Hyperellipsoidal Clustering

  • Yoshiteru Nakamori
  • Mina Ryoke
Part of the International Series in Intelligent Technologies book series (ISIT, volume 7)


We present a hyperellipsoidal clustering method that becomes the focal point of the fuzzy modeling procedure. The aim of developing a clustering algorithm is to control the shapes of clusters flexibly. This is achieved to a great extent by introducing design and tuning parameters. We propose a simple clustering algorithm which combines hierarchical and non-hierarchical procedures, and dose not require a priori assumption on the number, centroids, and volumes of clusters.


Membership Function Fuzzy Model Fuzzy Cluster Conditional Variable Initial Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Takagi and M. Sugeno: Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Trans, on Systems, Man and Cybernetics, Vol.SMC-15, No.1, pp.116–132, 1985.Google Scholar
  2. [2]
    M. Sugeno and G.T. Kang: Fuzzy Modeling and Control of Multilayer Incinerator. Fuzzy Sets and Systems, Vol.18, pp.329–346, 1986.zbMATHCrossRefGoogle Scholar
  3. [3]
    M. Sugeno and G.T. Kang: Structure Identification of Fuzzy Model. Fuzzy Sets and Systems. Vol.28, pp.15–33, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Y. Nakamori: Development and Application of an Interactive Modeling Support System. Automatica, Vol.25, No.2, pp. 185–206, 1989.CrossRefGoogle Scholar
  5. [5]
    M. Kainuma, Y. Nakamori and T. Morita: Integrated Decision Support System for Environmental Planning. IEEE Trans. Syst. Man and Cybern., Vol.SMC-20, No.4, pp.777–790, 1990.CrossRefGoogle Scholar
  6. [6]
    J. Dunn: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. J. Cybernetics, Vol.3, pp.32–57, 1974.MathSciNetCrossRefGoogle Scholar
  7. [7]
    J.C. Bezdek: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York, 1981.zbMATHGoogle Scholar
  8. [8]
    J.C. Bezdek et al.: Detection and Characterization of Cluster Substructure I. Linear Structure: Fuzzy c-Lines. SIAM J. Appl. Math., Vol.40, No.2, pp.339–357, 1981.MathSciNetzbMATHGoogle Scholar
  9. [9]
    J.C. Bezdek et al.: Detection and Characterization of Cluster Substructure II. Fuzzy c-Varieties and Convex Combinations Thereof. SIAM J. Appl. Math., Vol.40, No.2, pp.358–372, 1981.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    R.J. Hathaway and J.C. Bezdek: Switching Regression Models and Fuzzy Clustering. IEEE Trans, on Fuzzy Systems, Vol.1, No.3, pp.195–204, 1993.CrossRefGoogle Scholar
  11. [11]
    D.W. Hosmer, Jr.: Maximum Likelihood Estimates of the Parameters of a Mixture of Two Regression Lines. Communications in Statistics, Vol.3, No. 10, pp.995–1005, 1974.Google Scholar
  12. [12]
    R.W. Gunderson and R. Canfield: Piece-Wise Multilinear Prediction from FCV Disjoint Principal Component Models. Proc. of 3rd IFSA Congress, pp.540–543, Washington, August 6–11, 1989.Google Scholar
  13. [13]
    J.H. Ward, Jr.: Hierarchical Grouping to Optimize an Objective Function. J. Amer. Statist. Assoc, Vol.58, pp.236–244, 1963.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Y. Tanaka and K. Wakimoto: Methods of Multivariate Statistical Analysis. Gendai-Sugakusya, (in Japanese), 1983.Google Scholar
  15. [15]
    M.J. Box, D. Davies and W.H. Swann: Non-Linear Optimization Techniques. Obiver & Boyd, pp.52–54, 1969.Google Scholar
  16. [16]
    J.M. Hammersley and D.C. Handscomb: Monte Carlo Methods. John Wiley &: Sons, New York, 1964.zbMATHGoogle Scholar
  17. [17]
    D.E. Gustafson and W.C. Kessel: Fuzzy Clustering with A Fuzzy Covariance Matrix. Proc. IEEE CDC, pp.761–766, San Diago, CA, 1979.Google Scholar
  18. [19]
    I. Gath and A.B. Geva: Unsupervised Optimal Fuzzy Clustering. IEEE Trans. Pattern Anal. Machine Intell., Vol.11, No.5, pp.773–781, 1989.CrossRefGoogle Scholar
  19. [19]
    R.N. Dave: An Adaptive Fuzzy c-Elliptotype Clustering Algorithm. Proc. NAFIPS 90: Quater Century of Fuzziness, Vol.1, pp.9–12, 1990.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Yoshiteru Nakamori
    • 1
  • Mina Ryoke
    • 1
  1. 1.Department of Applied MathematicsKonan UniversityHigashinada-ku, KobeJapan

Personalised recommendations