Structure of Defective-Interfering RNAs of Influenza Viruses and Their Role in Interference

  • Debi P. Nayak
  • Thomas M. Chambers
  • Ramesh K. Akkina
Part of the The Viruses book series (VIRS)


When viruses are passaged at high multiplicity, defective interfering (DI) particles are produced. von Magnus (1947, 1951a-c, 1952, 1954) first observed this phenomenon when he serially passaged undiluted influenza viruses in embryonated chicken eggs. He noted that although both the total amount of virus particles as assayed by hemagglutination units (HAU) and the amount of infectious particles as assayed by egg infectivity titer (EID50) decreased, the ratio of infectivity to total particles (EID50/HAU) decreased much more precipitously during the passages at high multiplicity of infection (MOI). Clearly, during the undiluted passages, many particles were produced that were noninfectious. Subsequently, this phenomenon of multiplicity-dependent production of noninfectious virus particles has been reported with almost all animal viruses studied to date. Indeed, formation of such particles has also been observed for plant, yeast, and bacterial viruses (Kane et al., 1979; Mills et al., 1967) and probably represents a general phenomenon for all viruses. Later these noninfectious particles were called defective interfering (DI) particles in order to describe their proper phenotypic characteristics (Huang and Baltimore, 1970).


Influenza Virus Polymerase Gene Sendai Virus Virus Preparation Polymerase Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations used in this chapter


complementary DNA


chicken embryo fibroblast cells


complementary RNA


defective interfering


defective interfering unit


defective noninterfering


egg infectious dose (50%)




hemagglutinating unit


hemagglutination inhibition


membrane protein


Madin-Darby bovine kidney cells


Madin-Darby canine kidney cells


multiplicity of infection


messenger RNA






nondefective interfering




nonstructural protein


polyacrylamide gel electrophoresis


plaque-forming units




3′ polyadenosine






viral RNA


vesicular stomatitis virus


Wilson-Smith neurotropic


  1. Ada, G. L., and Perry, B. T., 1955, Infectivity and nucleic acid content of influenza virus, Nature (Lond.) 175: 209–210.Google Scholar
  2. Ada, G. L., and Perry, B. T., 1956, Influenza virus nucleic acid: Relationship between biological characteristics of the virus particle and properties of the nucleic acid, J. Gen. Microbiol. 14:623–633.PubMedGoogle Scholar
  3. Akkina, R. K., and Nayak, D. P., 1987, Interference by defective interfering influenza virus: Role of defective viral polypeptides in infected cells, in: The Biology of Negative Strand Viruses ( B. W. J. Mahy and D. Kolakofsky, eds.), pp. 183–190, Elsevier, New York.Google Scholar
  4. Akkina, R. K., Chambers, T. M., and Nayak, D. P., 1984a, Expression of defective-interfering influenza virus-specific transcripts and polypeptides in infected cells, J. Virol. 51: 395–403.PubMedGoogle Scholar
  5. Akkina, R. K., Chambers, T. M., and Nayak, D. P., 1984b, Mechanism of interference by defective-interfering particles of influenza virus: Differential reduction of intracellular synthesis of specific polymerase proteins, Virus Res. 1: 687–702.Google Scholar
  6. Akkina, R. K., Chambers, T. M., Londo, D. R., and Nayak, D. P., 1987, Intracellular localiza-tion of cells expressing PB1 protein from cloned cDNA, J. Virol. 61:2217–2224.PubMedGoogle Scholar
  7. Amesse, L. S., Pridgen, C. L., and Kingsbury, D. W., 1982, Sendai virus DI RNA species with conserved virus genome termini and extensive internal deletions, Virology 118:17–27.PubMedGoogle Scholar
  8. Bark, R. S., Stohlman, S. A., Razavi, M. K., and Lai, M. M. C., 1985; Characterization of leader-related small RNAs in corona virus-infected cells: Further evidence of leaderprimed mechanism of transcription, Virus Res. 3: 19–33.Google Scholar
  9. Barrett, A. D. T., and Dimmock, N. J., 1986, Defective interfering viruses and infections of animals, Gurr. Top. Microbiol. Immunol. 128: 55–84.Google Scholar
  10. Bay, P. H. S., and Reichmann, M. E., 1982, In vitro and in vivo inhibition of primary transcription of vesicular stomatitis virus by a defective interfering particle, J. Virol. 41: 172–182.PubMedGoogle Scholar
  11. Bean, W. J., and Simpson, R. W., 1976, Transcriptase activity and genome composition of defective influenza virus, J. Virol. 18: 365–369.PubMedGoogle Scholar
  12. Bean, W. J., Kawaoka, Y., Wood, J. M., Pearson, J. E., and Webster, R. G., 1985, Characterization of virulent and avirulent A/chicken/Pennsylvania/83 influenza A viruses: Potential role of defective interfering RNAs in nature, J. Virol. 54:151–160.PubMedGoogle Scholar
  13. Bellett, A. J. D., and Cooper, P. D., 1959, Some properties of the transmissible interfering component of vesicular stomatitis virus preparations, J. Gen. Microbiol. 21: 498–509.PubMedGoogle Scholar
  14. Blumberg, B. M., and Kolakofsky, D., 1983, An analytical review of defective infections of vesicular stomatitis virus, J. Gen. Virol. 64: 1839–1847.PubMedGoogle Scholar
  15. Buonagurio, D. A., Krystal, M:, Palese, P., DeBorde, D. C., and Maassab, H. F., 1984, Analysis of an influenza A virus mutant with a deletion in the NS segment, J. Virol. 49: 418–425.Google Scholar
  16. Cairns, H. J. F., and Edney, M., 1952, Quantitative aspects of influenza virus multiplication. I. Production of incomplete virus, J. Immunol. 69: 155–160.PubMedGoogle Scholar
  17. Cane, C., McLain, L., and Dimmock, N. J., 1987, Intracellular stability of the interfering activity of a defective interfering influenza virus in the absence of virus multiplication. Virol. 159: 259–264.Google Scholar
  18. Carter, M. J., and Mahy, B. W. J., 1982a, Incomplete avian influenza virus contains a defective noninterfering component, Arch. Virol. 71: 12–25.Google Scholar
  19. Carter, M. J., and Mahy, B. W. J., 1982b, Incomplete avian influenza A virus displays anomalous interference, Arch. Virol. 74: 71–76.PubMedGoogle Scholar
  20. Carter, M. J., and Mahy, B. W. J., 1982c, Synthesis of RNA segments 1–3 during generation of incomplete influenza A (fowl plague) virus, Arch. Virol. 73: 109–119.PubMedGoogle Scholar
  21. Cave, D. R., Hendrickson, F. M., and Huang, A. S., 1985, Defective interfering virus particles modulate virulence, J. Virol. 55: 366–373.PubMedGoogle Scholar
  22. Chambers, T. M., Akkina, R. K., and Nayak, D. P., 1984, In vivo transcription and translation of defective interfering particle-specific RNAs of influenza virus, in: Segmented Negative Strand Viruses (R. W. Compans and D. H. L. Bishop, eds.) pp. 85–91, Academic, Orlando, Florida.Google Scholar
  23. Chambers, T. M., and Webster, R. G., 1987, Defective interfering virus associated with A/Chicken/Pennsylvania/83 influenza virus, J. Virol. 61: 1517–1523.PubMedGoogle Scholar
  24. Chanda, P. K., Chambers, T. M., and Nayak, D. P., 1983, In vitro transcription of defective interfering particles of influenza virus produces poly(A) containing complementary RNAs, J. Virol. 45: 55–61.PubMedGoogle Scholar
  25. Choppin, P. W., and Pons, M. W., 1970, The RNAs of infective and incomplete influenza virions grown in MDBK and HeLa cells, Virology 42: 603–610.PubMedGoogle Scholar
  26. Chow, N., and Simpson, R. W., 1971, RNA-dependent RNA polymerase activity associated with virions and subviral particles of myxoviruses, Proc Natl Acad Sci USA 68: 752–756.PubMedGoogle Scholar
  27. Crumpton, W. M., Dimmock, N. J., Minor, P. D., and Avery, R. J., 1978, The RNAs of defective interfering influenza virus, Virology 90: 370–373.PubMedGoogle Scholar
  28. Crumpton, W. M., Clewley, J. P., Dimmock, N. J., and Avery, R. J., 1979, Origin of subgenomic RNAs in defective interfering influenza virus, FEMS Microbiol. Lett. 6: 431–434.Google Scholar
  29. Crumpton, W. M., Avery, R. J., and Dimmock, N. J., 1981, Influence of the host cell on the genomic and subgenomic RNA content of defective interfering influenza virus, J. Gen. Virol. 53: 173–177.PubMedGoogle Scholar
  30. Davis, A. R., and Nayak, D. P., 1979, Sequence relationships among defective interfering influenza viral RNAs, Proc. Natl. Acad. Sci. USA 76: 3092–3096.PubMedGoogle Scholar
  31. Davis, A. R., Hiti, A. L., and Nayak, D. P., 1980, Influenza defective interfering viral RNA is formed by internal deletion of genomic RNA, Proc. Natl. Acad. Sci. USA 77: 215–219.PubMedGoogle Scholar
  32. De, B. K., and Nayak, D. P., 1980, Defective interfering influenza viruses and host cells: Establishment and maintenance of persistent influenza virus infection in MDBK and HeLa cells, J. Virol. 36: 847–859.PubMedGoogle Scholar
  33. Detjen, B. M., St. Angelo, C., Katze, M. G., and Krug, R. M., 1987, The three influenza viral polymerase (P) proteins not associated with viral nucleocapsids in the infected cells are in the form of a complex, J. Virol. 61: 16–22.PubMedGoogle Scholar
  34. Dimmock, N. J., Beck, S., and McLain, L., 1986, Protection of mice from lethal influenza: Evidence that defective interfering virus modulates immune response and not virus multiplication, J. Gen. Virol. 67: 839–850.PubMedGoogle Scholar
  35. Doyle, M., and Holland, J. J., 1973, Prophylaxis and immunization in mice by use of virus-free defective T particles to protect against intracerebral infection by vesicular stomatitis virus, Proc. Natl. Acad. Sci. USA 70: 2105–2108.PubMedGoogle Scholar
  36. Duesberg, P. H., 1968, The RNAs of influenza virus, Proc. Natl. Acad. Sci. USA 59: 930–937.PubMedGoogle Scholar
  37. Etkind, P. R., Buchhagen, D. L., Herz, C., Broni, B. B., and Krug, R. M., 1977, The segments of influenza viral mRNA, J. Virol. 22: 346–352.PubMedGoogle Scholar
  38. Fazekas de St. Groth, S., and Graham, D. M., 1954a, The production of incomplete virus particles among influenza strains. Experiments in eggs, Br. J. Exp. Pathol. 35: 60–74.Google Scholar
  39. Fazekas de St. Groth, S., and Graham, D. M., 1954b, Artificial production of incomplete influenza virus, Nature (Lond.) 173: 637–638.Google Scholar
  40. Fields, S., and Winter, G., 1982, Nucleotide sequences of influenza virus segments 1 and 3 reveal mosaic structure of a small viral RNA segment, Cell 28: 303–313.PubMedGoogle Scholar
  41. Frielle, D. W., Huang, D. D., and Youngner, J. S., 1984, Persistent infection with influenza A virus: Evolution of virus mutants, Virology 138: 103–117.PubMedGoogle Scholar
  42. Gamboa, E. T., Harter, D. H., Daffy, P. E., and Hsu, K. C., 1975, Murine influenza virus encephalomyelitis. III. Effect of defective interfering particles, Acta Neuropathol. (Berl.) 34: 157–169.Google Scholar
  43. Gard, S., and von Magnus, P., 1947, Studies on interference in experimental influenza. II. Purification and centrifugation experiments, Arkiv. Kemi, Mineral Och Geol. 24b No. 8, 1–4.Google Scholar
  44. Gard, S., von Magnus, P., Svedmyr, A., and Birch-Andersen, A., 1952, Studies on the sedimentation of influenza virus, Arch. Ges. Virusforsch. 4: 591–611.PubMedGoogle Scholar
  45. Ginsberg, H. S., 1954, Formation of non-infectious influenza virus in mouse lungs: Its dependence upon extensive pulmonary consolidation initiated by the viral inoculum, J. Exp. Med. 100: 581–603.PubMedGoogle Scholar
  46. Henley, W., 1953, Multiplication of influenza virus in the entodermal cells of the allantois of chick embryo, Adv. Virus Res. 1: 141–227.Google Scholar
  47. Herman, R. C., 1984, Nucleotide sequence of an aberrant glycoprotein mRNA synthesized by the internal deletion mutant of vesicular stomatitis virus, J. Virol. 50: 524–528.PubMedGoogle Scholar
  48. Hinshaw, V. S., Bean, W. J., Webster, R. G., and Sriram, G., 1980, Genetic reassortment of influenza A viruses in the intestinal tract of ducks, Virology 102: 412–419.PubMedGoogle Scholar
  49. Holland, J., Grabau, E. A., Jones, C. L., and Semler, B. L., 1979, Evolution of multiple genome mutations during long-term persistent infection by vesicular stomatitis virus. Cell 16: 495–504.PubMedGoogle Scholar
  50. Holland, J. J., Kennedy, S. I. T., Semler, B. L., Jones, C. L., Roux, L., and Grabau, E. A., 1980, Defective interfering RNA viruses and the host cell response, in Comprehensive. Virology, ( H. Fraenkel-Conrat and R. R. Wagner, eds.), Vol. 16, pp. 137–192, Plenum, New York.Google Scholar
  51. Holland, J., Spindler, K., Horodyski, F., Grabau, E., Nichol, S., and VandePol, S., 1982, Rapid evolution of RNA genomes, Science 215: 1577–1585.PubMedGoogle Scholar
  52. Honda, A., Ueda, K., Nagata, K., and Ishihama, A., 1987, Identification of the RNA polymerase site on genome RNA of influenza virus. J. Biochem. 102: 1241–1249.PubMedGoogle Scholar
  53. Horsfall, F. L., 1954, On the reproduction of influenza virus. Quantitative studies with procedures which enumerate infective and haemagglutinating virus particles, J. Exp. Med. 100: 135–161.PubMedGoogle Scholar
  54. Horsfall, F. L., 1955, Reproduction of influenza viruses. Quantitative investigations with particle enumeration procedures on the dynamics of influenza A and B virus reproduction, J. Exp. Med. 102: 441–473.PubMedGoogle Scholar
  55. Hsu, C-H, Re, G. G., Gupta, K. C., Portner, A., and Kingsbury, D. W., 1985, Expression of Sendai virus defective-interfering genomes with internal deletions, Virology 146: 38–49.PubMedGoogle Scholar
  56. Hsu, M-T, Parvin, J. D., Gupta, S., Crystal, M., and Palese, P., 1987, Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle, Proc. Natl. Acad. Sci. USA 84: 8140–8144.PubMedGoogle Scholar
  57. Huang, A. S., 1975, Defective interfering viruses, Annu. Rev. Microbiol. 27: 101–117.Google Scholar
  58. Huang, A. S., 1977, Viral pathogenesis and molecular biology, Bacteriol. Rev. 41: 811–821.PubMedGoogle Scholar
  59. Huang, A. S., 1982, Significance of sequence rearrangements in a rhabdovirus, ASM News 48: 148–151.Google Scholar
  60. Huang, A. S., and Baltimore, D., 1970, Defective viral particles and viral disease processes, Nature (Lond.) 226: 325–327.Google Scholar
  61. Huang, A. S., and Baltimore, D., 1977, Defective interfering animal viruses, in: Comprehensive Virology, ( H. Fraenkel-Conrat and R. R. Wagner, eds.), Vol. 10, pp 731–16, Plenum, New York.Google Scholar
  62. Huang, A. S., Little, S. P., Oldstone, M. B. A., and Rao, D., 1978, Defective interfering particles: Their effect on gene expression and replication of vesicular stomatitis virus, in: Persistent Viruses. (J. G. Stevens, G. H. Todaro, and C. F. Fox, eds.), ICN—UCLA Symposium on Molecular and Cellular Biology, Vol VI, pp. 399–408, Academic, Orlando, Florida.Google Scholar
  63. Janda, J. M., and Nayak, D. P., 1979, Defective influenza viral ribonucleoproteins cause interference, J. Virol. 32: 697–702.PubMedGoogle Scholar
  64. Janda, J. M., Davis, A. R., Nayak, D. P., and De, B. K., 1979, Diversity and generation of defective interfering influenza virus particles, Virology 95: 48–58.PubMedGoogle Scholar
  65. Jennings, P. A., Finch, J. T., Winter, G., and Robertson, J. S., 1983, Does the higher order structure of the influenza virus ribonucleoprotein guide sequence rearrangements in influenza viral RNA?, Cell 34: 619–627.PubMedGoogle Scholar
  66. Jones, I. M., Reay, P. A., and Philpott, K. L., 1986, Nuclear location of all three polymerase proteins and a nuclear signal in polymerase PB2, EMBO J. 5: 2371–2376.PubMedGoogle Scholar
  67. Kane, W. P., Pietras, D. F., and Bruenn, J. A., 1979, Evolution of defective-interfering double stranded RNAs of yeast killer virus, J. Virol. 32: 692–696.PubMedGoogle Scholar
  68. Kaptein, J., and Nayak, D. P., 1982, Complete nucleotide sequence of the polymerase 3 (P3) gene of human influenza virus A/WSN/33, J. Virol. 42: 55–63.PubMedGoogle Scholar
  69. King, A M. Q., McCahon, D., Slade, W. R., and Newman, J. W. I., 1982, Recombination in RNA, Cell 29: 921–928.PubMedGoogle Scholar
  70. Kingsbury, D. W., 1974, The molecular biology of paramyxoviruses, Med. Microbiol Immunol. 160: 73–83.PubMedGoogle Scholar
  71. Kolakofsky, D., 1976, Isolation and characterization of Sendai virus DI RNAs, Cell 8: 547–555.PubMedGoogle Scholar
  72. Lazzarini, R. A., Keene, J. D., and Schubert, M., 1981, The origin of defective interfering particles of the negative strand RNA viruses, Cell 26: 145–154.PubMedGoogle Scholar
  73. Lenard, J., and Compans, R. W., 1975, Polypeptide composition of incomplete influenza virus grown in MDBK cells, Virology 65: 418–426.PubMedGoogle Scholar
  74. Leppert, M., Rittenhouse, L., Perrault, J., Summers, D., and Kolakofsky, D., 1979, Plus and minus strand leader RNAs in negative strand virus-infected cells, Cell 18: 735–747.PubMedGoogle Scholar
  75. Lief, F. S., Fabiyi, A., and Henle, W., 1956, The decreased incorporation of S antigen into elementary bodies of increasing incompleteness, Virology 2: 782–797.PubMedGoogle Scholar
  76. Manire, G. P., 1957, Studies on the toxicity for mice of incomplete influenza virus, Acta Pathol. Microbiol. Scand. 40: 501–510.PubMedGoogle Scholar
  77. McCauley, J. W., and Mahy, B. W. J., 1983, Structure and function of the influenza virus genome, Biochem. J. 211: 281–294.PubMedGoogle Scholar
  78. McLain, L., Armstrong, S. J., and Dimmock, N. J., 1988, One defective interfering particle per cell prevents influenza virus-mediated cytopathology: An efficient assay system, J. Gen. Virol. 69: 1415–1419.PubMedGoogle Scholar
  79. McKee, A. P., 1951, Non-toxic influenza virus, J. Immunol. 66: 151–167.PubMedGoogle Scholar
  80. Meier-Ewart, H., and Compans, R. W., 1974, Time course of synthesis and assembly of influenza virus proteins, J. Virol. 14: 1083–1091.Google Scholar
  81. Meier, E., Harmison, G. G., Keene, J. D., and Schubert, M., 1984, Sites of copy choice replication involved in generation of vesicular stomatitis virus defective-interfering particle RNAs, J. Virol. 51: 515–521.PubMedGoogle Scholar
  82. Mills, D. R., Peterson, R. I., and Spiegelman, S., 1967, An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule, Proc. Natl. Acad. Sci. USA 58: 217–224.PubMedGoogle Scholar
  83. Moss, B. A., and Brownlee, G. G., 1981, Sequence of DNA complementary to a small RNA segment of influenza virus A/NT/60/68, Nucleic Acids Res 9: 1941–1947.PubMedGoogle Scholar
  84. Nakajima, K., Ueda, M., and Sugiura, A., 1979, Origin of small RNA in von Magnus particles of influenza virus, J. Virol. 29: 1142–1148.PubMedGoogle Scholar
  85. Nayak, D. P., 1969, Influenza viruses: Structure, replication and defectiveness, Fed. Proc. 28: 1858–1865.PubMedGoogle Scholar
  86. Nayak, D. P., 1972, Defective virus RNA synthesis and production of incomplete influenza virus in chick embryo cells, J. Gen. Virol. 14: 63–67.PubMedGoogle Scholar
  87. Nayak, D. P., 1980, Defective interfering influenza viruses, Annu. Rev. Microbiol. 34: 619–644.PubMedGoogle Scholar
  88. Nayak, D. P., and Sivasubramanian, N., 1983, The structure of the influenza defective interfering (DI) RNAs and their progenitor genes, in: Genetics of Influenza Viruses, ( P. Palese and D. W. Kingsbury, eds.), pp. 255–279, Springer-Verlag, Vienna.Google Scholar
  89. Nayak, D. P., Tobita, K., Janda, J. M., Davis, A. R., and De, B. K., 1978, Homologous interference mediated by defective interfering influenza virus derived from a temperature-sensitive mutant of influenza virus, J. Virol. 28: 375–386.PubMedGoogle Scholar
  90. Nayak, D. P., Davis, A. R., and Cortini, R., 1982a, Defective interfering influenza viruses: Complete sequence analysis of a DI RNA, in: Genetic Variation Among Influenza Viruses, ( D. P. Nayak, ed.), pp. 77–92, Academic, Orlando, Florida.Google Scholar
  91. Nayak, D. P., Sivasubramanian, N., Davis, A. R., Cortini, R., and Sung, J., 1982b, Complete sequence analyses show that two defective interfering influenza viral RNAs contain a single internal deletion of a polymerase gene, Proc. Natl. Acad. Sci. USA 79: 2216–2220.PubMedGoogle Scholar
  92. Nayak, D. P., Chambers, T. M., and Akkina, R. K., 1985, Defective interfering RNAs of influenza viruses: Origin, structure, expression and interference, Curr. Top. Microbiol. Imm unol. 114: 104–151.Google Scholar
  93. Penn, C. R., and Mahy, B. W. J., 1984, Expression of influenza virus subgenomic virion RNAs in infected cells, in: Segmented Negative Strand Viruses ( R. W. Compans and D. H. L. Bishop, eds.), pp. 173–178, Academic, Orlando, Florida.Google Scholar
  94. Penn, C. R., and Mahy, B. W. J., 1985, Novel polypeptides encoded by influenza virus subgenomic (DI-type) virion RNAs, Virus Res. 3: 311–321.PubMedGoogle Scholar
  95. Perrault, J., 1981, Origin and replication of defective interfering particles, Curr. Top. Microbiol. Im m un ol. 93: 151–207.Google Scholar
  96. Perrault, J., Semler, B. W., Leavitt, R. W., and Holland, J. J., 1978, Inverted complementary terminal sequences in defective interfering particle RNAs of vesicular stomatitis virus and their possible role in autointerference, in: Negative Strand Viruses and the Host Cell ( B. W. J. Mahy and R. D. Barry, eds.), pp. 527–538, Academic, Orlando, Florida.Google Scholar
  97. Perrault, J., Clinton, G. M., and McClure, M. A., 1983, RNP template of vesicular stomatitis virus regulates transcription and replication functions, Cell 35: 175–185.PubMedGoogle Scholar
  98. Pons, M. W., 1980, The genome of incomplete influenza virus, Virology, 100: 43–52.PubMedGoogle Scholar
  99. Pons, M., and Hirst, G. K., 1969, The single and double-stranded RNAs and the proteins of incomplete influenza virus, Virology 38: 68–72.PubMedGoogle Scholar
  100. Rabinowitz, S. G., and Huprikar, J., 1979, Influence of defective-interfering particles of the PR8 strain of influenza A virus on the pathogenesis of pulmonary infection in mice, J. Infec. Dis. 140: 305–315.Google Scholar
  101. Rao, D. D., and Huang, A. S., 1982, Interference among defective interfering particles of vesicular stomatitis virus, J. Virol. 41: 210–221.PubMedGoogle Scholar
  102. Re, G. G., and Kingsbury, D. W., 1988, Paradoxical effect of Sendai virus DI RNA size on survival: Inefficient envelopment of small nucleocapsids, Virology 165: 331–337.PubMedGoogle Scholar
  103. Re, G. G., Morgan, E. M., and Kingsbury, D. W., 1985, Nucleotide sequences responsible for generation of internally deleted Sendai virus defective interfering genomes, Virology 146: 27–37.PubMedGoogle Scholar
  104. Robertson, J. S., Schubert, M., and Lazzarini, R. A., 1981, Polyadenylation sites for influenza virus mRNA, J. Virol. 38: 157–163.PubMedGoogle Scholar
  105. Rott, R., and Schafer, W., 1960, Untersuchungen uber die hamagglutinierenden nichtinfektiosen Teilchen der Influenza-Viren. I. Die Erzeugung von “inkompletten Formen” beim Virus der klassischen Geflugelpest (v. Magnus-Phanomen), Z. Naturforsch. 15b: 691–693.Google Scholar
  106. Rott, R., and Schafer, W., 1961, Untersuchungen uber die hamagglutinierenden nichtinfektiosen Teilchen der Influenza-Viren (German), Z. Naturforsch. 166: 310–321.Google Scholar
  107. Rott, R., and Scholtissek, C., 1963, Investigations about the formation of incomplete forms of fowl plague virus, J. Gen. Microbiol. 33: 303–312.PubMedGoogle Scholar
  108. Rott, R., Orlich, M., and Scholtissek, C., 1983, Pathogenicity reactivation of nonpathogenic influenza virus recombinants under von Magnus conditions, Virology 126: 459–465.PubMedGoogle Scholar
  109. Rowlands, D., Grabau, E., Spindler, K., Jones, C., Semler, B., and Holland, J., 1980, Virus protein changes and RNA termini alterations evolving during persistent infection, Cell 19: 871–880.PubMedGoogle Scholar
  110. Schafer, W., 1955, Sero-immunologic studies on incomplete forms of the virus of classical fowl plague, Arch. Exp. Vet. Med. 9: 218–230 [in German].Google Scholar
  111. Schubert, M., Harmison, G. G., and Meier, E., 1984, Primary structure of vesicular stomatitis virus polymerase (L) gene: Evidence for a high frequency of mutations, J. Virol. 51: 505–514.PubMedGoogle Scholar
  112. Shapiro, G. I., Gurney, T., and Krug, R. M., 1987, Influenza virus gene expression: Control mechanism at early and late times of infection and nuclear-cytoplasmic transport of virus-specific RNAs, J. Virol. 61: 764–773.PubMedGoogle Scholar
  113. Sivasubramanian, N., and Nayak, D. P., 1982, Sequence analysis of the polymerase 1 gene and the secondary structure prediction of polymerase 1 protein of human influenza virus A/WSN/33, J. Virol. 44: 321–329.PubMedGoogle Scholar
  114. Sivasubramanian, N., and Nayak, D. P., 1983, Defective interfering influenza RNAs of polymerase 3 gene contain single as well as multiple internal deletions, Virology 124: 232–237.PubMedGoogle Scholar
  115. Smith, G. L., and Hay, A. J., 1982, Replication of the influenza virus genome, Virology 118: 96–108.PubMedGoogle Scholar
  116. Smith, G. L., Levin, J. Z., Palese, P., and Moss, B., 1987, Synthesis and location of ten influenza virus polypeptides individually expressed by recombinant vaccinia virus, Virology 160: 336–345.PubMedGoogle Scholar
  117. Sriram, G., Bean, W. J., Hinshaw, V. S., and Webster, R. G., 1980, Genetic diversity among avian influenza viruses, Virology 105: 592–599.PubMedGoogle Scholar
  118. Ueda, M., Nakajima, K., and Sugiura, A., 1980, Extra RNAs of von Magnus particles of influenza virus cause reduction of particular polymerase genes, J. Virol. 34: 1–8.PubMedGoogle Scholar
  119. von Magnus, P., 1947, Studies on interference in experimental influenza. I. Biological observations, Ark. Kemi. Mineral, Geol. 24b: 1.Google Scholar
  120. von Magnus, P., 195la, Propagation of the PR8 strain of influenza virus in chick embryos. I. The influence of various experimental conditions on virus multiplication, Acta Pathol. Microbiol. Scand. 28: 250–277.Google Scholar
  121. von Magnus, P., 195lb, Propagation of the PR8 strain of influenza virus in chick embryos. II. The formation of “incomplete” virus following the inoculation of large doses of seed virus, Acta Pathol. Microbiol. Scand. 28: 278–293.Google Scholar
  122. von Magnus, P., 1951c, Propagation of the PR8 strain of influenza virus in chick embryos. III. Properties of the incomplete virus produced in serial passages of undiluted virus, Acta Pathol. Microbiol. Scand. 29: 157–181.Google Scholar
  123. von Magnus, P., 1952, Propagation of the PR8 strain of influenza virus in chick embryos. IV. Studies on the factors involved in the formation of incomplete virus upon serial passage of undiluted virus, Acta Pathol. Microbiol. Scand. 30: 311–335.Google Scholar
  124. von Magnus, P., 1954, Incomplete forms of influenza virus, Adv. Virus Res. 2: 59–78.Google Scholar
  125. von Magnus, P., 1965, The in ovo production of incomplete virus by B/Lee and A/PR8 influenza viruses, Arch. Ges. Virusforsch. 17: 414–424.Google Scholar
  126. Webster, R. G., Kawaoka, Y., and Bean, W. J., Jr., 1986, Molecular changes in A/chicken/Pennsylvania/83 (H5N2) influenza virus associated with acquisition of virulence, Virology 149: 165–173.PubMedGoogle Scholar
  127. Weiss, B., and Schlesinger, S., 1981, Defective interfering particles of Sindbis virus do not interfere with homologous virus obtained from persistently infected BHK cells but do interfere with Semliki Forest virus, J. Virol. 37: 840–844.PubMedGoogle Scholar
  128. Welsh, R. M., Lampert, P. W., and Oldstone, M. B. A., 1977, Prevention of virus-induced cerebellar disease by defective interfering lymphocytic choriomeningitis virus, J. Infect. Dis. 136: 391–399.PubMedGoogle Scholar
  129. Werner, G. H., 1956, Quantitive studies on influenza virus infection of the chick embryo by the amniotic route, J. Bacteriol. 71: 505–515.PubMedGoogle Scholar
  130. Winter, G., Fields, S., and Ratti, G., 1981, The structure of the two subgenomic RNAs from human influenza virus A/PR/8/34, Nucleic Acids Res. 9: 6907–6915.PubMedGoogle Scholar
  131. Yang, F., and Lazzarini, R. A., 1983, Analysis of the recombination event generating a vesicular stomatitis virus deletion defective interfering particle, J. Virol. 45: 766–772.PubMedGoogle Scholar
  132. Yoshishita, T., Kawai, K., Fukai, K., and Ito, R., 1959, Analysis of infective particles in incomplete virus preparations of the von Magnus type, Biken J. 2: 25.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Debi P. Nayak
    • 1
  • Thomas M. Chambers
    • 2
  • Ramesh K. Akkina
    • 3
  1. 1.Department of Microbiology and Immunology, Jonsson Comprehensive Cancer CenterUCLA School of MedicineLos AngelesUSA
  2. 2.Department of Virology and Molecular BiologySt. Jude Children’s Research HospitalMemphisUSA
  3. 3.Department of Microbiology, College of Veterinary MedicineColorado State UniversityFort CollinsUSA

Personalised recommendations