Enzymes involved in adenosine metabolism in normal or leukemic lymphocytes

  • J. C. Mani
  • J. C. Bonnafous
  • G. Clofent
  • J. Favero
  • A. Gartner
  • J. Dornand
Part of the Developments in Oncology book series (DION, volume 32)


Normal lymphocytes have very low levels of de novo purine biosynthesis. These cells are highly dependent on the purine salvage pathway and the uptake of extracellular purines, mainly adenosine. The discovery that several immunodeficiencies are linked to deficiencies of some enzymes involved in adenosine metabolism has focused attention on relationships between this metabolism and lymphocyte differentiation and function.


Chronic Myeloid Leukemia Hairy Cell Leukemia Blast Crisis Infectious Mononucleosis Purine Nucleoside Phosphorylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dornand J, Mani JC, Mousseron-Canet M and Pau B (1974). Propriétés d’une ATPase Ca++ ou Mg++ dépendante des membranes plasmiques de lymphocytes. Effet de la concanavaline A sur les ATPases membranaires Biochimie 56: 1425–1432.Google Scholar
  2. 2.
    Gillian PS, Tarulata S, Webster ADB and Peters TJ (1982). Studies on the kinetic properties and subcellular localization of adenine nucleotide phosphatases in peripheral blood lymphocytes from control subjects and patients with common variable primary hypogammaglobulinaemia. Clin Exp Immunol 49: 393–400.Google Scholar
  3. 3.
    Dornand J, Bonnafous JC and Mani JC (1979). Role of adenosine transport in lymphocyte stimulation. In: Kaplan JG (Ed.). Molecular Basis of Immune Cell Function, pp. 426–428. Amsterdam: Elsevier.Google Scholar
  4. 4.
    Shore A, Dosch HM and Gelfand EW (1981). Role of adenosine deaminase in the early stages of precursor T cell maturation. Clin Exp Immunol 44: 152–155.PubMedGoogle Scholar
  5. 5.
    Astaldi A, Leupers CJN and Schellekens PTA (1981). Adenosine induces immunological maturation of thymocytes. Immunobiology 159: 93.Google Scholar
  6. 6.
    Hirschhorn S, Bajaj S, Borkowsky W et al. (1979). Differential inhibition of adenosine deaminase deficient peripheral blood lymphocytes and lymphoid cell lines by deoxyadenosine and adenosine. Cell Immunol 42: 418–423.PubMedCrossRefGoogle Scholar
  7. 7.
    Dornand J, Bonnafous JC, Gavach C and Mani JC (1979). 5’Nucleotidase-facilitated adenosine transport by mouse lymphocytes. Biochimie 61: 973–978.PubMedCrossRefGoogle Scholar
  8. 8.
    Bonnafous JC, Dornand J and Mani JC (1980). 5’Nucleotidase-adenylate cyclase relationships in mouse thymocytes: A reevaluation of the effects of concanavalin A on cyclic AMP levels. Febs Lett 110: 30–34.PubMedCrossRefGoogle Scholar
  9. 9.
    Thompson LF, Boss GR, Spielgelberg HL et al. (1979). Ecto-5’nucleotidase activity in Tand B-lymphocytes from normal subjects and patients with congenital X-linked agammaglobulinemia. J Immunol 123: 2475–2478.PubMedGoogle Scholar
  10. 10.
    Johnson SM, Asherson GL, Watts RNE et al. (1977). Lymphocyte purine 5’nucleotidase deficiency in primary hypogammaglobulinemia. Lancet 1: 168–170.PubMedCrossRefGoogle Scholar
  11. 11.
    Quagliata F, Faig D, Conklyn M and Silber R (1974). Studies on the lymphocyte 5’nucleotidase in chronic lymphocytic leukaemia, infectious mononucleosis, normal subpopulations and PHA stimulated cell’s. Cancer Res 34: 3197–3202.PubMedGoogle Scholar
  12. 12.
    Ho AD, Ma DF, Price G and Hoffbrand VA (1983). Effect of thymosin and phorbol ester on purine metabolic enzymes and cell surface phenotype in a malignant T-cell line (Molt-3). Leuk Res 7: 779–786.PubMedCrossRefGoogle Scholar
  13. 13.
    Dornand J, Gartner A, Bonnafous JC et al. (1984). Ecto-5’nucleotidase and lymphocyte differentiation. In: Kreutzberg GW and Zimmermann H (Eds). Proceedings of the International Erwin Riesch Symposium on Ecto-Enzymes. ( In press).Google Scholar
  14. 14.
    Dornand J, Bonnafous JC, Favero J and Mani JC (1982). Ecto-5’nucleotidase and adenosine deaminase activities of lymphoid cells. Biochem Med 28: 144–156.PubMedCrossRefGoogle Scholar
  15. 15.
    Dornand J, Bonnafous JC, Favero J and Mani JC (1982). Inverse relationships of 5’nucleotidase and adenosine deaminase activities among human lymphoid cells. In: Serrou B, Rosenfeld C and Daniels J (Eds.) Current Concepts in Human Immunology and Cancer Immunomodulation, pp. 395–401. Amsterdam: Elsevier.Google Scholar
  16. 16.
    Sylwastrowicz T, Piga A, Murphy P et al. (1982). The effect of deoxycoformycin and deoxyadenosine on deoxyribonucleotide concentrations in leukemic cells. Brit J Haematol 51: 623–630.CrossRefGoogle Scholar
  17. 17.
    Edwards NL, Mitchell BS, Fox IH and Mond JJ (1982). Plasma membrane 5’nucleotidase and dATP accumulation in murine lymphocytes. J Clin Chem Clin Biochem 20: 365.Google Scholar
  18. 18.
    Dornand J, Barbanel AM, Bonnafous JC et al. (1984). AMP-deaminase and cytosolic 5’nucleotidase involvement in lymphocyte maturation. In: Peeters H (Ed.). Protides of the Biological Fluids, pp. 663–666. London: Pergamon Press.Google Scholar
  19. 19.
    Sidi Y, Umiel T, Trainin N et al. (1982). Differences in the activity of adenosine deaminase and of purine nucleoside phosphorylase and in the sensitivity to deoxypurine between sub-populations of mouse thymocytes. Thymus 4: 147–154.PubMedGoogle Scholar
  20. 20.
    Ma DF, Sylwestrowicz TA, Granger S et al. (1982). Distribution of terminal deoxynucleotidyl transferase and purine degradative and synthetic enzymes in subpopulations of human thymocytes. J Immunol 129: 1430–1435.PubMedGoogle Scholar
  21. 21.
    Carson DA, Lakow E, Wasson DB and Katamani N (1981). Lymphocyte dysfunction caused by deficiencies in purine metabolism. Immunol Today 234–238.Google Scholar
  22. 22.
    Minowada J (1978). Markers of human leukemia-lymphoma cell lines reflect hematopoietic cell differentiation. In: Serrou B and Rosenfeld C (Eds.). Human Lymphocyte Differentiation: Its Application to Cancer, pp. 337–344. Amsterdam: Elsevier.Google Scholar
  23. 23.
    Dornand J, Bonnafous JC, Favero J et al. (1984). An immunofluorescerit technique for the determination of cell surface 5’nucleotidase. In: Rosenfeld C, Serrou B and Viallet P (Eds). Fluorescent Techniques and Membrane Markers in Cancer and Immunology. ( In press ).Google Scholar
  24. 24.
    Sun AS, Holland JM, Lin K and Ohnuma T (1983). Implications of a 5’nucleotidase inhibitor in human leukemic cells for cellular aging and cancer. Biochim Biophys Acta 762: 577–584.PubMedCrossRefGoogle Scholar
  25. 25.
    Dornand J, Bonnafous JC, Favero J et al. (1984). The proposed 5?nucleotidase inhibitor in human cells is an artefact. Biochim Biophys Acta (in press).Google Scholar
  26. 26.
    Cooper MD and Seligmann M (1977). B- and T-lymphocytes in immunodeficiency and lymphoproliferative diseases. In: Loor F and Roelants GE (Eds.). B- and T-Cells in Immune Recognition, pp. 377–405, London: J Wiley and Sons.Google Scholar
  27. 27.
    Mani JC, Bonnafous JC, Favero J and Dornand J (1983). Purine metabolism enzymes in lymphocytes. Clin Immunol Newsletter 4: 53–58.CrossRefGoogle Scholar
  28. 28.
    Koya M, Kanoh T, Sawada H et al. (1981). Adenosinedeaminase and ecto-5’nucleotidase activities in various leukemias with special reference to blast crisis: Significance of ecto5’nucleotidase in lymphoid blast crisis of chronic myeloid leukemia. Blood 58: 1107–1111.PubMedGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, Boston 1985

Authors and Affiliations

  • J. C. Mani
    • 1
  • J. C. Bonnafous
    • 1
  • G. Clofent
    • 1
  • J. Favero
    • 1
  • A. Gartner
    • 1
  • J. Dornand
    • 1
  1. 1.Laboratoire de Biochimie des MembranesER CNRS 228, Ecole Nationale Supérieure de ChimieMontpellierFrance

Personalised recommendations