Biological Membranes

  • Lawrence S. Dillon


Although none is completely satisfactory, the very best cell part with which to begin a discussion of the structure and evolutionary history of the cell probably is the membrane (Frey-Wyssling, 1955). In the first place, it is the only organelle aside from the genetic mechanism that is universally present in living things—even the viruses are provided with a membranous capsid that covers the virion. Second, the presence of a membranous envelope endows cellular organisms with one of their most characteristic features. Because of it, living creatures have the ability to absorb materials from their surroundings, even against a gradient, that is, when the concentration of the given ion or compound in the organism is manyfold greater than that in the medium. In contrast, in nonliving systems, even when a membrane is present, the movement of chemicals is always from the greater concentration to the lesser. Although certain colloidal particles, such as coacervates and proteinoid microspheres, also possess a limited capacity for concentrating material against a gradient in biological fashion, the ability varies with dilution, composition of the milieu, and other factors without influence in living systems. Moreover, many organelles other than the plasmalemma of the eukaryote and prokaryote cells alike are constructed of membranes.


Outer Membrane Lipid Bilayer Nuclear Envelope Nuclear Membrane Biological Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aikawa, M., Huff, C. G., and Strome, C. A. P. 1970. Morphological study of microgametogenesis of Leucocytozoon simondi. J. Ultrastruct. Res. 32:43–68.Google Scholar
  2. Albers, R. W. 1976. The (sodium plus potassium)-transport ATPase. In: Martonosi, A., ed., The Enzymes of Biological Membranes, New York, Plenum Press, Vol. 3, pp. 283–301.Google Scholar
  3. Albrecht, O., Gruler, H., and Sackmann, E. 1978. Polymorphism of phospholipid monolayers. J. Phys. 39:301–313.Google Scholar
  4. Andersen, C. C. 1962. Studies on pinocytosis in amoebae. C. R. Trav. Lab. Carlsberg 33:73–264.Google Scholar
  5. Andersen, C. G., and Nilsson, J. R. 1960. Electron micrographs of pinocytosis channels in Amoeba proteus. Exp. Cell Res. 19:631–633.Google Scholar
  6. Bach, M. K., and Brashler, J. R. 1974. In vivo and in vitro production of a slow reacting substance in the rat upon treatment with calcium ionophores. J. Immunol. 113:2040–2047.Google Scholar
  7. Bamberg, E., Apell, H.-J., Alpes, H., Gross, E., Morell, J. L., Harbaugh, J. F., Janko, K., and Läuger, P. 1978. Ion channels formed by chemical analogs of gramicidin A. Fed. Proc. Fed. Am. Soc. Exp. Biol. 37:2633–2638.Google Scholar
  8. Barker, S. B. 1951. Mechanism of action of thyroid hormone. Physiol. Rev. 31:205–243.Google Scholar
  9. Barker, S. B. 1964. Physiological activity of thyroid hormone and analogues. In: Pitt-Rivers, R., and Trotter, W. R., eds., The Thyroid Gland, London, Butterworths, Vol. 1, pp. 199–236.Google Scholar
  10. Beams, H. W., Tahmisian, T. N., Devine, R., and Anderson, E. 1957. Ultrastructure of the nuclear membrane of a gregarine parasitic in grasshoppers. Exp. Cell Res. 13:200–204.Google Scholar
  11. Beams, H. W., Tahmisian, T. N., Devine, R., and Anderson, E. 1959. The fine structure of the nuclear envelope of Endamoeba blattae. Exp. Cell Res. 18:366–369.Google Scholar
  12. Beams, H. W., Tahmisian, T. N., Anderson, E., and Wright, B. 1961. Studies on the fine structure of Lophomonas blattarum with special reference to the so-called parabasal apparatus. J. Ultrastruct. Res. 5:166–183.Google Scholar
  13. Bell, P. R. 1978. A microtubule-nuclear envelope complex in the spermatozoid of Pteridium. J. Cell Sci. 29:189–195.Google Scholar
  14. Bennett, M. V. L., Spira, M. E., and Spray, D. C. 1978. Permeability of gap junctions between embryonic cells of Fundulus: A reevaluation. Dev. Biol. 65:114–128.Google Scholar
  15. Benson, A. A. 1968. The cell membrane: A lipo-protein monolayer. In: Bolis, L., and Pethica, B. A., eds., Membrane Models and the Formation of Biological Membranes, Amsterdam, North-Holland, pp. 190–202.Google Scholar
  16. Beveridge, T. J., and Murray, R. G. E. 1976. Superficial cell-wall layers on Spirillum “Ordal” and their in vitro reassembly. Can. J. Microbiol. 22:567–582.Google Scholar
  17. Bonner, J. T. 1977. Some aspects of chemotaxis using the cellular slime molds as an example. Mycologia 69:443–459.Google Scholar
  18. Bonting, S. L. 1970. Sodium potassium activated ATPase and cation transport. In: Bittar, E., ed., Membranes and Ion Transport, New York, Wiley-Interscience, Vol. 1, pp. 286–392.Google Scholar
  19. Bouck, G. B. 1965. Fine structure and organelle associations in brown algae. J. Cell Biol. 26:523–537.Google Scholar
  20. Brandt, P. W., and Freeman, A. R. 1967. Plasma membrane: Substructural changes correlated with electrical resistance and pinocytosis. Science 155:582–585.ADSGoogle Scholar
  21. Brandt, P. W., and Pappas, G. D. 1962. An electron microscopic study of pinocytosis in ameba. II. The cytoplasmic uptake phase. J. Cell Biol. 15:55–71.Google Scholar
  22. Branton, D., and Moor, H. 1964. Fine structure in freeze-etched Allium cepa root tips. J. Ultrastruct. Res. 11:401–411.Google Scholar
  23. Braun, V., and Bosch, V. 1972. Repetitive sequences in the murein-lipoprotein of the cell wall of E. coli. Proc. Natl. Acad. Sci. USA 69:970–974.ADSGoogle Scholar
  24. Braun, V., and Wolff, H. 1973. Characterization of the receptor protein for phage T5 and colicin M in the outer membrane of E. coli B. FEBS Lett. 34:77–80.Google Scholar
  25. Braun, V., Schaller, K., and Wolff, H. 1973. A common receptor protein for phage T5 and colicin M in the outer membrane of E. coli B. Biochim. Biophys. Acta 323:87–97.Google Scholar
  26. Bretscher, M. S. 1972. Asymmetrical lipid bilayer structure for biological membranes. Nature New Biol. 236:11–12.ADSGoogle Scholar
  27. Bretscher, M. S. 1973. Membrane structure: Some general principles. Science 181:622–629.ADSGoogle Scholar
  28. Brinton, C. C., McNary, J. C., and Carnahan, J. 1969. Purification and in vitro assembly of a curved network of identical protein subunits from the outer surface of a Bacillus. Bacteriol. Proc. 1969:48.Google Scholar
  29. Brown, M. S., and Goldstein, J. L. 1974. Familial hypercholesterolemia: Defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxyl-3-methylglutaryl coenzyme A reductase activity. Proc. Natl. Acad. Sci. USA 71:788–792.ADSGoogle Scholar
  30. Brown, M. S., and Goldstein, J. L. 1975. Regulation of the activity of the low density lipoprotein receptor in human fibroblasts. Cell 6:307–316.Google Scholar
  31. Brown, M. S., and Goldstein, J. L. 1976. Receptor-mediated control of cholesterol metabolism. Science 191:150–154.ADSGoogle Scholar
  32. Busse, D. 1978. Transport of L-arginine in brush-border vesicles derived from rabbit kidney cortex. Arch. Biochem. Biophys. 191:551–560.Google Scholar
  33. Capaldi, R. A. 1974. A dynamic model of cell membranes. Sci. Am. 230(3):26–33.Google Scholar
  34. Caplan, S. R., and Essig, A. 1977. A thermodynamic treatment of active sodium transport. Curr. Top. Membr. Transp. 9:145–175.Google Scholar
  35. Chapman-Andresan, C. 1977. Endocytosis in freshwater amoebas. Physiol. Rev. 57:371–385.Google Scholar
  36. Christiansson, A., and Wieslander, Å. 1978. Membrane lipid metabolism in Acholeplasma laidlawii AEF22. Eur. J. Biochem. 85:65–76.Google Scholar
  37. Clark-Walker, G. D., and Linnane, A. W. 1967. The biogenesis of mitochondria in Saccharomyces cerevisiae. J. Cell Biol. 34:1–14.Google Scholar
  38. Clejan, S., Bittman, R., and Rottem, S. 1978. Uptake, transbilayer distribution, and movement of cholesterol in growing Mycoplasma capricolum cells. Biochemistry 17:4579–4583.Google Scholar
  39. Cofré, G., and Crabbé, J. L. 1967. Active sodium transport by the colon of Bufo marinus: Stimulation by aldosterone and antidiuretic hormone. J. Physiol. 188:177–190.Google Scholar
  40. Conti, S. F., and Brock, T. D. 1965. Electron microscopy of cell fusion in conjugating Hansenula wingei. J. Bacteriol. 90:524–533.Google Scholar
  41. Costerton, J. W. F., Murray, R. G. E., and Robinow, C. F. 1961. Observations on the motility and the structure of Vitreoscilla. Can. J. Microbiol. 7:329–339.Google Scholar
  42. Cota-Robles, E. H. 1966. Internal membranes in cells of Escherichia coli. J. Ultrastruct. Res. 16:626–639.Google Scholar
  43. Craine, B. L., and Rupert, C. S. 1978. Identification of a biochemically unique DNA-membrane interaction involving the E. coli origin of replication. J. Bacteriol. 134:193–199.Google Scholar
  44. Crane, F. L., and Hall, J. D. 1972. Diversity in membrane structure: From unit to binary. Ann. N.Y. Acad. Sci. 195:24–34.ADSGoogle Scholar
  45. Cuatrecasas, P. 1969. Interaction of insulin with the cell membrane: The primary action of insulin. Proc. Natl. Acad. Sci. USA 63:450–457.ADSGoogle Scholar
  46. Cuatrecasas, P. 1971. Insulin-receptor interaction in adipose tissue cells: Direct measurement and properties. Proc. Natl. Acad. Sci. USA 68:1264–1268.ADSGoogle Scholar
  47. Curtis, A. S. G. 1967. The Cell Surface: Its Molecular Role in Morphogenesis, Woking, England, Logos Press.Google Scholar
  48. Czarnetzki, B. M., König, W., and Lichtenstein, L. M. 1976. Eosinophil chemotactic factor (ECF). J. Immunol. 117:229–234.Google Scholar
  49. Dallner, G. 1977. Biosynthesis and transport of microsomal membrane glycoproteins. In: Abrahamsson, S., and Pascher, I., eds., Structure of Biological Membranes, New York, Plenum Press, pp. 95–106.Google Scholar
  50. Dallner, G., Siekowitz, P., and Palade, G. E. 1965. Phospholipids in hepatic microsomal membranes during development. Biochem. Biophys. Res. Commun. 20:142–148.Google Scholar
  51. Danielli, J. F., and Davson, H. 1935. A contribution to the theory of permeability of thin films. J. Cell. Comp. Physiol. 5:495–508.Google Scholar
  52. Daniels, E. W. 1964. Origin of the Golgi system in amoeba. Z. Zellforsch. Mikrosk. Anat. 64:38–51.Google Scholar
  53. Daniels, E. W., and Breyer, E. P. 1967. Ultrastructure of the giant amoeba, Pelomyxa palustris. J. Protozool. 14:167–179.Google Scholar
  54. Daniels, E. W., Breyer, E. P., and Kudo, R. R. 1966. Pelomyxa palustris Greeff. II. Its ultrastructure. Z. Zellforsch. Mikrosk. Anat. 73:367–383.Google Scholar
  55. David, H. 1964. Physiologische und pathologische Modifikationen des submikroskopischen Kernstruktur. Z. Mikrosk. Anat. Forsch. 71:412–456.Google Scholar
  56. DeKretser, D. M., Catt, K. J., and Paulson, C. A. 1971. Studies on the in vitro testicular binding of iodinated luteinizing hormone in rats. Endocrinology 88:332–337.Google Scholar
  57. Demsey, A., Kawka, D., and Stackpole, C. W. 1977. Application of freeze-drying intact cells to studies of murine oncorna-virus morphogenesis. J. Virol. 21:358–365.Google Scholar
  58. Demsey, A., Kawka, D., and Stackpole, C. W. 1978. Cell surface membrane organization revealed by freeze-drying. J. Ultrastruct. Res. 62:13–25.Google Scholar
  59. Dillon, L. S. 1978. The Genetic Mechanism and the Origin of Life, New York, Plenum Press.Google Scholar
  60. Dreyer, W. J., Papermaster, D. S., and Küm, H. 1972. On the absence of ubiquitous structural protein subunits in biological membranes. Ann. N.Y. Acad. Sci. 195:61–74.ADSGoogle Scholar
  61. Driml, M. 1961. Electron and light microscope studies of Endamoeba terrapinae. Proc. Iowa Acad. Sci. 68:581–585.Google Scholar
  62. Drum, R. W. 1963. The cytoplasmic fine structure of the diatom, Nitzschia palea. J. Cell Biol. 18:429–440.Google Scholar
  63. Eisenberg, M., and McLaughlin, S. 1976. Lipid bilayers as models of biological membranes. Bio-Science 26:436–443.Google Scholar
  64. Elbrink, J., and Bihler, I. 1975. Membrane transport: Its relation to cellular metabolic rates. Science 188:1177–1184.ADSGoogle Scholar
  65. Eletr, S., and Keith, A. D. 1972. Spin label studies of dynamics of lipid alkyl chains in biological membranes: Role of unsaturated sites. Proc. Natl. Acad. Sci. USA 69:1353–1357.ADSGoogle Scholar
  66. Epstein, W., Whitelaw, V., and Hesse, J. 1978. A K+-transport ATPase in E. coli. J. Biol. Chem. 253:6666–6668.Google Scholar
  67. Fahey, P. F., and Webb, W. W. 1978. Lateral diffusion in phospholipid bilayer membranes and multilamellar liquid crystals. Biochemistry 17:3046–3053.Google Scholar
  68. Fawcett, D. W., Anderson, W. A., and Phillips, D. M. 1971. Morphogenetic factors influencing the shape of the sperm head. Dev. Biol. 26:220–251.Google Scholar
  69. Feldherr, C. M. 1972 Structure and function of the nuclear envelope. Adv. Cell Mol. Biol. 2:273–307.Google Scholar
  70. Feldherr, C. M., and Pomerantz, J. 1978. Mechanism in the selection of nuclear polypeptides in Xenopus oocytes. J. Cell Biol. 78:168–175.Google Scholar
  71. Fielding, P., and Fox, C. F. 1970. Evidence for stable attachment of DNA to membrane at the replication origin of E. coli. Biochem. Biophys. Res. Commun. 41:157–162.Google Scholar
  72. Fischman, D. A., and Weinbaum, G. 1967. The formation of multiple layers of membrane-like structures in Escherichia coli. J. Cell Biol. 32:524–528.Google Scholar
  73. Fisher, R. W., and James, T. L. 1978. Lateral diffusion of the phospholipid molecule in dipalmitoylphosphatidylcholine bilayers. Biochemistry 17:1177–1183.Google Scholar
  74. Flickinger, C.J. 1970. The fine structure of the nuclear envelope in amebae: Alterations following nuclear transplantation. Exp. Cell Res. 60:225–236.Google Scholar
  75. Flower, N. E. 1972. A new junctional structure in the epithelia of insects of the order Dictyoptera. J. Cell Sci. 10:683–691.Google Scholar
  76. Folliot, R., and Picheral, B. 1971. Motif de répartition des pores nucléaires. J. Microsc.(Paris) 10:219–224.Google Scholar
  77. Fox, C. F. 1972. The structure of cell membranes. Sci. Am. 226:30–38.Google Scholar
  78. Fox, C. F., and Keith, A. D., eds. 1972. Membrane Molecular Biology, Stanford, Conn., Sinauer Associates.Google Scholar
  79. Franke, W. W. 1970. On the universality of nuclear pore complex structure. Z. Zeilforsch. Mikrosk. Anat. 105:405–429.Google Scholar
  80. Franke, W. W. 1974. Structure, biochemistry, and function of the nuclear envelope. Int. Rev. Cytol. Suppl. 4:72–236.Google Scholar
  81. Franke, W. W., and Scheer, U. 1974. Structures and functions of the nuclear envelope. In: Busch, H., ed., The Cell Nucleus, New York, Academic Press, Vol. 1, pp, 219–347.Google Scholar
  82. Franke, W. W., Deumling, B., Ermen, B., Jarasch, E. D., and Kleinig, H. 1970. Nuclear membranes from mammalian liver. I. Isolation procedure and general characterization. J. Cell Biol. 46:379–395.Google Scholar
  83. Franke, W. W., Keenan, T. W., Stadler, J., Genz, R., Jarasch, E. D., and Kartenbeck, J. 1976. Characteristics of highly purified nuclear membranes in comparison with other membranes. Cytobiologie Z. Exp. Zeilforsch. 13:28–56.Google Scholar
  84. French, R. J., and Adelman, W. J. 1976. Competition, saturation, and inhibition ionic interactions shown by ionic currents in nerve, muscle, and bilayer systems. Curr. Top. Membr. Trans. 8:161–207.Google Scholar
  85. Frey-Wyssling, A. 1955. Submikroskopische Struktur des Cytoplasmes. Protoplasmologia 2(A): 1–244.Google Scholar
  86. Fuge, H. 1971. Spindelbau, Mikrotubuliverteilung und Chromosomenstruktur während der I. meiotischen Teilung der Spermatocyten von Pales ferruginea. Z. Zellforsch. Mikrosk. Anat. 120:579–599.Google Scholar
  87. Gabbiani, G., Chaponnier, C., and Hüttner, I. 1978. Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing. J. Cell Biol. 76:561–568.Google Scholar
  88. Gall, J. G. 1964. Electron microscopy of the nuclear envelope. Protoplasmatologia 5:4–25.Google Scholar
  89. Ganesan, A. T., and Lederberg, J. 1965. A cell-membrane bound fraction of bacterial DNA. Biochem. Biophys. Res. Commun. 18:824–835.Google Scholar
  90. Garrahan, P. J., and Garay, R. P. 1976. The distinction between sequential and simultaneous models for sodium and potassium transport. Curr. Top. Membr. Transp. 8:29–97.Google Scholar
  91. Garrahan, P. J., and Glynn, I. M. 1967. The stoichiometry of the sodium pump. J. Physiol. 192:217–235.Google Scholar
  92. Gebhardt, C., Gruler, H., and Sackmann, E. 1977. On domain structure and local cuvature in lipid bilayers and biological membranes. Z. Naturforsch. 32c:581–596.Google Scholar
  93. Gemsa, D., Seitz, M., Kramer, W., Grimm, W., Till, G., and Resch, K. 1979. Ionophore A23187 raises cyclic AMP levels in macrophages by stimulating prostaglandin E formation. Exp. Cell Res. 118:55–62.Google Scholar
  94. Gilmore, R., Cohn, N., and Glaser, M. 1979a. Fluidity of LM cell membranes with modified lipid compositions as determined with 1,6-diphenyl-1,3,5-hexatriene. Biochemistry 18:1042–1049.Google Scholar
  95. Gilmore, R., Cohn, N., and Glaser, M. 1979b. Rotational relaxation times of 1,6-diphenyl-1,3,5-hexatriene in phospholipids isolated from LM cell membranes. Effects of phospholipid polar head-group and fatty acid composition. Biochemistry 18:1050–1056.Google Scholar
  96. Gilula, N. B. 1974. Junctions between cells. In: Cox, R. P., ed., Cell Communications, New York, Wiley, pp. 1–29.Google Scholar
  97. Gilula, N. B. 1977. Gap junctions and cell communication. In: Brinkley, B. R., and Porter, K. R. eds., International Cell Biology, 1976–1977, New York, Rockefeller University Press, pp. 61–69.Google Scholar
  98. Gmeiner, J., and Schlecht, S. 1979. Molecular organization of the outer membrane of Salmonella typhimurium. Eur. J. Biochem. 93:609–620.Google Scholar
  99. Goldfischer, S., Essner, E., and Novikoff, A. B. 1964. The localization of phosphatase activities at the level of ultrastructure. J. Histochem. Cytochem. 12:72–95.Google Scholar
  100. Goldstein, J. L., and Brown, M. S. 1976. The LDL pathway in human fibroblasts: A receptor mediated mechanism for the regulation of cholesterol metabolism. Curr. Top. Cell Regul. 11:147–181.Google Scholar
  101. Goldstein, J. L., and Brown, M. S. 1977. The low density lipoprotein pathway and its relation to atherosclerosis. Annu. Rev. Biochem. 46:897–930.Google Scholar
  102. Goldstein, J. L., Brown, M. S., and Anderson, R. G. W. 1977. The low-density lipoprotein pathway in human fibroblasts: Biochemical and ultrastructural correlations. In: Brinkley, B. R., and Porter, K. R. eds., International Cell Biology, 1976–1977, New York, Rockefeller University Press, pp. 639–648.Google Scholar
  103. Goodal, R. J., and Thompson, J. E. 1971. A scanning electron microscope study of phagocytosis. Exp. Cell Res. 64:1–8.Google Scholar
  104. Goodenough, D. A., and Revel, J. P. 1970. A fine structural analysis of intercellular junctions in the mouse liver. J. Cell Biol. 45:272–288.Google Scholar
  105. Green, D. E. 1972. Membrane proteins: A perspective. Ann. N.Y. Acad. Sci. 195:150–172.ADSGoogle Scholar
  106. Green, D. E., and Brucker, R. F. 1972. The molecular principles of biological membrane construction and function. BioScience 22:13–19.Google Scholar
  107. Green, D. E., and Perdue, J. F. 1966. Membranes as expressions of repeating units. Proc. Natl. Acad. Sci. USA 55:1295–1302.ADSGoogle Scholar
  108. Griffanti, A. A., Blanco, R., and Krulwich, T. A. 1979. A requirement for ATP for β-galactoside transport by Bacillus alcalophilus. J. Biol. Chem. 254:1033–1037.Google Scholar
  109. Gros, D., Mocquard, J. P., Challice, C. E., and Schrevel, J. 1978. Formation and growth of gap junctions in mouse myocardium during ontogenesis: A freeze-cleave study. J. Cell Sci. 30:45–61.Google Scholar
  110. Haase, W., Schäfer, A., Murer, H., and Kinne, R. 1978. Studies on the orientation of brush-border membrane vesicles. Biochem. J. 172:57–62.Google Scholar
  111. Hand, W. L., King, N. L., Johnson, J. D., and Lowe, D. A. 1977. Requirement for magnesium influx in activation of alveolar macrophages mediated by ionophore A23187. Nature (London) 265:543–544.ADSGoogle Scholar
  112. Harmon, J. M., and Taber, H. W. 1977. Some properties of a membrane-DNA complex isolated from B. subtilis. J. Bacteriol. 129:789–795.Google Scholar
  113. Herlan, G., Giese, G., and Wunderlich, F. 1979. Influence of nuclear membrane lipid fluidity on nuclear RNA release. Exp. Cell Res. 118:305–309.Google Scholar
  114. Herr, J. C., and Heidger, P. M. 1978. A freeze-fracture study of exocytosis and reflexive gap junctions in human ovarian decidual cells. Am. J. Anat. 152:29–44.Google Scholar
  115. Hidalgo, C., and Ikemoto, N. 1977. Disposition of proteins and aminophospholipids in the sarcoplasmic reticulum membrane. J. Biol. Chem. 252:8446–8454.Google Scholar
  116. Hladky, S. B., and Haydon, D. A. 1970. Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature (London) 225:451–453.ADSGoogle Scholar
  117. Hoffman, J. F. 1972. Sidedness of the red cell Na:K pump. In: Bolis, L., Keynes, R. D., and Wilbrandt, W., eds., Role of Membranes in Secretory Processes, Amsterdam, North-Holland, pp. 203–214.Google Scholar
  118. Hoffman, J. F. 1978. Asymmetry and the mechanism of the red cell Na-K pump, determined by ouabain binding. In: Solomon, A. K., and Karnovsky, M., eds., Molecular Specialization and Symmetry in Membrane Function, Cambridge, Mass., Harvard University Press, pp. 191–211.Google Scholar
  119. Hoffman, S., and McMahon, D. 1978. The effects of inhibition of development in Dictyostelium discoideum on changes in plasma membrane composition and topography. Arch. Biochem. Biophys. 187:12–24.Google Scholar
  120. Holter, H. 1959. Pinocytosis. Int. Rev. Cytol. 8:481–504.Google Scholar
  121. Horiuchi, S., Inoue, M., and Morino, Y. 1978. γ-Glutamyl transpeptidase: Sidedness of its active site on renal brush-border membrane. Eur. J. Biochem. 87:429–437.Google Scholar
  122. Horn, R. G., Spicer, S. S., and Wetzel, B. 1964. Phagocytosis of bacteria by heterophil leukocytes. Acid and alkaline phosphatase cytochemistry. Am. J. Pathol. 45:327–335.Google Scholar
  123. Houwink, A. L. 1953. A macromolecular mono-layer in the cell wall of Spirillum spec. Biochim. Biophys. Acta 10:360–366.Google Scholar
  124. Hsu, W. S. 1967. The origin of annulate lamellae in the oocyte of the ascidian, Boltenia villosa Stimpson. Z. Zellforsch. Mikrosk. Anat. 82:376–390.Google Scholar
  125. Inouye, M. 1975. Biosynthesis and assembly of the outer membrane proteins of E. coli. In: Tzagoloff, A., ed., Membrane Biosynthesis: Mitochondria, Chloroplasts, and Bacteria, New York, Plenum Press, pp. 351–391.Google Scholar
  126. Inouye, S., Wang, S., Sekezawa, J., Halegowa, S., and Inouye, M. 1977. Amino acid sequence for the peptide extension on the prolipoprotein of the E. coli outer membrane. Proc. Natl. Acad. Sci. USA 74:1004–1008.ADSGoogle Scholar
  127. Ismail-Beigi, F. 1977. Thyroidal regulation of active sodium transport. Curr. Top. Membr. Transp. 9:367–388.Google Scholar
  128. Ismail-Beigi, F., and Edelman, I. S. 1970. The mechanism of thyroid calorigenesis: Role of active sodium transport. Proc. Natl. Acad. Sci. USA 67:1071–1078.ADSGoogle Scholar
  129. Ismail-Beigi, F., and Edelman, I. S. 1971. The mechanism of the calorigenic action of thyroid hormone: Stimulation of the Na+, K+ activated ATP activity. J. Gen. Physiol. 57:710–722.Google Scholar
  130. Israelachvili, J. N., and Mitchell, D. J. 1975. A model for the packing of lipids in bilayer membranes. Biochim. Biophys. Acta 389:13–19.Google Scholar
  131. Ivatt, R. J., and Gilvarg, C. 1978. Molecular structure of the teichuronic acid of Bacillus megaterium. Biochemistry 17:3997–4003.Google Scholar
  132. Jard, S., Roy, C., Rajerison, R., Butlen, D., and Guillon, G. 1977. Vasopressin-sensitive adenylate cyclase from the mammalian kidney: Mechanisms of activation. In: Nicolau, C., and Paraf, A., eds., Structural and Kinetic Approach to Plasma Membrane Functions, New York, Springer-Verlag, pp. 173–187.Google Scholar
  133. Johnson, R. G., Herman, W. S., and Preuss, D. M. 1973. Homocellular and heterocellular gap junctions in Limulus: A thin section and freeze-fracture study. J. Ultrastruct. Res. 43:298–312.Google Scholar
  134. Johnston, L. W., Hughes, M. E., and Zilbersmit, D. B. 1975. Use of phospholipid exchange protein to measure inside-outside transposition in phosphatidylcholine liposomes. Biochim. Biophys. Acta 375:176–185.Google Scholar
  135. Jurand, A. 1976. Some ultrastructural features of micronuclei during conjugation and autogamy in Paramecium aurelia. J. Gen. Microbiol. 94:193–203.Google Scholar
  136. Kahlenberg, A., Walker, C., and Rohrlick, R. 1974. Evidence for an asymmetric distribution of phospholipids in the human erythrocyte membrane. Can. J. Biochem. 52:803–806.Google Scholar
  137. Kakiquchi, S., and Rall, T. W. 1968. The influence of chemical agents on the accumulation of adenosine 3′, 5′-phosphate in slices of rabbit cerebellum. Mol. Pharmacol. 4:367–378.Google Scholar
  138. Kaneshiro, T., and Marr, A. G. 1965. Phospholipids of Azotobacter agilis, Agrobacterium tumefaciens, and E. coli. J. Lipid Res. 3:184–189.Google Scholar
  139. Kartenbeck, J., Jarasch, E.-D., and Franke, W. W. 1973. Nuclear membranes from mammalian liver. VI. Glucose-6-phosphatase in rat liver, a cytochemical and biochemical study. Exp. Cell Res. 81:175–194.Google Scholar
  140. Kasper, C. B. 1971. Biochemical distinctions between the nuclear and microsomal membranes from rat hepatocytes. J. Biol. Chem. 246:577–581.Google Scholar
  141. Kasper, C. B. 1974. Chemical and biochemical properties of the nuclear envelope. In: Busch, H., ed., The Cell Nucleus, New York, Academic Press, Vol. 1, pp. 349–384.Google Scholar
  142. Kavanau, J. L. 1965. Structure and Function in Biological Membranes, San Francisco, Holden-Day.Google Scholar
  143. Kazama, F. Y. 1972. Ultrastructure and phototaxis of the zoospores of Phlyctochytrium sp., an estuarine chytrid. J. Gen. Microbiol. 71:555–566.Google Scholar
  144. Kellerman, G. M., Biggs, D. R., and Linnane, A. W. 1969. Biogenesis of mitochondria. XI. A comparison of the effects of growth-limiting oxygen tension, intercalating agents, and antibiotics in the obligate aerobe, Candida parapsilosis. J. Cell Biol. 42:378–391.Google Scholar
  145. Kelley, R. O., Vogel, K. G., Crissman, H. A., Lujan, C. J., and Skipper, B. E. 1979. Development of the aging cell surface. Exp. Cell Res. 119:127–143.Google Scholar
  146. Kensler, R. W., Brink, P., and Dewey, M. M. 1977. Nexus of frog ventricle. J. Cell Biol. 73:768–781.Google Scholar
  147. Kilbourn, B. T., Dunitz, J. D., Pioda, L. A. R., and Simon, W. 1967. Structure of the K+ complex with nonactin, a macrotetrolide antibiotic possessing highly specific K+ transport properties. J. Mol. Biol. 30:559–563.Google Scholar
  148. Kimmich, G. A. 1973. Coupling between Na+ and sugar transport in small intestine. Biochim. Biophys. Acta 300:31–78.Google Scholar
  149. Kinne, R. 1976. Properties of the glucose transport system in the renal brush border membrane. Curr. Top. Membr. Transp. 8:209–267.Google Scholar
  150. Knight, A. B., and Welt, L. G. 1974. Intracellular potassium: A determinant of the sodium-potassium pump rate. J. Gen. Physiol. 63:351–373.Google Scholar
  151. Koen, Y. M., Perevoshchikova, K. A., and Zbarsky, I. B. 1976. Some enzymes of isolated rat liver and hepatoma 27 nuclear membranes and cell nuclei. Biokhimiya 41:982–988.Google Scholar
  152. Koepsell, H. 1979. Conformational changes of membrane-bound (Na+-K+)-APTase as revealed by antibody inhibition. J. Membr. Biol. 45:1–20.Google Scholar
  153. Koga, A., and Todo, S. 1978. Morphological and functional changes in the tight junctions of the bile canaliculi induced by bile duct ligation. Cell Tiss. Res. 195:267–276.Google Scholar
  154. Konijn, T. M. 1972. Cyclic AMP as a first messenger. Adv. Cyclic Nucleotide Res. 1:17–31.Google Scholar
  155. Konings, W. M., and Boonstra, J. 1977. Anaerobic electron transfer and active transport in bacteria. Curr. Top. Membr. Transp. 9:177–231.Google Scholar
  156. Korn, E. D. 1966. Structure of biological membranes. Science 153:1491–1498.ADSGoogle Scholar
  157. Kornberg, R. D., and McConnell, H. M. 1971. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry 10:1111–1120.Google Scholar
  158. Kotyk, A., and Janáček, K. 1977. Membrane transport—An interdisciplinary approach. In: Manson, L. A., ed., Biomembranes, New York, Plenum Press, Vol. 9, pp. 1–348.Google Scholar
  159. Kozarich, J. W., and Strominger, J. L. 1978. A membrane enzyme from Staphylococcus aureus which catalyzes transpeptidase, carboxypeptidase, and penicillinase activities. J. Biol. Chem. 253:1272–1278.Google Scholar
  160. Krab, K., and Wikström, M. K. F. 1978. Proton-translocating cytochrome c oxidase in artificial phospholipid vesicles. Biochim. Biophys. Acta 504:200–214.Google Scholar
  161. Krasne, S., Eisenman, G., and Szabo, G. 1971. Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin, and gramicidin. Science 174:412–415.ADSGoogle Scholar
  162. LaCour, L. F., and Wells, B. 1972. The nuclear pores of early meiotic prophase nuclei of plants. Z. Zellforsch. Mikrosk. Anat. 123:178–194.Google Scholar
  163. Laprade, R., Ciani, S., Eisenman, G., and Szabo, G. 1975. The kinetics of carrier-mediated ion permeation in lipid bilayers and its theoretical interpretation. In: Eisenman, G., ed., Membranes: A Series of Advances, New York, Dekker, Vol. 3, pp. 127–214.Google Scholar
  164. Lawson, D., Raff, M. C., Gomperts, B., Fewtrell, C., and Gilula, N. B. 1977. Molecular events during membrane fusion. A study of exocytosis in rat peritoneal mast cells. J. Cell Biol. 72:242–259.Google Scholar
  165. Leduc, M., Rousseau, M., and Heijenoort, J. 1977. Structure of the cell wall of Bacillus species C.I.P. Eur. J. Biochem. 80:153–163.Google Scholar
  166. Lee, A. G. 1975. Functional properties of biological membranes: A physical-chemical approach. Prog. Biophys. Mol. Biol. 28:3–56.Google Scholar
  167. Lee, N., and Inouye, M. 1974. Outer membrane proteins of E. coli: Biosynthesis and assembly. FEBS Lett. 39:167–170.Google Scholar
  168. Leedale, G. F. 1967. Euglenoid Flagellates, Englewood Cliffs, N.J., Prentice-Hall.Google Scholar
  169. Leive, L. 1974. The barrier function of the Gram-negative envelope. Ann. N.Y. Acad. Sci. 235:109–127.ADSGoogle Scholar
  170. Lewis, W. H. 1931. Pinocytosis. Bull. Johns Hopkins Hosp. 49:17–28.Google Scholar
  171. Litman, B. J., and Smith, H. G. 1974. The determination of molecular asymmetry in mixed phospholipid vesicles and bovine retinal rod outer segment disc membranes. Fed. Proc. Fed. Am. Soc. Exp. Biol. 33:1575 (abstr.).Google Scholar
  172. Lockwood, W. R., and Allison, F. 1963. Electronmicrographic studies of phagocytic cells. I. Morphological changes of the cytoplasm, and granules of rabbit granulocytes associated with ingestion of rough pneumococcus. Br. J. Exp. Pathol. 44:593–600.Google Scholar
  173. Loewenstein, W. R. 1966. Permeability of membrane junctions. Ann. N.Y. Acad. Sci. 137:441–472.ADSGoogle Scholar
  174. Loewenstein, W. R. 1975. Permeable junctions. Cold Spring Harbor Symp. Quant. Biol. 40:49–63.Google Scholar
  175. Loewenstein, W. R. 1977. Permeability of the junctional membrane channel. In: Brinkley, B. R., and Porter, K. R., eds., International Cell Biology, 1976–1977, New York, Rockefeller University Press, pp. 70–82.Google Scholar
  176. Loewenstein, W. R., Kanno, Y., and Socolar, S. J. 1978. Quantum jumps of conductance during formation of membrane channels at cell-cell junction. Nature (London) 274:133–136.ADSGoogle Scholar
  177. Longo, F. J., and Anderson, E. 1968. The fine structure of pronuclear development and fusion in the sea urchin, Arbacia punctulata. J. Cell Biol. 39:339–368.Google Scholar
  178. Lott, J. N. A., and Vollmer, C. M. 1975. Changes in the cotyledons of Cucurbita maxima during germination. J. Ultrastruct. Res. 52:156–166.Google Scholar
  179. Lott, J. N. A., Larsen, P. L., and Whittington, C. M. 1972. Frequency distribution of nuclear pores in Cucurbita maxima cotyledons as revealed by freeze-etching. Can. J. Bot. 50:1785–1787.Google Scholar
  180. Lott, J. N. A., Wilson, J. J., and Vollmer, C. M. 1977. Temperature-induced changes in the nuclear envelop of Euglena and Scenedesmus. J. Ultrastruct. Res. 61:1–9.Google Scholar
  181. Luckasen, J. R., White, J. G., and Kersey, J. H. 1974. Mitogenic properties of a calcium ionophore, A23187. Proc. Natl. Acad. Sci. USA 71:5088–5090.ADSGoogle Scholar
  182. Lucy, J. A., and Glauert, A. M. 1964. Structure and assembly of macromolecular lipid complexes composed of globular micelles. J. Mol. Biol. 8:727–748.Google Scholar
  183. Lugtenberg, B., van Boxtel, R., Verhoff, C., and van Alphen, W. 1978. Preprotein e of the outer membrane of E. coli K12. FEBS Lett. 96:99–105.Google Scholar
  184. McLaughlin, S., and Harary, H. 1974. Phospholipid flip-flop and the distribution of surface charges in excitable membranes. Biophys. J. 14:200–208.Google Scholar
  185. McNutt, N. S., and Weinstein, R. S. 1970. The ultrastructure of the nexus: A correlated thin section and freeze-cleave study. J. Cell Biol. 47:666–687.Google Scholar
  186. McNutt, N. S., and Weinstein, R. S. 1973. Membrane ultrastructure at mammalian intercellular junctions. Prog. Biophys. Mol. Biol. 26:45–101.Google Scholar
  187. McNutt, N. S., Hershberg, B. H., and Weinstein, R. S. 1971. Further observations on the occurrence of nexuses in benign and malignant human cervical epithelium. J. Cell Biol. 51:805–825.Google Scholar
  188. Maddy, A. H., and Malcolm, B. R. 1965. Protein conformations in the plasma membrane. Science 150:1616–1618.ADSGoogle Scholar
  189. Maier, S., and Murray, R. G. E. 1965. The fine structure of Thioploca ingrica and a comparison with Beggiatoa. Can. J. Microbiol. 11:645–655.Google Scholar
  190. Manton, I., Kowallik, K., and von Stosch, H. A. 1969. Observations on the fine structure and development of the spindle at mitosis and meiosis in a marine centric diatom (Lithodesmium undulatum). J. Cell Sci. 5:271–298.Google Scholar
  191. Mantovani, B. 1975. Different roles of IgG and complement receptors in phagocytosis by polymorphonuclear leukocytes. J. Immunol. 115:15–17.Google Scholar
  192. Mast, S. O., and Doyle, W. L. 1934. Ingestion of fluid by amoeba. Protoplasma 20:555–567.Google Scholar
  193. Menkin, V. 1956. Biochemical Mechanisms in Inflammation, Springfield, Ill., Charles C. Thomas.Google Scholar
  194. Merk, F. B., Albright, J. T., and Botticelli, C. R. 1973. The fine structure of granulosa cell nexuses in rat ovarian follicles. Anat. Rec. 175:107–125.Google Scholar
  195. Merriam, R. W. 1962. Some dynamic aspects of the nuclear envelope. J. Cell Biol. 12:79–90.Google Scholar
  196. Metcalfe, J. C., Birdsall, N. J. M., and Lee, A. G. 1972. 13C NMR spectra of Acholeplasma membranes containing 13C labelled phospholipids. FEBS Lett. 21:335–340.Google Scholar
  197. Meyer, G. F. 1963. Die Funktions Struckturen des Y-chromosoms in den Spermatocytenkernen von Drosophila hydei, D. neohydei, D. repleta, and einigen anderen Drosophila-arten. Chromosoma 14:207–255.Google Scholar
  198. Milder, R. V., and Deane, M. P. 1967. Ultrastructure of Trypanosoma conorhini in the crithidial phase. J. Protozool. 14:65–72.Google Scholar
  199. Miller, J. H., Swartzwelder, J. C., and Deas, J. E. 1971. An electron microscopic study of Entamoeba histolytica. J. Parasitol. 47:577–587.Google Scholar
  200. Miller, J. V., Cuatrecasas, P., and Thompson, E. P. 1971. Partial purification by affinity chromatography of tyrosine aminotransferase-synthesizing ribosomes from hepatoma tissue culture cells. Proc. Natl. Acad. Sci. USA 68:1014–1018.ADSGoogle Scholar
  201. Monod, J., Wyman, J., and Changeux, J.-P. 1965. On the nature of allosteric transitions: A plausible model. J. Mol. Biol. 12:88–118.Google Scholar
  202. Moor, H., and Mühlethaler, K. 1963. Fine structure in frozen-etched yeast cells. J. Cell Biol. 17:609–628.Google Scholar
  203. Moore, P. L., Bank, H. L., Brissie, N. T., and Spicer, S. S. 1978. Phagocytosis of bacteria by polymorphonuclear leukocytes. J. Cell Biol. 76:158–174.Google Scholar
  204. Moses, M. J., and Wilson, M. H. 1970. Spermiogenesis in an iceryine coccid Steatococcus tuberculatus Morrison. Chromosoma 30:373–429.Google Scholar
  205. Moyle, J., and Mitchell, P. 1978. Cytochrome c oxidase is not a proton pump. FEBS Lett. 88:268–272.Google Scholar
  206. Mueller, P., and Rudin, D. O. 1968. Resting and action potentials in experimental bimolecular lipid membranes. J. Theor. Biol. 18:222–258.Google Scholar
  207. Mukhtar, H., Elmamlouk, T. H., and Bend, J. R. 1979. Epoxide hydrase and mixed-function oxidase activities of rat liver nuclear membranes. Arch. Biochem. Biophys. 192:10–21.Google Scholar
  208. Neher, E., and Stevens, C. F. 1977. Conductance fluctuations and ionic pores in membranes. Annu. Rev. Biophys. Bioeng. 6:345–381.Google Scholar
  209. Newell, P. C. 1978. Cellular communication during aggregation of Dictyostelium. J. Gen. Microbiol. 104:1–13.Google Scholar
  210. Nicolaidis, A. A., and Holland, I. B. 1978. Evidence for the specific association of the chromosomal origin with the outer membrane fractions isolated from E. coli. J. Bacteriol. 135:178–189.Google Scholar
  211. O’Brien, J. S., and Sampson, E. L. 1965. Lipid composition of the normal human brain: Gray matter, white matter, and myelin. J. Lipid Res. 6:537–544.Google Scholar
  212. Oldfield, E. 1973. Are cell membranes fluid? Science 180:982–983.ADSGoogle Scholar
  213. Oldfield, E., Chapman, D., and Derbyshire, W. 1972. Lipid mobility in Acholeplasma membranes using deuteron magnetic resonance. Chem. Phys. Lipids 9:69–81.Google Scholar
  214. Onaya, T., and Solomon, D. H. 1969. Effects of chlorpromazine and propanolol on in vitro thyroid activation by thyrotropin, long-acting thyroid stimulator, and dibutyryl cyclic-AMP. Endocrinology 85:1010–1017.Google Scholar
  215. Ono, H., Ono. T., and Wada, O. 1976. Amino acid incorporation by nuclear membrane fraction of rat liver. Life Sci. 18:215–222.Google Scholar
  216. Op den Kamp, J. A. F., Houtsmuller, U. M. T., and Van Deenen, L. L. M. 1965. On the phospholipids of Bacillus megaterium. Biochim. Biophys. Acta 106:438–441.Google Scholar
  217. Orchard, I., Osborne, M. P., and Finlayson, L. H. 1979. Ultrastructural changes in neurohaemal tissue of the stick insect, Carausius morosus, induced by the ionophores Br-X-537A and A-23187. Cell Tiss. Res. 197:227–234.Google Scholar
  218. Osborn, M. J., Gander, J. E., and Parisi, E. 1972. Mechanism of assembly of the outer membrane of Salmonella typhimurium. J. Biol. Chem. 247:3973–3986.Google Scholar
  219. Osborn, M. J., Rick, P. D., Lehmann, V., Rupprecht, E., and Singh, M. 1974. Structure and biogenesis of the cell envelope of Gram-negative bacteria. Ann. N.Y. Acad. Sci. 235:52–65.ADSGoogle Scholar
  220. Osuga, D. T., and Feeney, R. E. 1978. Antifreeze glycoproteins from Arctic fish. J. Biol. Chem. 253:5338–5343.Google Scholar
  221. Osuga, D. T., Ward, F. C., Yeh, Y., and Feeney, R. E. 1978. Cooperative functioning between antifreeze glycoproteins. J. Biol. Chem. 253:6669–6672.Google Scholar
  222. O’Sullivan, M. A., and Sueoka, N. 1972. Multifork attachment of the replicative origins of a multifork (dichotomous) chromosome in B. subtilis. J. Mol. Biol. 69:237–248.Google Scholar
  223. Ovchinnikov, Y. A. 1977. Recent findings in the structural and functional aspects of the peptide ionophores. In: Abrahamsson, S., and Pascher, I., eds., Structure of Biological Membranes, New York, Plenum Press, pp. 345–372.Google Scholar
  224. Paine, P. L., Moore, L. C., and Horowitz, S. B. 1975. Nuclear envelope permeability. Nature (London) 254:109–114.ADSGoogle Scholar
  225. Pappas, G. D. 1956. The fine structure of the nuclear envelope of Amoeba proteus. J. Biophys. Biochem. Cytol. Suppl. 2:431–434.Google Scholar
  226. Pauli, B. U., Weinstein, R. S., Alroy, J., and Arai, M. 1977. Ultrastructure of cell junctions in FANFT-induced urothelial tumors in urinary bladder of Fischer rats. Lab. Invest. 37:609–621.Google Scholar
  227. Peracchia, C. 1973. Low resistance junctions in crayfish. II. Structural details and further evidence for intercellular channels by freeze-fracture and negative staining. J. Cell Biol. 57:66–76.Google Scholar
  228. Perkins, H. R., and Rogers, H. J. 1959. The products of the partial acid hydrolysis of the mucopeptide from cell walls of Micrococcus lysodeikticus. Biochem. J. 72:647–654.Google Scholar
  229. Philipp, E. I., Franke, W. W., Keenan, T. E., Stadler, J., and Jarasch, E. D. 1976. Characterization of nuclear membranes and endoplasmic reticulum isolated from plant tissue. J. Cell Biol. 68:11–29.Google Scholar
  230. Pitelka, D. R. 1963. Electron-Microscopic Structure of Protozoa, Oxford, Pergamon Press.Google Scholar
  231. Pohl, S. L., Birnbaumer, L., and Rodbell, M. 1969. Glucagon-sensitive adenyl cyclase in plasma membrane of hepatic parenchymal cells. Science 164:566–567.ADSGoogle Scholar
  232. Post, R. L., and Jolly, P. C. 1957. The linkage of sodium, potassium and ammonia active transport across the human erythrocyte membrane. Biochim. Biophys. Acta 25:118–128.Google Scholar
  233. Prescott, D. M., Kimball, R. F., and Carrier, R. F. 1962. Comparison between the timing of micronuclear and macronuclear DNA synthesis in Euplotes eurystomus. J. Cell Biol. 13:175–176.Google Scholar
  234. Pugsley, A. P., and Schnaitman, C. A. 1978. Outer membrane proteins of E. coli. VII. Evidence that bacteriophage-directed protein 2 functions as a pore. J. Bacteriol. 133:1181–1189.Google Scholar
  235. Quinn, P. J. 1976. The Molecular Biology of Cell Membranes, Baltimore, University Park Press.Google Scholar
  236. Rattner, J. B. 1972. Nuclear shaping in marsupial spermatids. J. Ultrastruct. Res. 40:498–512.Google Scholar
  237. Resch, K., Bouillon, D., and Gemsa, D. 1978. The activation of lymphocytes by the ionophore A23187. J. Immunol. 120:1514–1520.Google Scholar
  238. Revel, J. P., and Karnovsky, M. J. 1967. Hexagonal array of subunits in intercellular junctions of mouse heart and liver. J. Cell Biol. 33:C7–C12.Google Scholar
  239. Ribi, W. A. 1978. Gap junctions coupling photoreceptor axons in the first optic ganglion of the fly. Cell Tissue Res. 195:299–308.Google Scholar
  240. Riddle, C. V., and Ernst, S. A. 1979. Structural simplicity of the zonula occludens in the electrolyte secreting epithelium of the avian salt gland. J. Membr. Biol. 45:21–35.Google Scholar
  241. Ridgway, H. F., Wagner, R. M., Dawsey, W. T., and Lewin, R. A. 1975. Fine structure of the cell envelope layers of Flexibacter polymorphus. Can. J. Microbiol. 21:1733–1750.Google Scholar
  242. Robertson, J. D. 1959. The ultrastructure of cell membranes and their derivatives. Symp. Biochem. Soc. 16:3–43.Google Scholar
  243. Robertson, J. D. 1960. The molecular structure and contact relationship of cell membranes. Prog. Biophys. 10:343–418.Google Scholar
  244. Robertson, J. D. 1967. The organization of cellular membranes. In: Allen, J. M., ed., Molecular Organization and Biological Function, New York, Harper & Row, pp. 65–106.Google Scholar
  245. Robinson, G. A., and Sutherland, E. 1971. Cyclic AMP and cell function. Ann. N.Y. Acad. Sci. 185:5–9.ADSGoogle Scholar
  246. Rodewald, R. 1973. Intestinal transport of antibodies in the newborn rat. J. Cell Biol. 58:189–211.Google Scholar
  247. Rogers, H. J., and Perkins, H. R. 1968. The mucopeptides. In: Rogers, H. J., and Perkins, H. R., eds., Cell Walls and Membranes, London, Spon, pp. 231–258.Google Scholar
  248. Roland, J. D., Szöllösi, A., and Szöllösi, D. 1977. Atlas of Cell Biology, Boston, Little, Brown.Google Scholar
  249. Rosenbusch, J. 1974. Characterization of the major envelope protein from E. coli. J. Biol. Chem. 249:8019–8029.Google Scholar
  250. Roth, L. E. 1960. Electromicroscopy of pinocytosis and food vacuoles in Pelomyxa. J. Protozool. 7:176–185.Google Scholar
  251. Roth, L. E., and Daniels, E. W. 1961. Infective organisms in the cytoplasm of Amoeba proteus. J. Biophys. Biochem. Cytol. 9:317–323.Google Scholar
  252. Rothstein, A. 1978. The cell membrane—A short historical perspective. Curr. Top. Membr. Transp. 11:1–13.Google Scholar
  253. Rottem, S., Slutzky, G. M., and Bittman, R. 1978. Cholesterol distribution and movement in the Mycoplasma galliseptum cell membrane. Biochemistry 17:2723–2726.Google Scholar
  254. Rowley, M. J., Berlin, J. D., and Heller, C. G. 1971. The ultrastructure of four types of human spermatogonia. Z. Zellforsch. Mikrosk. Anat. 112:139–157.Google Scholar
  255. Ruffolo, J. J. 1978. Micronuclear envelope formation after telophase of mitosis in the ciliate Euplotes eurystomus. Trans. Am. Microsc. Soc. 97:259–263.Google Scholar
  256. Sacks, G., Spenney, J. G., Saccomani, G., and Goodall, M. C. 1974. Characterization of gastric mucosal membranes. VI. The presence of channel forming substances. Biochim. Biophys. Acta 332:233–247.Google Scholar
  257. Sagara, Y., Harano, T., and Omura, T. 1978. Characterization of electron transport enzymes in the envelope of rat liver nuclei. J. Biochem. 83:807–812.Google Scholar
  258. Saier, M. H., and Stiles, C. D. 1975. Molecular Dynamics in Biological Membranes, New York, Springer-Verlag.Google Scholar
  259. Salton, M. R. J. 1973. Structure and function of the bacterial cell wall. In: Markham, R., Bancroft, J. B., Davies, D. R., Hopwood, D. A., and Horne, R. W., eds., The Generation of Subcellular Structures, Amsterdam, North-Holland, pp. 235–262.Google Scholar
  260. Salton, M. R. J., and Freer, J. H. 1965. Composition of the membranes isolated from several Gram-positive bacteria. Biochim. Biophys. Acta 107:531–538.Google Scholar
  261. Salton, M. R. J., and Marshall, B. 1959. The composition of the spore wall and the wall of vegetative cells of B. subtilis. J. Gen. Microbiol. 21:415–420.Google Scholar
  262. Scarborough, G. A. 1977. Properties of the Neurospora crassa plasma membrane ATPase. Arch. Biochem. Biophys. 180:384–393.Google Scholar
  263. Schafer, R., Hinnen, R., and Franklin, R. M. 1974. Structure and synthesis of a lipid-containing bacteriophage. Eur. J. Biochem. 50:15–27.Google Scholar
  264. Schatten, G., and Thoman, M. 1978. Nuclear surface complex as observed with the high resolution scanning electron microscope. J. Cell Biol. 77:517–535.Google Scholar
  265. Schatzmann, H. J. 1953. Herzglykoside als Hemmstoffe für aktiven Kalium und Natrium Transport durch die Erythrocyten membran. Biochim. Biophys. Acta 94:89–96.Google Scholar
  266. Schmit, A. S. Pless, D. D., and Lennarz, W. J. 1974. Some aspects of the chemistry and biochemistry of membranes of Gram-positive bacteria. Ann. N.Y. Acad. Sci. 235:91–104.ADSGoogle Scholar
  267. Schmitt, F. O. 1971. Molecular membranology. In: Wallach, D. F. H., and Fischer, H., eds., The Dynamic Structure of Cell Membranes, Berlin, Springer-Verlag, pp. 5–36.Google Scholar
  268. Schnaitman, C. A. S. 1969. Comparison of rat liver mitochondrial and microsomal membrane proteins. Proc. Natl. Acad. Sci. USA 63:412–419.ADSGoogle Scholar
  269. Schneider, A. S., Schneider, M. J., and Rosenheck, K. 1970. Optical activity of biological membranes: Scattering effects and protein conformation. Proc. Natl. Acad. Sci. USA 66:793–798.ADSGoogle Scholar
  270. Scribner, D. J. and Fahrney, D. 1976. Neutrophil receptors for IgG and complement: Their role in the attachment and ingestion phases of phagocytosis. J. Immunol. 116:892–897.Google Scholar
  271. Seaston, A., Inkson, C., and Eddy, A. A. 1973. The absorption of protons with specific amino acids and carbohydrates in yeast. Biochem. J. 134:1031–1043.Google Scholar
  272. Severs, N. J. 1977. Nuclear envelope transport capacity and the cell cycle in yeast (S. cerevisiae). Cytobios 18:51–67.Google Scholar
  273. Sharp, G. W. G., and Leaf, A. 1966. Mechanism of action of aldosterone. Physiol. Rev. 46:593–633.ADSGoogle Scholar
  274. Shimono, M., and Clementi, F. 1976. Intercellular junctions of oral epithelium. I. Studies with freeze-fracture and tracing methods of normal rat keratinized oral epithelium. J. Ultrastruct. Res. 56:121–136.Google Scholar
  275. Shockman, G. D., Daneo-Moore, L., and Higgins, M. L. 1974. Problems of cell wall and membrane growth, enlargement, and division. Ann. N.Y. Acad. Sci. 235:161–196.ADSGoogle Scholar
  276. Shockman, G. D., Kolb, J. J., Bakay, B., Conover, M., and Toennies, G. 1963. Protoplast membrane of Streptococcus faecalis. J. Bacteriol. 85:168–176.Google Scholar
  277. Sikstrom, R., Lanoix, J., and Bergeron, J. J. M. 1976. An enzymatic analysis of a nuclear envelope fraction. Biochim. Biophys. Acta 448:88–102.Google Scholar
  278. Silverman, M. 1974. The chemical and steric determinants governing sugar interactions with renal tubular membranes. Biochim. Biophys. Acta 332:246–262.Google Scholar
  279. Silverstein, S. C., Steinman, R. M., and Cohn, Z. A. 1977. Endocytosis. Annu. Rev. Biochem. 46:669–722.Google Scholar
  280. Simionescu, N., Simionescu, M., and Palade, G. E. 1978. Open junctions in the endothelium of the post capillary venules of the diaphragm. J. Cell Biol. 79:27–44.Google Scholar
  281. Singer, S. J. 1972. A fluid lipid-globular protein mosaic model of membrane structure. Ann. N.Y. Acad. Sci. 195:16–23.ADSGoogle Scholar
  282. Singer, S. J. 1977. The fluid mosaic model of membrane structure. In: Abrahamsson, S., and Pascher, I., eds., Structure of Biological Membranes, New York, Plenum Press, pp. 443–461.Google Scholar
  283. Singer, S. J., and Nicolson, G. L. 1972. The fluid mosaic model of the structure of cell membranes. Science 175:720–731.ADSGoogle Scholar
  284. Sjöstrand, F. S. 1963a. A comparison of plasma membrane, cytomembranes, and mitochondrial membrane elements with respect to ultrastructural features. J. Ultrastruct. Res. 9:561–580.ADSGoogle Scholar
  285. Sjöstrand, F. S. 1963b. A new ultrastructural element of the membranes in mitochondria and of some cytoplasmic membranes. J. Ultrastruct. Res. 9:340–361.ADSGoogle Scholar
  286. Sjöstrand, F. S. 1969. Morphological aspects of lipoprotein structures. In: Tria, E., and Scanu, A. M., eds., Structural and Functional Aspects of Lipoproteins in Living Systems, New York, Academic Press, pp. 73–128.Google Scholar
  287. Sjöstrand, F. S. 1978. The structure of mitochondrial membranes: A new concept. J. Ultrastruct. Res. 64:217–245.Google Scholar
  288. Skou, J. C. 1975. The (Na+ + K+) activated enzyme system and its relationship to transport of sodium and potassium. Q. Rev. Biophys. 7:401.Google Scholar
  289. Skou, J. C. 1977a. Coupling of chemical reaction to transport of sodium and potassium. In: Abrahamsson, S., and Pascher, I., eds., Structure of Biological Membranes, New York. Plenum Press, pp. 463–478.Google Scholar
  290. Skou, J. C. 1977b. Coupling between ATP hydrolysis and sodium and potassium transport. In: Nicolau, C., and Parof, A., eds., Structural and Kinetic Approach to Plasma Membrane Functions, New York, Springer-Verlag, pp. 145–151.Google Scholar
  291. Sleytr, U. B. 1978. Regular arrays of macromolecules on bacterial cell walls: structure, chemistry, assembly, and function. Int. Rev. Cytol. 53:1–64.Google Scholar
  292. Sleytr, U. B., and Thorne, K. J. I. 1976. Chemical characterization of the regularly arranged layers of Clostridium thermosaccharolyticum and Clostridium thermohydrosulfuricum. J. Bacteriol. 126:377–383.Google Scholar
  293. Sonenberg, M. 1971. Interaction of human growth hormone and human erythrocyte membranes studied by intrinsic fluorescence. Proc. Natl. Acad. Sci. USA 68:1051–1055.ADSGoogle Scholar
  294. Staehelin, L. A. 1974. Structure and function of intercellular junctions. Int. Rev. Cytol. 39:191–283.Google Scholar
  295. Stanbury, J. B. 1972. Some recent developments in the physiology of the thyroid gland. Rev. Physiol. 65:94–125.Google Scholar
  296. Stein, W. D. 1972. The mechanism of sugar transfer across erythrocyte membranes. Ann. N.Y. Acad. Sci. 195:412–427.ADSGoogle Scholar
  297. Sturgess, J., Moscarello, M., and Schachter, H. 1978. The structure and biosynthesis of membrane glycoproteins. Curr. Top. Membr. Transp. 11:16–105.Google Scholar
  298. Sullivan, C. W., and Volcani, B. E. 1974. Synergistically stimulated (Na+, K+)-ATPase from plasma membrane of a marine diatom. Proc. Natl. Acad. Sci. USA 71:4376–4380.ADSGoogle Scholar
  299. Sundler, R., Sarcione, S. L., Alberts, A. W., and Vagelos, P. R. 1977. Evidence against phospholipid asymmetry in intracellular membranes from liver. Proc. Natl. Acad. Sci. USA 74:3350–3354.ADSGoogle Scholar
  300. Sutherland, E. W., Rall, T. W., and Menon, T. 1962. Adenylcyclase. I. Distribution, preparations, and properties. J. Biol. Chem. 237:1220–1227.Google Scholar
  301. Suzuki, F., and Nagano, T. 1978a. Regional differentiation of cell junctions in the excurrent duct of the rat testis as revealed by freeze fracture. Anat. Rec. 191:503–519.Google Scholar
  302. Suzuki, F., and Nagano, T. 1978b. Development of tight junctions in the caput epididymal epithelium of the mouse. Dev. Biol. 63:321–324.Google Scholar
  303. Takesue, Y., and Nishi, Y. 1978. Topographical studies on intestinal microvillous leucine β-naphthylamidase on the outer membrane surface. J. Membr. Biol. 39:285–296.Google Scholar
  304. Takumi, K., and Kawata, T. 1974. Isolation of a common cell wall antigen from the proteolytic strains of Clostridium botulinum. Jpn. J. Microbiol. 18:85–90.Google Scholar
  305. Tamaki, S., Sato, T., and Matsuhashi, M. 1971. Role of lipopolysaccharides in antibiotic resistance and bacteriophage adsorption of E. coli K-12. J. Bacteriol. 105:968–975.Google Scholar
  306. Tamm, S. L. 1979. Membrane movements and fluidity during rotational motility of a termite flagellate. J. Cell Biol. 80:141–149.Google Scholar
  307. Tanaka, M., Haniu, M., Yasunobu, K. T., Yu, C. A., Yu, L., Weit, Y. H., and King, T. E. 1977. Amino acid sequence of the heme a subunit of bovine heart cytochrome oxidase and sequence homology with hemoglobin. Biochem. Biophys. Res. Commun. 76:1014–1019.Google Scholar
  308. Tanford, C. 1978. The hydrophobic effect and the organization of living matter. Science 200:1012–1018.ADSGoogle Scholar
  309. Tanner, W. 1969. Light-driven active uptake of 3-O-methylglucose via an inducible hexose uptake system of Chlorella. Biochem. Biophys. Res. Commun. 36:278–283.Google Scholar
  310. Tanner, W., and Komor, E. 1975. Hexose-proton cotransport of Chlorella vulgaris. Biomembranes 35:145–154.Google Scholar
  311. Taylor, D. L. 1968. In situ studies on the cytochemistry and ultrastructure of a symbiotic marine dinoflagellate. J. Mar. Biol. Assoc. U.K. 48:349–366.Google Scholar
  312. Thair, B. W., and Wardrop, A. B. 1971. The structure and arrangement of nuclear pores in plant cells. Planta 100:1–17.Google Scholar
  313. Thorne, K. J. I., Oliver, R. C., and Heath, M. F. 1976. Phospholipase A2 activity of the regularly arranged surface protein of Acinetobacter sp. 199A. Biochim. Biophys. Acta 450:335–341.Google Scholar
  314. Thyagarajan, T. R., Conti, S. F., and Naylor, H. B. 1962. Electron microscopy of Rhodotorula glutinis. J. Bacteriol. 83:381–394.Google Scholar
  315. Tucker, J. B. 1978. Endocytosis and streaming of highly gelated cytoplasm alongside rows of armbearing microtubules in the ciliate Nassula. J. Cell Sci. 29:213–232.Google Scholar
  316. Tzagoloff, A., ed. 1975a. Membrane Biogenesis: Mitochondria, Chloroplasts, and Bacteria. New York, Plenum Press.Google Scholar
  317. Tzagoloff, A. 1975b. Current problems in membrane biogenesis. In: Tzagoloff, A., ed., Membrane Biogenesis: Mitochondria, Chloroplasts, and Bacteria, New York, Plenum Press, pp. 1–14.Google Scholar
  318. Urban, B. W., Hladky, S. B., and Haydon, D. A. 1978. The kinetics of ion movements in the gramicidin channel. Fed. Proc. Fed. Am. Soc. Exp. Biol. 37:2628–2632.Google Scholar
  319. van Alphen, L., Van Selm, N., and Lugtenberg, B. 1978a. Pores in the outer membrane of E. coli K-12. Involvement of proteins b and c in the permeation functioning of pores for nucleotides. Mol. Gen. Genet. 159:75–83.Google Scholar
  320. van Alphen, L., Verkleij, A., Leunissen-Bijvelt, J., and Lugtenberg, B. 1978b. Architecture of the outer membrane of E. coli III. Protein-lipopolysaccharide complexes in intramembraneous particles. J. Bacteriol. 134:1089–1098.Google Scholar
  321. van Alphen, L., Lugtenberg, B., van Boxtel, R., Hack, A. M., Verhoef, C., and Havekes, L. 1979. meo A is the structural gene for outer membrane protein c of E. coli K-12. Mol. Gen. Genet. 169:147–155.Google Scholar
  322. van Deenan, L. L. M., de Gier, J., van Golde, L. M. G., Nauta, I. L. D., Renooy, W., Verkleij, A. J., and Zwaal, R. F. A. 1977. Some topological and dynamic aspects of lipids in the erythrocyte membrane. In: Abrahamsson, S., and Pascher, I., eds., Structure of Biological Membranes, New York, Plenum Press, pp. 107–118.Google Scholar
  323. Vanderkooi, G., and Capaldi, R. A. 1972. A comparative study of the amino acid compositions of membrane proteins and other proteins. Ann. N.Y. Acad. Sci. 195:135–138.ADSGoogle Scholar
  324. Vanderkooi, G., and Green, D. E. 1970. New insights into biological membrane structure. BioScience 21:409–415.Google Scholar
  325. Veatch, W. R., Fossel, E. T., and Blout, E. R. 1974. The conformation of gramicidin A. Biochemistry 13:5249–5256.Google Scholar
  326. Verhoef, C., Lugtenberg, B., van Boxtel, R., deGraaff, P., and Verheij, H. 1979. Genetics and biochemistry of the peptidoglycan-associated proteins b and c of E. coli K-12. Mol. Gen. Genet. 169:137–146.Google Scholar
  327. Wade, J. B., and Karnovsky, M. J. 1974. The structure of the zona occludens. A single fibril model based on freeze-fracture. J. Cell Biol. 60:168–180.Google Scholar
  328. Wallach, D. F. H. 1972. The Plasma Membrane: Dynamic Perspectives, Genetics and Pathology, London, English Universities Press.Google Scholar
  329. Wallach, D. F. H., and Winzler, R. J. 1974. Evolving Strategies and Tactics in Membrane Research, New York, Springer-Verlag.Google Scholar
  330. Wallach, D. F. H., and Zahler, H. P. 1966. Protein conformations in cellular membranes. Proc. Natl. Acad. Sci. USA 56:1552–1559.ADSGoogle Scholar
  331. Warren, G. B., and Metcalfe, J. C. 1977. The molecular architecture of a reconstituted calcium pump. In: Nicolau, C., and Paraf, A., eds., Structural and Kinetic Approach to Plasma Membrane Functions, New York, Springer-Verlag, pp. 188–200.Google Scholar
  332. Wasserman, W. J., and Smith, L. D. 1978. The cyclic behavior of a cytoplasmic factor controlling nuclear membrane breakdown. J. Cell Biol. 78:R15–R22.Google Scholar
  333. Watson, M. L. 1955. The nuclear envelope. Its structure and relation to cytoplasmic membranes. J. Biophys. Biochem. Cytol. 1:251–270.Google Scholar
  334. Ways, P., and Hanahan, D. J. 1964. Characterization and quantification of red cell lipids in normal man. J. Lipid Res. 5:318–328.Google Scholar
  335. Wecker, J., Reinicke, B., and Schallehn, G. 1974. Remarkable differences in the ultrastructure of the cell wall of toxigenic Clostridia. Electron Microscopy, Proceedings of the 8th International Congress, Vol. 2; p. 644.Google Scholar
  336. Weibull, C., and Bergström, L. 1958. The chemical nature of the cytoplasmic membrane and cell wall of Bacillus megaterium, strain M. Biochim. Biophys. Acta 30:340–351.Google Scholar
  337. West, J. C., and Mitchell, P. 1972. Proton-coupled β-galactoside translocation in non-metabolizing E. coli. J. Bioenerg. 3:445–462.Google Scholar
  338. Weston, J. C., Greider, M. H., Ackerman, G. A., and Nikolewski, R. F. 1972. Nuclear membrane contributions to the Golgi complex. Z. Zellforsch. Mikrosk. Anat. 123:153–160.Google Scholar
  339. Whaley, W. G., Mollenhauer, H. H., and Kephart, J. 1959. The endoplasmic reticulum and the Golgi structure in maize root cells. J. Biophys. Biochem. Cytol. 5:501–506.Google Scholar
  340. Whaley, W. G., Mollenhauer, H. H., and Leech, J. H. 1960. Some observations on the nuclear envelope. J. Biophys. Biochem. Cytol. 8:233–245.Google Scholar
  341. Whittam, R., and Ager, M. E. 1965. The connexion between active cation transport and metabolism in erythrocytes. Biochem. J. 97:214–227.Google Scholar
  342. Wikström, M. K. F. 1977. Proton pump coupled to cytochrome c oxidase in mitochondria. Nature (London) 266:271–273.ADSGoogle Scholar
  343. Wikström, M. K. F., and Krab, K. 1978. Cytochrome c oxidase is a proton pump. FEBS Lett. 91:8–14.Google Scholar
  344. Williams, R. J. P. 1978. Energy states of proteins, enzymes, and membranes. Proc. R. Soc. London. Ser. B. 200:353–389.ADSGoogle Scholar
  345. Wilton, J. M. A., Renggli, H. H., and Lehner, T. 1977. The role of Fc and C3b receptors in phagocytosis by inflammatory polymorphonuclear leucocytes in man. Immunology 32:955–961.Google Scholar
  346. Wischnitzer, S. 1960. The ultrastructure of the nucleus and nucleocytoplasmic relations. Int. Rev. Cytol. 10:137–162.Google Scholar
  347. Woo-Sam, P. C. 1977. Cohesion of horny cells during comedo formation. Br. J. Dermatol. 97:609–615.Google Scholar
  348. Wu, M., and Heath, E. C. 1973. Isolation and characterization of lipopolysaccharide protein from E. coli. Proc. Natl. Acad. Sci. USA 70:2572–2576.ADSGoogle Scholar
  349. Wurster, B., Pan, P., Tyan, G. G., and Bonner, J. T. 1976. Preliminary characterization of the acrasin of the cellular slime mold Polysphondylium violaceum. Proc. Natl. Acad. Sci. USA 73:795–799.ADSGoogle Scholar
  350. Yamada, K. M., Spooner, B. S., and Wessells, N. K. 1971. Ultrastructure and function of growth cones and axons of cultured nerve cells. J. Cell Biol. 49:614–635.Google Scholar
  351. Yamato, I., and Anraku, Y. 1977. Transport of sugars and amino acids in bacteria. XVIII. Properties of an isoleucine carrier in the cytoplasmic membrane vesicles of E. coli. J. Biochem. 81:1517–1523.Google Scholar
  352. Zamboni, L. 1971. Fine Morphology of Mammalian Fertilization, New York, Harper & Row.Google Scholar
  353. Zbarsky, I. B. 1978. An enzyme profile of the nuclear envelope. Int. Rev. Cytol. 54:295–360.Google Scholar
  354. Zwaal, R. F. A., Roelofsen, B., and Colley, C. M. 1973. Localization of red cell membrane constituents. Biochim. Biophys. Acta 300:159–182.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Lawrence S. Dillon
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations