G protein of vesicular stomatitis virus in Madin—Darby canine kidney cells. J. Cell Biol. 101: 470.PubMedGoogle Scholar
  175. Pless, D. D., and Lennarz, W. J., 1977, Enzymatic conversion of proteins to glycoproteins, Proc. Natl. Acad. Sci. USA 74: 134.PubMedGoogle Scholar
  176. Quinn, P., Griffiths, G., and Warren, G., 1983, Dissection of the Golgi complex. II. Density separation of specific Golgi functions in virally infected cells treated with monensin, J. Cell Biol. 96: 851.PubMedGoogle Scholar
  177. Raymond, F. L., Caton, A. J., Cox, N. J., Kendall, A. P., and Brownlee, G. G., 1983, Antigenicity and evolution amongst recent influenza viruses of H1N1 subtype, Nucleic Acids Res. 1: 7191.Google Scholar
  178. Rindler, M. J., Ivanov, I. E., Plesken, H., Rodriguez-Boulan, E J, and Sabatini, D. D., 1984, Viral glycoproteins destined for apical or basolateral plasma membrane domains traverse the same Golgi apparatus during their intracellular transport in Madin—Darby canine kidney cells, J. Cell Biol. 98: 1304.PubMedGoogle Scholar
  179. Rindler, M. J., Ivanov, I. E., Plesken, H., and Sabatini, D. D., 1985, Polarized delivery of viral glycoproteins to the apical and basolateral plasma membranes of Madin—Darby canine kidney cells infected with temperature-sensitive viruses, J. Cell Biol. 100: 136.PubMedGoogle Scholar
  180. Robertson, J. S., Naeve, C. W., Webster, R. G., Bootman, J. S., Newman, R., and Schild, G. C., 1985, Alterations in hemagglutinin associated with adaptation of influenza B virus to growth in eggs, Virology 143: 166.PubMedGoogle Scholar
  181. Rodriguez-Boulan, E., 1983, Membrane Biogenesis, enveloped RNA viruses and epithelial polarity, in: Modern Cell Biology ( B. Satir, ed.), pp. 119–170, Liss, New York.Google Scholar
  182. Rodriguez-Boulan, E., and Pendergast, M., 1980, Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells, Cell 20: 45.PubMedGoogle Scholar
  183. Rodriguez-Boulan, E., and Sabatini, D., 1978, Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells, Cell 20: 45.Google Scholar
  184. Rodriguez-Boulan, E., Kreibich, G., and Sabatini, D. D., 1978, Spacial orientation of glycoproteins in membranes of rat liver rough microsomes. I. Localization of lectinbinding sites in microsomal membranes, J. Cell Biol. 78: 874.PubMedGoogle Scholar
  185. Rodriguez-Boulan, E., Paskiet, K. T., Salas, P. J. I., and Bard, E., 1984, Intracellular transport of influenza virus hemagglutinin to the apical surface of Madin-Darby canine kidney cells, J. Cell Biol. 98: 308.PubMedGoogle Scholar
  186. Rogalski, A. A., and Singer, L. J., 1984, Associations of elements of the Golgi apparatus with microtubules, J. Cell Biol. 99: 1092.PubMedGoogle Scholar
  187. Rose, J. K., Adams, G. A., and Gallione, C. J., 1984, The presence of cysteine in the cytoplasmic domain of the vesicular stomatitis virus glycoprotein is required for palmitate addition, Proc. Natl. Acad. Sci. USA 81: 2050.PubMedGoogle Scholar
  188. Rose, J. K., and Bergmann, J. E., 1983, Altered cytoplasmic domains affect intracellular transport of the vesicular stomatitis virus glycoprotein, Cell 34: 513.PubMedGoogle Scholar
  189. Roth, J., Taajes, D. J., Lucocq, J. M., Weinstein, J., and Paulson, J. C., 1985, Demonstration of an extensive trans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation, Cell 43: 287.PubMedGoogle Scholar
  190. Roth, M. G., and Compans, R. W., 1981, delayed appearance of pseudotypes between vesicular stomatitis virus and influenza virus during mixed infection of MDCK cells, J. Virol. 40: 848.PubMedGoogle Scholar
  191. Roth, M. G., Fitzpatrick, J., and Compans, R. W., 1979, Polarity of influenza and vesicular stomatitis virus maturation in MDCK cells: Lack of a requirement for glycosylation of viral glycoproteins, Proc. Natl. Acad. Sci. USA 76: 6430.PubMedGoogle Scholar
  192. Roth, M. G., Gething, M.-J., Sambrook, J., Giusti, L., Davis, A., Nayak, D. P., and Compans, R. W., 1983a, Influenza virus hemagglutinin expression is polarized in cells infected with recombinant SV40 viruses carrying cloned hemagglutinin DNA, Cell 33: 435.PubMedGoogle Scholar
  193. Roth, M. G., Srinivas, R. V., and Compans, R. W., 1983b, Basolateral maturation of retro-viruses in polarized epithelial cells, J. Virol. 45: 1065.PubMedGoogle Scholar
  194. Roth, M. G., Doyle, C., Sambrook, J., and Gething, M.-J., 1986, Heterologous trans-membrane and cytoplasmic domains direct functional chimeric influenza virus hemagglutinins into the endocytic pathway, 1. Cell Biol. 102: 1271.Google Scholar
  195. Roth, M. G., Gundersen, D., Patil, N., and Rodriguez-Boulan, E., 1987, The large external domain is sufficient for the correct sorting of secreted or chimeric influenza virus hemagglutinins in polarized monkey kidney cells, J. Cell Biol. 104: 769.PubMedGoogle Scholar
  196. Sabatini, D. D., Kreibich, G., Morimoto, T., and Adesnik, M., 1982, Mechanisms for the incorporation of proteins in membranes and organelles, J. Cell Biol. 92: 1.PubMedGoogle Scholar
  197. Salas, P. J. I., Misek, D. E., Vega-Salas, D. E., Gundersen, D., Cereijido, M., and Rodriguez-Boulan, E., 1986, Microtubules and actin filaments are not critically involved in the biogenesis of epithelial cell surface polarity, J. Cell Biol. 102: 1853.PubMedGoogle Scholar
  198. Sambrook, J., Rodgers, L., White, J., and Gething, M.-J., 1985, Lines of BPV-transformed murine cells that constitutively express influenza virus hemagglutinin, EMBO J. 4: 91.PubMedGoogle Scholar
  199. Saraste, J., and Hedman, K., 1983, Intracellular vesicles involved in the transport of Semliki Forest virus membrane proteins to the cell surface, EMBO J. 2: 2001.PubMedGoogle Scholar
  200. Saraste, J., and Kuismanen, E., Pre-and post-Golgi vacuoles operate in the transport of Semliki Forest Virus membrane glycoproteins to the cell surface, Cell 38: 535.Google Scholar
  201. Schatz, G., 1986, A common mechanism for different membrane systems, Nature (Loud.) 231: 108.Google Scholar
  202. Schlesinger, M. J., 1981, Proteolipids, Annu. Rev. Biochem. 50: 193.PubMedGoogle Scholar
  203. Schmidt, M. F. G., 1983, Fatty acid binding: A new kind of posttranslational modification of membrane proteins, Curr. Top. Microbiol. Immunol. 102: 101.PubMedGoogle Scholar
  204. Schmidt, M. F. G., 1984, The transfer of mytistic and other fatty acids on lipid and viral protein acceptors in cultured cells infected with Semliki Forest and influenza virus, EMBO J. 3: 2295.PubMedGoogle Scholar
  205. Schmidt, M. F. G., and Lambrecht, B., 1985, On the structure of the acyl linkage and the function of fatty acyl chains in the influenza virus hemagglutinin and the glycoproteins of Semliki Forest virus, J. Gen Virol. 66: 2635.PubMedGoogle Scholar
  206. Schnapp, B. J., Vale, R. D., Sheetz, M. P., and Reese, T. S., 1985, Single microtubules from squid axoplasm support bidirectional movement of organelles, Cell 40: 455.PubMedGoogle Scholar
  207. Scholtissek, C., and Bowles, A. L., 1975, Isolation and characterization of temperature-sensitive mutants of fowl plague virus, Virology 67: 576.PubMedGoogle Scholar
  208. Schultz, I. T., 1975, The biologically active proteins of influenza virus: The hemagglutinin, in: The Influenza Viruses and Influenza ( E. D. Kilbourne, ed.), pp. 53–82, Academic, New York.Google Scholar
  209. Schwartz, A. L., Strous, G. J. A. M., Slot, J. W., and Geuze, H. J., 1985, Immunoelectron microscopic localization of acidic intracellular compartments in hepatoma cells, EMBO J. 4: 899.PubMedGoogle Scholar
  210. Schwarz, R. T., Rohrschneider, J. M., and Schmidt, M. F. G., 1976, Suppression of glycoprotein formation of Semliki Forest, influenza, and avian sarcoma virus by tunicamycin, J. Virol. 19: 782.PubMedGoogle Scholar
  211. Schwarz, R. T., Schmidt, M. F. G., Anwer, U., and Klenk, H.-D., 1977, Carbohydrates of influenza virus. I. Glycopeptides derived from viral glycoproteins after labeling with radioactive sugars, J. Virol. 23: 217.PubMedGoogle Scholar
  212. Sekikawa, K., and Lai, C.-J., 1983, Defects in functional expression of an influenza virus hemagglutinin lacking the signal peptide sequences, Proc. Natl. Acad. Sci. USA 78: 5488.Google Scholar
  213. Seto, J. T., and Rott, R., 1966, Functional significance of sialidase during influenza virus multiplication, Virology 30: 731.PubMedGoogle Scholar
  214. Sharma, S., Rodgers, L., Brandsma, J., Gething, M.-J., and Sambrook, J., 1985, SV40 T antigen and the exocytic pathway, EMBO J. 4: 1479.PubMedGoogle Scholar
  215. Simons, K., and Fuller, S. D., 1985, Cell surface polarity in epithelia, Annu. Rev. Cell Biol. 1: 243.PubMedGoogle Scholar
  216. Skehel, J. J., 1971, Estimations of the molecular weight of the influenza virus genome, J. Gen. Virol. 11: 103.PubMedGoogle Scholar
  217. Skehel, J. J., and Schild, G. C., 1971, The polypeptide composition of influenza A viruses, Virology 44: 396.PubMedGoogle Scholar
  218. Skehel, J. J., Stevens, D. J., Daniels, R. S., Douglas, A. R., Knossow, M., Wilson, I. A., and Wiley, D. C., 1984, A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody, Proc. Natl. Acad. Sci. USA 81: 1779.PubMedGoogle Scholar
  219. Smith, G. L., Murphy, B. R., and Moss, B., 1983, Construction and characterization of an infectious vaccinia virus recombinant that expresses the influenza hemagglutinin gene and induces resistance to influenza virus infection in hamsters, Proc. Natl. Acad. Sci. USA 80: 7155–7159.PubMedGoogle Scholar
  220. Stanley, P., and Haslam, E. A., 1971, The polypeptides of influenza virus. V. Localization of polypeptides in the virion by iodination techniques, Virology 46: 764.PubMedGoogle Scholar
  221. Stanley, P., Gandhi, S. S., and White, D. O., 1973, The polypeptides of influenza virus VII. Synthesis of the hemagglutinin, Virology 53: 92.PubMedGoogle Scholar
  222. Steinman, R. M., Mellman, I. S., Muller, W. A., and Cohn, Z. A., 1983, Endocytosis and the recycling of plasma membrane, J. Cell Biol. 96: 1.PubMedGoogle Scholar
  223. Stephens, E. B., Compans, R. W., Earl, P., and Moss, B., 1986, Surface expression of viral glycoproteins is polarized in epithelial cells infected with recombinant vaccinia viral vectors, EMBO J. 5: 237.PubMedGoogle Scholar
  224. Strous, G. J. A. M., Willemsen, R., van Kerkhof, P., Slot, J. W., Geuze, H. J., and Lodish, H. F., 1983, Vesicular stomatitis virus glycoprotein, albumin, and transferrin are transported to the cell surface via the same Golgi vesicles. J. Cell Biol. 97: 1815.PubMedGoogle Scholar
  225. Strous, G. J. A. M., DuMaine, A., Zijderhand-Bleekemolen, J. E., Slot, J. W., and Schwartz, A. L., 1985, Effect of lysosomotropic amines on the secretory pathway and on the recycling of the asialoglycoprotein receptor in human hepatoma cells, J. Cell Biol. 101: 531.PubMedGoogle Scholar
  226. Struck, D. K., and Lennarz, W. J., 1980, The function of saccharide—lipids synthesis of glycoprotein, in: The Biochemistry of Glycoproteins and Proteoglycans (W. J. Lennarz, ed), pp. 35–84, Plenum, New York.Google Scholar
  227. Sveda, M. M., Markoff, L. J., and Lai, C.-J., 1982, Cell surface expression of the influenza virus hemagglutinin requires the hydrophobic carboxy-terminal sequences, Cell 30: 649.PubMedGoogle Scholar
  228. Szczesna, E., and Boime, I., 1976, mRNA-dependent synthesis of authentic precursor to human placental lactogen: Conversion to its mature hormone form in ascites cell-free extracts, Proc. Natl. Acad. Sci. USA 73: 1179.PubMedGoogle Scholar
  229. Sztul, E. S., Howell, K. E., and Palade, G. E., 1983, Intracellular and transcellular transport of secretory component and albumin in rat hepatocytes, J. Cell Biol. 97: 1582.PubMedGoogle Scholar
  230. Tartakoff, A. M., 1983, Perturbation of vesicular traffic with the carboxylic ionophore monensin, Cell 32: 1026.PubMedGoogle Scholar
  231. Tartakoff, A. M., and Vassalli, P., 1977, Plasma cell immunoglobulin secretion: Arrest is accompanied by alterations of the Golgi complex, J. Exp. Med. 146: 1332.PubMedGoogle Scholar
  232. Tumova, B., and Pereira, H. G., 1965, Genetic interaction between influenza A viruses of human and animal origin, Virology 27: 253.PubMedGoogle Scholar
  233. Ueda, M., and Kilboume, E. D., 1976, Temperature-sensitive mutants of influenza virus: A mutation in the hemagglutinin gene, Virology 70: 425.PubMedGoogle Scholar
  234. Varghese, J. N., Laver, W. G., and Colman, P. M., 1983, Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution, Nature (Lond.) 303: 35.Google Scholar
  235. Walter, P., and Blobel, G., 1980, Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum, Proc. Natl. Acad. Sci. USA 77: 7112.PubMedGoogle Scholar
  236. Walter, P., and Blobel, G., 1981, Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in-vitro-assembled polysomes synthesizing secretory protein, J. Cell Biol. 91: 551.PubMedGoogle Scholar
  237. Walter, P., Jackson, R. C., Marcus, M. M., Lingappa, V. R., and Blobel, G., 1979, Tryptic dissection and reconstitution of translocation activity for nascent presecretory proteins across microsomal membranes, Proc. Natl. Acad. Sci. USA 76: 1795.PubMedGoogle Scholar
  238. Walter, P., Gilmore, R., and Blobel, G., 1984, Protein translocation across the endoplasmic reticulum, Cell 38: 5.PubMedGoogle Scholar
  239. Ward, C. W., 1981, Structure of the influenza virus hemagglutinin, Curr. Top. Microbiol. Immunol. 94: 1.PubMedGoogle Scholar
  240. Ward, C. W., and Dopheide, T. A., 1980, The Hong Kong (H3) hemagglutinin Complete amino acid sequence and oligosaccharide distribution for the heavy chain of A/Memphis/102/72, in: Structure and Variation in Influenza Virus ( G. Laver and G. Air, eds.), pp. 27–37, Elsevier/North-Holland, New York.Google Scholar
  241. Ward, C. W., Elleman, T. C., and Azad, A. A., 1982, Amino acid sequence of the pronasereleased heads of neuraminidase subtype N2 from the asian strain A/Tokyo/3/67 of influenza virus, Biochem. J. 207: 91.PubMedGoogle Scholar
  242. Waterfield, M. D., Gething, M.-J., Scrace, G., and Skehel, J. J., 1980, The carbohydrate side chains and disulphide bonds of the hemagglutinin of the influenza virus A/Japan 305/ 57 (H2N1), in: Structure and Variation in Influenza Virus ( G. Laver and G. Air, eds.), pp. 11–20, Elsevier/North-Holland, New York.Google Scholar
  243. Webster, R. G., 1970, Estimation of the molecular weights of the polypeptide chains from the isolated hemagglutinin and neuraminidase subunits of influenza viruses, Virology 40: 643.PubMedGoogle Scholar
  244. Webster, R. G., and Laver, W. G., 1967, Preparation and properties of antibody directed specifically against the neuraminidase of influenza virus, J. Immunol. 99: 49.PubMedGoogle Scholar
  245. Webster, R. G., Brown, L. E., and Jackson, D. C., 1983, Changes in the antigenicity of the hemagglutinin molecule of H3 influenza virus at acidic pH, Virology 126: 587.PubMedGoogle Scholar
  246. Webster, R. G., Kawaoka, Y., and Bean, W. J., 1986, Molecular changes in A/Chicken/Pennsylvanina/83 (H5N2) influenza virus associated with acquisition of virulence, Virology 149: 165.PubMedGoogle Scholar
  247. Wehland, J., Willingham, M. C., Gallo, M. G., and Pastan, I., 1982, the morphologic pathway of exocytosis of the vesicular stomatitis virus G protein in cultured fibroblasts, Cell 28: 831.PubMedGoogle Scholar
  248. Wen, D., and Schlesinger, M. J., 1984, Fatty acid-acylated proteins in secretory mutants of Saccharomyces cerevisiae, Mol. Cell. Biol. 4: 688.PubMedGoogle Scholar
  249. White, J., Kielian, M., and Helenius, A., 1983, Membrane fusion proteins of enveloped animal viruses, Q. Rev. Biophys. 16: 151.PubMedGoogle Scholar
  250. White, J. M., Matlin, K., and Helenius, A., 1981, Cell fusion by Semliki Forest, influenza and vesicular stomatitis virus, J. Cell Biol. 89: 674.PubMedGoogle Scholar
  251. Wickner, W. T., and Lodish, H. F., 1985, Multiple mechanisms of protein insertion into and across membranes, Science 230:400.PubMedGoogle Scholar
  252. Wiley, D. C., Wilson, I. A., and Skehel, J. J., 1981, Structural identification of the antibodyGoogle Scholar
  253. binding sites of the Hong Kong influenza virus hemagglutinin and their involvement in antigenic variation, Nature (Lond.) 289:366.Google Scholar
  254. Williams, D. B., Swiedler, S. J., and Hart, G. W., 1985, Intracellular transport of membrane glycoproteins: Two closely related histocompatibility antigens differ in their rates of transit to the cell surface, J. Cell Biol. 101: 725.PubMedGoogle Scholar
  255. Wills, J. W., Srinivas, R. V., and Hunter, E., 1984, Mutations of the Rous sarcoma virus env gene that affect the transport and subcellular location of the glycoprotein products, J. Cell Biol. 99: 3011.Google Scholar
  256. Wilson, I. A., Skehel, J. J., and Wiley, D. C., 1981, The hemagglutinin membrane glycopro- tein of influenza virus: Structure at 3 A resolution, Nature (Lond.) 289: 366.Google Scholar
  257. Wrigley, N. G., Skehel, J. J., Charlwood, P. A., and Brand, C. M., 1973, the size and shape of influenza virus neuraminidase, Virology 51: 525.PubMedGoogle Scholar
  258. Yamamoto, A., Masaki, R., and Tashiro, Y., 1985, Cytochrome P-450 transported from the endoplasmic reticulum to the Golgi apparatus in rat hepatocytes ?, J. Cell Biol. 101: 1733.PubMedGoogle Scholar
  259. Yost, C. S., Hedgpeth, J., and Lingappa, V. R., 1983, A stop transfer sequence confers predictable transmembrane orientation to a previously secreted protein in cell-free systems, Cell 34: 759.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Michael G. Roth
    • 1
  • Mary-Jane Gething
    • 2
  • Joe Sambrook
    • 1
  1. 1.Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasUSA
  2. 2.Department of Biochemistry and Howard Hughes Medical InstituteUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations