Advertisement

Microtubules and Microfilaments

  • Lawrence S. Dillon
Chapter
  • 50 Downloads

Abstract

Next to membranes, there is probably no other cellular element as ubiquitous as the microtubule and related fibrillar structures. Although their presence was first suggested by Sigmund Freud (1882), then a young cell biologist working on live crayfish neurons, their actual existence could only be asserted with some assurance even as late as the mid-1950s (Porter, 1955). It remained for the advent of glutaraldehyde fixation (Sabatini et al., 1963; Karnovsky, 1965), combined with other refinements in electron microscopic techniques (Palay et al., 1962), to confirm their reality convincingly. Subsequently, researches on these organelles have reached a relatively high level of frequency, and a number of review articles have appeared in print (Dustin, 1972, 1978; Bardele, 1973; Margulis, 1973; Olmstead and Borisy, 1973; Shelanski, 1973; Bryan, 1974; Mazia, 1975; Snyder and McIntosh, 1976; Stephens and Edds, 1976; Kirschner, 1978). Generally three categories of fibrillar elements are recognized, distinguished for the present on the basis of their diameters: microtubules, ranging from 180 to 250 Å in thickness, intermediate filaments, between 80 and 100 Å, and nanofilaments,* from 40 to 70 Å (Burnside, 1975). Among others, the second category includes neurofilaments and tonofilaments, the latter of which will be recalled as occurring in intercellular junctions (Chapter 1, Section 1.2.3). Because microtubules are by far the most extensively investigated of these structures, they are reported in detail before other types are given attention.

Keywords

Actin Filament Thin Filament Thick Filament Tubulin Polymerization Myosin Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelman, M. R., and Taylor, E. W. 1969. Isolation of an actomyosin-like protein complex plasmodium and the separation of the complex into actin-and myosin-like fractions. Biochemistry 8:4964–4975.Google Scholar
  2. Adelstein, R. S., Pollard, T. D., and Kuehl, W. M. 1971. Isolation and characterization of myosin and two myosin fragments from human blood platelets. Proc. Natl. Acad. Sci. USA 68:2703–2707.ADSGoogle Scholar
  3. Adelstein, R. S., Conti, M. A., Johnson, G., Pastan, I., and Pollard, T. D. 1972. Isolation and characterization of myosin fragments from cloned mouse fibroblasts. Proc. Natl. Acad. Sci. USA 69:3693–3697.ADSGoogle Scholar
  4. Agaraña, C. E., Arce, C. A., Barra, H. C., and Caputto, R. 1977. In vivo incorporation of (14C)tyrosine into the C-terminal position of the α subunit of tubulin. Arch. Biochem. Biophys. 180:264–268.Google Scholar
  5. Allen, C., and Borisy, G. G. 1974. Structural polarity and directional growth of microtubules of Chlamydomonas flagella. J. Mol. Biol. 90:381–402.Google Scholar
  6. Anderton, B. H., Ayers, M., and Thorpe, R. 1978. Neurofilaments from mammalian central and peripheral nerves share certain polypeptides. FEBS Lett. 96:159–163.Google Scholar
  7. Amos, L. A., and Klug, A. 1974. Arrangement of subunits in flagellar microtubules. J. Cell Sci. 14:523–549.Google Scholar
  8. Ando, T., and Asai, H. 1979. Conformational change in actin filament induced by the interaction with heavy meromyosin: Effects of pH, tropomyosin and deoxy-ATP. J. Mol. Biol. 129:265–277.Google Scholar
  9. Arai, T., and Kazior, Y. 1976. Effect guanine quanine nucleotides on the assembly of brain microtubules: Ability of 5′-guanylylamidodiphosphate to replace GTP in promoting the polymerization of microtubules in vitro. Biochem. Biophys. Res. Commun. 69:369–376.Google Scholar
  10. Arai, T., and Kaziro, Y. 1977. Role of GTP in the assembly of microtubules. J. Biochem. 82:1063–1071.Google Scholar
  11. Arata, T., Mukohata, Y., and Tonomura, Y. 1977. Structure and function of the two heads of the myosin molecule. VI. ATP hydrolysis, shortening, and tension development of myofilaments. J. Biochem. 82:801–812.Google Scholar
  12. Bálint, M., Wolf, I., Tarcsafalvi, A., Gergely, J. and Sréter, F. A. 1978. Location of SH-1 and SH-2 in the heavy chain segment of heavy meromyosin. Arch. Biochem. Biophys. 190:793–799.Google Scholar
  13. Bardele, C. F. 1973. Struktur, Biochemie, und Funktion der Mikrotubuli. Cytobiologie Z. Exp. Zellforsch. 7:442–487.Google Scholar
  14. Barra, H. S., Arce, C. A., Rodriguez, J. A., and Caputto, R. 1974. Some common properties of the protein that incorporates tyrosine as a single unit and its microtubule proteins. Biochem. Biophys. Res. Commun. 60:1384–1390.Google Scholar
  15. Begg, D. A., Rodewald, R., and Rebhun, L. I. 1978. The visualization of actin filament polarity in thin sections. J. Cell. Biol. 79:846–852.Google Scholar
  16. Behnke, O., and Forer, A. 1966. Intranuclear microtubules. Science 153:1536–1537.ADSGoogle Scholar
  17. Bell, P. R. 1978. A microtubule-nuclear envelope complex in the spermatozoid of Pteridium. J. Cell Sci. 29:189–195.Google Scholar
  18. Bender, N., Fasold, H., and Rack, M. 1974. Interaction of rabbit muscle actin and chemically modified actin with ATP, ADP, and protein reactive analogues: Role of the nucleotide. FEBS Lett. 44:209–212.Google Scholar
  19. Benitz, W. E., Dahl, D., Williams, K. W., and Bignami, A. 1976. The protein composition of glial and nerve fibers. FEBS Lett. 66:285–289.Google Scholar
  20. Berkowitz, S. A., Katagiri, J., Binder, H. K., and Williams, R. C. 1977. Separation and characterization of microtubule proteins from calf brains. Biochemistry 16:5610–5617.Google Scholar
  21. Berl, S., Puszkin, S., and Nicklas, W. J. 1973. Actomyosin-like protein in brain. Science 179:441–446.ADSGoogle Scholar
  22. Berry, R. W., and Shelanski, M. L. 1972. Interactions of tubulin with vinblastine and GTP. J. Mol. Biol. 71:71–80.Google Scholar
  23. Bhowmick, D. K. 1967. Electron microscopy of Trichamoeba villosa and amoeboid movement. Exp. Cell Res. 45:570–589.Google Scholar
  24. Binder, L. I., and Rosenbaum, J. L. 1978. The in vitro assembly of flagellar outer doublet tubulin. J. Cell Biol. 79:500–515.Google Scholar
  25. Birnbaum, E. R., and Sykes, B. D. 1978. NMR studies of a Ca2+-binding fragment of troponin C. Biochemistry 17:4965–4970.Google Scholar
  26. Bisalputra, T., Oakley, B. R., Walker, D. C., and Shields, C. M. 1975. Microtubular complexes in blue-green algae. Protoplasma 86:19–28.Google Scholar
  27. Booyse, F. M., Hoveke, T. P., Zschocke, D., and Rafelson, M. E. 1971. Human platelet myosin: Isolation and properties. J. Biol. Chem. 246:4291–4297.Google Scholar
  28. Borisy, G. G., and Olmsted, J. D. B. 1972. Nucleated assembly of microtubules in porcine brain extracts. Science 177: 1196–1197.ADSGoogle Scholar
  29. Borisy, G. G., Olmsted, J. D. B., Marcum, J. M., and Allen, C. 1974. Microtubule assembly in vitro. Fed. Proc. Fed. Am. Soc. Exp. Biol. 33:167–174.Google Scholar
  30. Borisy, G. G., Marcum, J. M., Olmsted, J. D. B., Murphy, D. B., and Johnson, K. A. 1975. Purification of tubulin and associated high molecular weight proteins from porcine brain and characterization of microtubule assembly in vitro. Ann. N.Y. Acad. Sci. 253:107–132.ADSGoogle Scholar
  31. Bray, D. 1977. Actin and myosin in neurones: A first review. Biochimie 59:1–6.Google Scholar
  32. Bridgen, J. 1971. The amino acid sequence around four cysteine residues in trout actin. Biochem. J. 123:591–600.Google Scholar
  33. Brotschi, E. A., Hartwig, J. H., and Stossel, T. P. 1978. The gelation of actin by actin-binding protein. J. Biol. Chem. 253:8988–8993.Google Scholar
  34. Bryan, J. 1974. Microtubules. BioScience 24:701–711.Google Scholar
  35. Bryan, J. 1975. Preliminary studies on affinity-labeling of the tubulin-colchicine binding site. Ann. N.Y. Acad. Sci. 253:247–259.ADSGoogle Scholar
  36. Bryan, J., and Wilson, L. 1971. Are cytoplasmic microtubules heteropolymers? Proc. Natl. Acad. Sci. USA 68:1762–1766.ADSGoogle Scholar
  37. Brysk, M. M., Gray, R. H., and Bernstein, I. A. 1977. Tonofilament protein from newborn rat epidermis. J. Biol. Cell. 252:2127–2133.Google Scholar
  38. Bulinski, J. C., and Borisy, G. G. 1979. Self-assembly of microtubules in extracts of cultured HeLa cells and the identification of HeLa microtubule associated proteins. Proc. Natl. Acad. Sci. USA 76:293–297.ADSGoogle Scholar
  39. Burnside, B. 1975. The form and arrangement of microtubules: An historical, primarily morphological, review. Ann. N.Y. Acad. Sci. 253:14–26.ADSGoogle Scholar
  40. Burton, P. R., and Himes, R. H. 1978. Electron microscope studies of the pH effects on assembly of tubulin free of associated proteins. J. Cell Biol. 77:120–133.Google Scholar
  41. Campanella, C., Gabbiani, G., Baccetti, B., Burrini, A. G., and Pallini, V. 1979. Actin and myosin in the vertebrate acrosomal region. J. Submicrosc. Cytol. 11:53–71.Google Scholar
  42. Capony, J. P., Ryden, L., Demaille, J., and Pechere, J. F. 1973. The primary structure of the major parvalbumin from hake muscle. Eur. J. Biochem. 32:97–108.Google Scholar
  43. Caputo, C. 1978. Excitation and contraction processes in muscle. Annu. Rev. Biophys. Bioeng. 7:63–83.Google Scholar
  44. Carasso, N., and Favard, P. 1965. Microtubules fusoriaux dans les micro-et macronucleus de ciliés péritriches en division. J. Microsc. (Paris) 4:395–402.Google Scholar
  45. Caspar, D. L. D., Cohen, C., and Longley, W. 1969. Tropomyosin: Crystal structure, polymorphism, and molecular interactions. J. Mol. Biol. 41:87–107.Google Scholar
  46. Chantier, P. D., and Szent-Györgyi, A. G. 1978. Spectroscopic studies on invertebrate myosins and light chains. Biochemistry 17:5440–5448.Google Scholar
  47. Clark, T. G., and Merriam, R. W. 1977. Diffusible and bound actin in nuclei of Xenopus laevis oocytes. Cell 12:883–892.Google Scholar
  48. Cleveland, D. W., Hwo, S. Y., and Kirschner, M. W. 1977a. Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J. Mol. Biol. 116:207–225.Google Scholar
  49. Cleveland, D. W., Hwo, S. Y., and Kirschner, M. W. 1977b. Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J. Mol. Biol. 116:227–247.Google Scholar
  50. Coffee, C. J., and Bradshaw, R. A. 1973. Carp muscle calcium-binding protein. I. Characterization of the tryptic peptides and the complete amino acid sequence of component B. J. Biol. Chem. 248:3305–3312.Google Scholar
  51. Cohen, C., and Holmes, K. C. 1963. X-ray diffraction evidence for α-helical coiled coils in native muscle. J. Mol. Biol. 6:423–432.Google Scholar
  52. Cohen, C., Harrison, S. C., and Stephens, R. E. 1971. X-ray diffraction from microtubules. J. Mol. Biol. 59:375–380.Google Scholar
  53. Cohen, C., DeRosier, D., Harrison, S. C., Stephens, R. E., and Thomas, J. 1975. X-ray patterns from microtubules. Ann. N.Y. Acad. Sci. 253:53–59.ADSGoogle Scholar
  54. Collins, J. H. 1974. Homology of myosin light chains, troponin-C, and parvalbumins. Biochem. Biophys. Res. Commun. 58:301–308.Google Scholar
  55. Collins, J. H., and Elzinga, M. 1975. The primary structure of actin from rabbit skeletal muscle. Completion and analysis of the amino acid sequence. J. Biol. Chem. 250:5915–5920.Google Scholar
  56. Collins, J. H., Potter, J. D., Horn, M. J., Wilshire, G., and Jackman, N. 1973. The amino acid sequence of rabbit skeletal muscle troponin-C: Gene replication and homology with calcium-binding proteins from carp and hake muscle. FEBS Lett. 36:268–272.Google Scholar
  57. Collins, J. H., Greaser, N. L., Potter, J. D., and Horn, M. J. 1977. Determination of the amino acid sequence of troponin-C from rabbit skeletal muscle. J. Biol. Chem. 252:6356–6362.Google Scholar
  58. Connolly, J. A., Kalnins, V. I., Cleveland, D. W., and Kirschner, M. W. 1978. Intracellular localization of the high molecular weight microtubule accessory protein by indirect immunofluorescence. J. Cell Biol. 76:R781–R786.Google Scholar
  59. Cooke, P. H., and Chase, R. H. 1971. KCl-insoluble myofilaments in vertebrate smooth muscle cells. Exp. Cell Res. 66:417–425.Google Scholar
  60. Corfield, P. S., and Smith, D. G. 1968. Microtubular structure in group D streptococcal L-forms. Arch. Mikrobiol. 63:356–361.Google Scholar
  61. Dahlström, A. 1971. Axoplasmic transport (with particular respect to adrenergic neurons). Philos. Trans. R. Soc. London Ser. B 261:325–358.ADSGoogle Scholar
  62. Davison, P. F., Hong, B. S., and Cooke, P. 1977. Classes of distinguishable 10 nm cytoplasmic filaments. Exp. Cell Res. 109:471–474.Google Scholar
  63. DeBrabander, M., and Borgers, M. 1975. Intranuclear microtubules in mast cells. Pathol. Eur. 10:17–20.Google Scholar
  64. DeBrabander, M., Aerts, F., Van de Veire, R., and Borgers, M. 1975. Evidence against interconversion of microtubules and filaments. Nature (London) 253:119–120.ADSGoogle Scholar
  65. Dedman, J. R., Jackson, R. L., Schreiber, W. E., and Means, A. R. 1978. Sequence homology of the Ca2+-dependent regulator of cyclic nucleotide phosphodiesterase from rat testes with other Ca2+-binding proteins. J. Biol. Chem. 253:343–346.Google Scholar
  66. Dönges, K. H., Biedert, S., and Paweletz, N. 1976. Characterization of 20 S component in tubulin from mammalian brain. Biochemistry 15:2995–2999.Google Scholar
  67. Dustin, P. 1972. Microtubules et microfilaments: Leur rôle dans la dynamique cellulaire. Arch. Biol. 83:419–480.Google Scholar
  68. Dustin, P. 1978. Microtubules, Berlin, Springer-Verlag.Google Scholar
  69. Ebashi, S. 1974. Regulatory mechanism of muscle contraction, with special reference to the calcium-troponin-tropomyosin system. Essays Biochem. 10:1–36.Google Scholar
  70. Ebashi, S., and Endo, M. 1968. Calcium ion and muscle contraction. Prog. Biophys. Mol. Biol. 18:123–183.Google Scholar
  71. Ebashi, S., Onishi, S., Abe, S., and Maruyama, K. 1974. A spin-label study on calcium-induced conformational changes of troponin components. J. Biochem. 75:211–213.Google Scholar
  72. Eda, T., Kanda, Y., and Kimura, S. 1976. Membrane structures in stable L-forms of E. coli. J. Bacteriol. 27:657–664.Google Scholar
  73. Eda, T., Kanda, Y., Mori, C., and Kimura, S. 1977. Microtubule structures in a stable staphylococcal L-form. J. Bacteriol. 132:1024–1026.Google Scholar
  74. Edwards, B. F. P., and Sykes, B. D. 1978. Assignment and characterization of the histidine resonances in 1H nuclear magnetic resonance spectra of rabbit tropomyosins. Biochemistry 17:684–689.Google Scholar
  75. Eipper, B. A. 1972. Rat brain microtubule protein: Purification and determination of covalently bound phosphate and carbohydrate. Proc. Natl. Acad. Sci. USA 69:2283–2287.ADSGoogle Scholar
  76. Eipper, B. A. 1975. Purification of rat brain tubulin. Ann. N.Y. Acad. Sci. 253:239–246.ADSGoogle Scholar
  77. Elzinga, M., and Collins, J. H. 1973. The amino acid sequence of rabbit skeletal muscle actin. Cold Spring Harbor Symp. Quant. Biol. 37:1–7.Google Scholar
  78. Elzinga, M., and Collins, J. H. 1975. The primary structure of actin from rabbit skeletal muscle. Five cyanogen bromide peptides, including the NH2 and COOH termini. J. Biol. Chem. 250:5897–5905.Google Scholar
  79. Elzinga, M., Collins, J. H., Kuehl, W. M., and Adelstein, R. S. 1973. Complete amino acid sequence of actin of rabbit skeletal muscle. Proc. Natl. Acad. Sci. USA 70:2687–2691.ADSGoogle Scholar
  80. Elzinga, M., Moran, B. J., and Adelstein, R. S. 1976. Human heart and platelet actins are products of different genes. Science 191:94–95.ADSGoogle Scholar
  81. Epstein, H. F., Harris, H. E., Schachat, F. H., Suddleson, E. A., and Wolff, J. A. 1976. Genetic and molecular studies of nematode myosin. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book A, p. 203–214.Google Scholar
  82. Erickson, H. P. 1974a. Microtubule surface lattice and subunit structure and observations on reassembly. J. Cell Biol. 60:153–167.Google Scholar
  83. Erickson, H. P. 1974b. Assembly of microtubules from preformed, ring-shaped protofilaments and 6-S tubulin. J. Supramol. Struct. 2:393–411.Google Scholar
  84. Erickson, H. P. 1975. The structure and assembly of microtubules. Ann. N.Y. Acad. Sci. 253:60–77.ADSGoogle Scholar
  85. Erickson, H. P., and Voter, W. A. 1976. Polycation-induced assembly of purified tubulin. Proc. Natl. Acad. Sci. USA 73:2813–2817.ADSGoogle Scholar
  86. Eriksson, A., and Thornell, L. E. 1979. Intermediate (skeletin) filaments of heart Purkinje fibers. J. Cell Biol. 80:231–247.Google Scholar
  87. Farrell, K. W., and Wilson, L. 1978. Microtubule reassembly in vitro of Strongylocentrotus purpuratus sperm tail outer doublet tubulin. J. Mol. Biol. 121:393–410.Google Scholar
  88. Farrell, K. W., Morse, A., and Wilson, L. 1979. Characterization of the in vitro reassembly of tubulin derived from stable Strongylocentrotus purpuratus outer doublet microtubules. Biochemistry 18:905–911.Google Scholar
  89. Fellows, A., Francon, J., Virion, A., and Nunez, J. 1975. Microtubules and brain development. FEBS Lett. 57:5–9.Google Scholar
  90. Fine, R. E. and Blitz, A. L. 1975. A chemical comparison of tropomyosins from muscle and non-muscle tissues. J. Mol. Biol. 95:447–454.Google Scholar
  91. Frank, G., and Weeds, A. G. 1974. The amino acid sequence of the alkali light chains of rabbit skeletal-muscle myosin. Eur. J. Biochem. 44:317–334.Google Scholar
  92. Franke, W. W., Schmid, E., Weber, K., and Osborn, M. 1979. HeLa cells contain intermediatesized filaments of the prekeratin type. Exp. Cell Res. 118:95–109.Google Scholar
  93. Frankenne, F., Joassin, L., and Gerday, C. 1973. The amino acid sequence of the pike (Esox lucius) parvlbumin III. FEBS Lett. 35:145–147.Google Scholar
  94. Frearson, N., and Perry, S. V. 1975. Phosphorylation of the light-chain components of myosin from cardiac and red skeletal muscles. Biochem. J. 151:99–107.Google Scholar
  95. Frederiksen, D. W. 1979. Physical properties of myosin from aortic smooth muscle. Biochemistry 18:1651–1656.Google Scholar
  96. Freud, S. 1882. Sitzungsber. Akad. Wiss. Wien Math. Naturwiss. 85:9.Google Scholar
  97. Fujiwara, K., and Tilney, L. G. 1975. Substructural analysis of the microtubule and its polymorphic forms. Ann. N.Y. Acad. Sci. 253:27–50.ADSGoogle Scholar
  98. Gabbiani, G., and Montandon, D. 1977. Reparative processes in mammalian wound healing: The role of contractible phenomena. Int. Rev. Cytol. 48:187–219.Google Scholar
  99. Gaskin, F., Cantor, C. R., and Shelanski, M. L. 1974. Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. J. Mol. Biol. 89:737–758.Google Scholar
  100. Geiger, B., Tokuyosu, K. T., and Singer, S. J. 1979. Immunocytochemical localization of α-actinin in intestinal epithelial cells. Proc. Natl. Acad. Sci. USA 76:2833–2837.ADSGoogle Scholar
  101. Gergely, J. 1976. Troponin-tropomyosin-dependent regulation of muscle contraction by calcium. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book A, pp. 137–149.Google Scholar
  102. Gershman, L. C., Stracher, A., and Driesen, P. 1969. Subunit structure of myosin. III. A proposed model for rabbit skeletal muscle myosin. J. Biol. Chem. 244:2726–2736.Google Scholar
  103. Gibbins, J. R., Tilney, L. G., and Porter, K. R. 1969. Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. I. The distribution of microtubules. J. Cell Biol. 41:201–227.Google Scholar
  104. Gibbons, B. H., and Gibbons, I. R. 1972. Flagellar movement and ATPase activity in sea urchin sperm extracted with Triton X-100. J. Cell Biol. 54:75–97.Google Scholar
  105. Gibbons, B. H., and Gibbons, I. R. 1973. The effect of partial extraction of dynein arms on the movement of reactivated sea urchin sperm. J. Cell Sci. 13:337–357.Google Scholar
  106. Gibbons, I. R. 1968. The biochemistry of motility. Annu. Rev. Biochem. 37:521–546.Google Scholar
  107. Godfrey, J. E., and Harrington, W. F. 1970. Self-association in the myosin system at high ionic strength. II. Evidence for the presence of a monomer-dimer equilibrium. Biochemistry 9:894–908.Google Scholar
  108. Gordon, D., Yang, Y. Z., Eisenberg, E., and Korn, E. D. 1976. Properties of actin isolated in high yield from Acanthamoeba castellaii. In: Goldman, R., Pollard, T., and Rosenbaum, J. eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book B, pp. 493–498.Google Scholar
  109. Gould, R. R., and Borisy, G. G. 1978. Quantitative initiation of microtubule assembly by chromosomes from Chinese hamster ovary cells. Exp. Cell Res. 113:369–374.Google Scholar
  110. Grand, R. J. A., Perry, S. V., and Weeks, R. A. 1979. Troponin C-like proteins (calmodulins) from mammalian smooth muscle and other tissues. Biochem. J. 177:521–529.Google Scholar
  111. Greaser, M. L., and Gergely, J. 1971. Reconstitution of troponin activity from three protein components. J. Biol. Chem. 246:4226–4233.Google Scholar
  112. Greaser, M. L., Yamaguchi, M., Brekke, C., Potter, J., and Gergely, J. 1972. Troponin subunits and their interactions. Cold Spring Harbor Symp. Quant. Biol. 37:235–244.Google Scholar
  113. Gruber, S. 1978. The myofibroblast. Surg. Gynecol. Obstet. 146:641–649.Google Scholar
  114. Gusev, N. B., Dobrovol’skii, A. B., and Severin, S. E. 1978. Skeletal muscle troponin and phosphorylation: Site of troponin T phosphorylation by specific protein kinase. Biokhimiya 43:365–372.Google Scholar
  115. Hanson, J., and Huxley, H. E. 1953. Structural basis of the cross-striations in muscle. Nature (London) 172:530–532.ADSGoogle Scholar
  116. Hardham, A. R., and Gunning, B. E. S. 1978. Structure of cortical microtubule arrays in plant cells. J. Cell Biol. 77:14–34.Google Scholar
  117. Harris, W. F. 1970. The arrangement of the axonemal microtubules and links of Echinosphaerium nucleofilum. J. Cell Biol. 46:183–187.Google Scholar
  118. Hartshorne, D. J., and Dreizen, P. 1972. Studies on the subunit composition of troponin. Cold Spring Harbor Symp. Quant. Biol. 37:225–234.Google Scholar
  119. Haselgrove, J. C. 1972. X-ray evidence for a conformational change in the actin-containing filaments of vertebrate striated muscle. Cold Spring Harbor Symp. Quant. Biol. 37:341–352.Google Scholar
  120. Hatano, S., and Owaribe, K. 1976. Actin and actinin from myxomycete plasmodia. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book B, pp. 499–511.Google Scholar
  121. Hegyi, G., Premecz, G., Sain, B., and Mühlrád, A. 1974. Selective carbethoxylation of the histidine residues of actin by diethyl-pyrocarbonate. Eur. J. Biochem. 44:7–12.Google Scholar
  122. Heizmann, C. W., and Strehler, E. E. 1979. Chicken parvalbumin. J. Biol. Chem. 254:4296–4303.Google Scholar
  123. Heizmann, C. W., Häuptte, M. T., and Eppenberger, H. M. 1977. The purification, characterization and localization of a parvalbumin-like protein from chicken-leg muscle. Eur. J. Biochem. 80:433–441.Google Scholar
  124. Herzog, W., and Weber, K. 1978. Fractionation of brain microtubule-associated proteins. Eur. J. Biochem. 92:1–8.Google Scholar
  125. Hikida, R. S. 1978. Z-line extraction: Comparative effects in avian skeletal muscle fiber types. J. Ultrastruct. Res. 65:266–278.Google Scholar
  126. Hinkley, R. E., and Burton, P. R. 1974. Tannic acid staining of axonal microtubules. J. Cell Biol. 63:139a.Google Scholar
  127. Hitchcock, S., Huxley, H. E., and Szent-Györgi, A. G. 1973. Calcium sensitive binding of troponin to actin-tropomyosin: A two-site model for troponin action. J. Mol. Biol. 80:825–836.Google Scholar
  128. Hodges, R. S., and Smillie, L. B. 1970. Chemical evidence for chain heterogeneity in rabbit muscle tropomyosin. Biochem. Biophys. Res. Commun. 41:987–994.Google Scholar
  129. Hodges, R. S., Sodek, J., and Smillie, L. B. 1972. The cyanogen bromide fragments of rabbit skeletal muscle tropomyosin. Biochem. J. 128:102p.Google Scholar
  130. Hodges, R. S., Sodek, J., Smillie, L. B., and Jurasek, L. 1973. Tropomyosin: Amino-acid sequence and coiled-coil structure. Cold Spring Harbor Symp. Quant. Biol. 37:299–310.Google Scholar
  131. Hoffman, R. N., and Lasek, R. J. 1975. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J. Cell Biol. 66:351–366.Google Scholar
  132. Hoh, J. F. Y. 1979. Developmental changes in chicken skeletal myosin isoenzymes. FEBS Lett. 98:267–275.Google Scholar
  133. Horwitz, J., Bullard, B., and Mercola, D. 1979. Interaction of troponin subunits. J. Biol. Chem. 254:350–355.Google Scholar
  134. Huang, B., and Pitelka, D. R. 1973. The contractile process in the ciliate Stentor coeruleus. I. The role of microtubules and filaments. J. Cell Biol. 57:704–728.Google Scholar
  135. Hubbard, B. D., and Lazarides, E. 1979. Copurification of actin and desmin from chicken smooth muscle and their copolymerization in vitro to intermediate filaments. J. Cell Biol. 80:166–182.Google Scholar
  136. Huxley, H. E. 1963. Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J. Mol. Biol. 7:281–308.Google Scholar
  137. Huxley, H. E. 1972. Structural changes in the actin and myosin-containing filaments during contraction. Cold Spring Harbor Symp. Quant. Biol. 37:361–376.Google Scholar
  138. Huxley, H. E., and Brown, W. 1967. The low-angle X-ray diagram of vertebrate striated muscle and its behavior during contraction and rigor. J. Mol. Biol. 30:383–434.Google Scholar
  139. Ikeda, Y., and Steiner, M. 1979. Phosphorylation and protein kinase activity of platelet tubulin. J. Biol. Chem. 254:66–74.Google Scholar
  140. Inoue, A., Kikuchi, K., and Tonomura, Y. 1977. Structure and function of the two heads of the myosin molecule. V. Enzymatic properties of heads B and A. J. Biochem. 82:783–800.Google Scholar
  141. Inoué, S. 1952. The effect of colchicine on the microscopic and sub-microscopic structure of the mitotic spindle. Exp. Cell Res. Suppl. 2:305–318.Google Scholar
  142. Inoué, S. 1953. Polarization optical studies of the mitotic spindle. Chromosoma 5:487–500.Google Scholar
  143. Inoué, S., and Sato, H. 1967. Cell motility by labile association of molecules. J. Gen. Physiol. 50:259–292.Google Scholar
  144. Inoué, S., Borisy, G. G., and Kiekart, D. P. 1974. Growth and lability of Chaetopterus oocyte mitotic spindles isolated in the presence of porcine brain tubulin. J. Cell Biol. 62:175–184.Google Scholar
  145. Ishikawa, H., Bischoff, R., and Holtzer, H. 1969. The formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J. Cell Biol. 43:312–328.Google Scholar
  146. Ishiura, M., and Okada, Y. 1979. The role of actin in temperature-dependent gel-sol transformation of extracts of Ehrlich ascites tumor cells. J. Cell Biol. 80:465–480.Google Scholar
  147. Jackson, P., Amphlett, G. W., and Perry, S. V. 1975. The primary structure of troponin T and the interaction with tropomyosin. Biochem. J. 151:85–97.Google Scholar
  148. Jacobs, M., and McVittie, A. 1970. Identification of the flagellar proteins of Chlamydomonas reinhardii. Exp. Cell Res. 63:53–61.Google Scholar
  149. Jenkins, R. A. 1977. The role of microtubules in macronuclear division of Blepharisma. J. Protozool. 24:264–275.MathSciNetGoogle Scholar
  150. Jurand, A., and Selman, G. G. 1970. Ultrastructure of the nuclei and intranuclear microtubules of Paramecium aurelia. J. Chem. Microbiol. 60:357–364.Google Scholar
  151. Karnovsky, M. J. 1965. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27:137A–138A.Google Scholar
  152. Kelly, R. E., and Rice, R. V. 1968. Localization of myosin filaments in smooth muscle. J. Cell Biol. 37:105–116.Google Scholar
  153. Kessel, R. G. 1966. The association between microtubule and nuclei during spermiogenesis in the dragonfly. J. Ultrastruct. Res. 16:293–304.Google Scholar
  154. Khan, Z. N. T., and Godward, M. B. E. 1977. Tubular elements—A new structure in blue-green algal cells. J. Cell Sci. 28:303–308.Google Scholar
  155. Kim, H., Binder, L. I., and Rosenbaum, J. L. 1979. The periodic association of MAP2 with brain microtubules in vitro. J. Cell Biol. 80:266–276.Google Scholar
  156. Kirschner, M. W. 1978. Microtubule assembly and nucleation. Int. Rev. Cytol. 54:1–71.Google Scholar
  157. Kirschner, M. W., Suter, M., Weingarten, M., and Littman, D. 1975a. The role of rings in the assembly of microtubules in vitro. Ann. N.Y. Acad. Sci. 253:90–106.ADSGoogle Scholar
  158. Kirschner, M. W., Honig, L. S., and Williams, R. C. 1975b. Quantitative electron microscopy of microtubule assembly in vitro. J. Mol. Biol. 99:263–276.Google Scholar
  159. Kobayashi, T. 1975. Dephosphorylation of tubulin-bound GTP during microtubule assembly. J. Biochem. 77:1193–1197.Google Scholar
  160. Kobayashi, T., and Flavin, M. 1977. Tubulin-tryosine ligase: Purification and application to studies of tubulin structure and assembly. J. Cell Biol. 75:211a.Google Scholar
  161. Kobayashi, T., and Simizu, T. 1976. Roles of nucleoside triphosphates in microtubule assembly. J. Biochem. 79:1357–1364.Google Scholar
  162. Kretsinger, R. H., and Barry, C. D. 1975. The predicted structure of the calcium-binding component of troponin. Biochim. Biophys. Acta 405:40–52.Google Scholar
  163. Krishman, N., and Lasek, R. J. 1975. The fine structure of neurofilaments in the giant axon of Myxicola infundibulum (Annelida, Polychaeta). J. Cell Biol. 67:226a.Google Scholar
  164. Kuczmarski, E. R., and Rosenbaum, J. L. 1979. Chick brain actin and myosin. J. Cell Biol. 80:341–355.Google Scholar
  165. Lasek, R. J., and Hoffman, P. N. 1976. The neuronal cytoskeleton, axonal transport, and axonal growth. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book C, pp. 1021–1049.Google Scholar
  166. Lazarides, E. 1976a. Actin, α-actinin, and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells. J. Cell Biol. 68:202–219.Google Scholar
  167. Lazarides, E. 1976b. Aspects of the structural organization of actin filaments in tissue culture cells. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book A, pp. 347–360.Google Scholar
  168. Lazarides, E., and Balzer, D. R. 1978. Specificity of desmin to avian and mammalian muscle cells. Cell 14:429–438.Google Scholar
  169. Lazarides, E., and Burridge, K. 1975. Alpha-actinin: Immunofluorescent localization of muscle structural protein in nonmuscle cells. Proc. Natl. Acad. Sci. USA 71:2268–2272.ADSGoogle Scholar
  170. Lazarides, E., and Hubbard, B. D. 1976. Immunological characterization of the subunit of the 100 Å filaments from muscle cells. Proc. Natl. Acad. Sci. USA 73:4344–4348.ADSGoogle Scholar
  171. Leedale, G. F. 1967. Euglenoid Flagellates, Englewood Cliffs, N.J., Prentice-Hall.Google Scholar
  172. Linck, R. W. 1976. Flagellar doublet microtubules: Fractionation of minor components and α-tubulin from specific regions of the A-tubule. J. Cell Sci. 20:405–439.Google Scholar
  173. Lowey, S., Slayter, H. S., Weeds, A., and Baker, H. 1969. Substructure of the myosin molecule. I. Subfragments of myosin by enzymatic digestion. J. Mol. Biol. 42:1–29.Google Scholar
  174. Lu, R. C., and Elzinga, M. 1976. Comparison of amino acid sequences of actins from bovine brain and muscles. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book B, pp. 487–492.Google Scholar
  175. Lu, R. C., and Elzinga, M. 1977. Partial amino acid sequence of brain actin and its homology with muscle actin. Biochemistry 16:5801–5806.Google Scholar
  176. Luduena, R. F., and Woodward, D. O. 1973. Isolation and partial characterization of α- and β-tubulin from outer doublets of sea urchin sperm and microtubules of chick-embryo brain. Proc. Natl. Acad. Sci. USA 70:3594–3598.ADSGoogle Scholar
  177. Luduena, R. F., and Woodward, D. O. 1975. α- and β-tubulin: Separation and partial sequence analysis. Ann. N.Y. Acad. Sci. 253:272–283.ADSGoogle Scholar
  178. Lusty, C. J., and Fasold, H. 1969. Characterization of sulf-hydryl groups of actin. Biochemistry 8:2933–2939.Google Scholar
  179. Luther, P., and Squire, J. 1978. Three-dimensional structure of the vertebrate muscle M-region. J. Mol. Biol. 125:313–324.Google Scholar
  180. MacDonald, A. C. and Kitching, J. A. 1967. Axopodial filaments of Heliozoa. Nature (London) 215:99–100.ADSGoogle Scholar
  181. McGill, M., and Brinkley, B. R. 1975. Human chromosomes and centrioles as nucleating sites for the in vitro assembly of microtubules from bovine brain tubulin. J. Cell Biol. 67:189–199.Google Scholar
  182. McIntosh, J. R. 1973. The axostyle of Saccinobaculus. II. J. Cell Biol. 56:324–339.Google Scholar
  183. Malawista, S. E. 1975. Microtubules and the mobilization of lysosomes in phagocytizing human leukocytes. Ann. N.Y. Acad. Sci. 253:738–749.ADSGoogle Scholar
  184. Mandelkow, E. M., and Mandelkow, E. 1979. Junctions between microtubule walls. J. Mol. Biol. 129:135–148.Google Scholar
  185. Mandelkow, E. M., Mandelkow, E., Unwin, N., and Cohen, C. 1977. Tubulin hoops. Nature (London) 265:655–657.ADSGoogle Scholar
  186. Mannherz, H. G., and Goody, R. S. 1976. Proteins of contractile systems. Annu. Rev. Biochem. 45:427–465.Google Scholar
  187. Marchant, H. J. 1979. Microtubular determination of cell shape during colony formation by the alga Pediastrum. Protoplasma 98:1–14.Google Scholar
  188. Margossian, S. S., and Cohen, C. 1973. Troponin subunit interactions. J. Mol. Biol. 81:409–413.Google Scholar
  189. Margulis, L. 1973. Colchicine-sensitive microtubules. Int. Rev. Cytol. 34:333–361.Google Scholar
  190. Margulis, L., To, L., and Chase, D. 1978. Microtubules in prokaryotes. Science 200:1118–1124.ADSGoogle Scholar
  191. Marotta, C. A., Strocchi, P., and Gilbert, J. M. 1979. Subunit structure of a synaptosomal tubulin. Brain Res. 167:93–106.Google Scholar
  192. Maruta, H., and Korn, E. D. 1977. Purification from Acanthamoeba castellanii of proteins that induce gelation and syneresis of F-actin. J. Biol. Chem. 252:399–402.Google Scholar
  193. Massini, P., and Lüscher, E. F. 1976. On the significance of the influx of calcium ions into stimulated human blood platelets. Biochim. Biophys. Acta 436:652–663.Google Scholar
  194. Mazia, D. 1975. Microtubule research in perspective. Ann. N.Y. Acad. Sci. 253:7–13.ADSGoogle Scholar
  195. Merlino, G. T., Chamberlain, J. P., and Kleinsmith, L. J. 1978. Effects of deciliation on tubulin mRNA activity in sea urchin embryos. J. Biol. Chem. 253:7078–7085.Google Scholar
  196. Meyer, D. F., and Burger, M. M. 1979. The chromaffin granule surface: The presence of actin and the nature of its interaction with the membrane. FEBS Lett. 101:129–132.Google Scholar
  197. Meza, I., Huang, B., and Bryan, J. 1972. Chemical heterogeneity of protofilaments forming the outer doublets from sea urchin flagella. Exp. Cell Res. 74:535–540.Google Scholar
  198. Micko, S., and Schlaepfer, W. W. 1978. Protein composition of axons and myelin from rat and human peripheral nerves. J. Neurochem. 30:1041–1049.Google Scholar
  199. Moellmann, G., and McGuire, J. 1975. Correlation of cytoplasmic microtubules and 10 nm filaments with the movement of pigment granules in cutaneous melanocytes of Rana pipiens. Ann. N.Y. Acad. Sci. 253:711–722.ADSGoogle Scholar
  200. Mohri, H., and Shimomura, M. 1973. Comparison of tubulin and actin. J. Biochem. (Tokyo) 74:209–220.Google Scholar
  201. Moore, P. B., Huxley, H. E., and DeRosier, D. J. 1970. Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J. Mol. Biol. 50:279–295.Google Scholar
  202. Moos, C., Offer, G. W., and Starr, R. L. 1972. A new muscle protein which affects myosin filament structure. Abstr. Am. Biophys. Soc. 1972:208a.Google Scholar
  203. Moos, C., Offer, G. W., Starr, R. L., and Bennett, P. 1975. Interaction of C-protein with myosin, myosin rod, and light meromyosin. J. Mol. Biol. 97:1–9.Google Scholar
  204. Morgan, J. L., and Seeds, N. W. 1975. Properties of tubulin prepared by affinity chromatography. Ann. N.Y. Acad. Sci. 253:260–271.ADSGoogle Scholar
  205. Murphy, D. B. 1975. The mechanism of microtubule-dependent movement of pigment granules in teleost chromatophores. Ann. N.Y. Acad. Sci. 253:692–701.ADSGoogle Scholar
  206. Murphy, D. B., and Borisy, G. G. 1975. Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro. Proc. Natl. Acad. Sci. USA 72:2696–2700.ADSGoogle Scholar
  207. Murphy, D. B., Valley, R. B., and Borisy, G. G. 1977. Identity and polymerization-stimulatory activity of the nontubulin proteins associated with microtubules. Biochemistry 16:2598–2605.Google Scholar
  208. Nachmias, V. T. 1968. Further electron microscopic studies on fibrillar organization of the ground cytoplasm of Chaos chaos. J. Cell Biol. 38:40–50.Google Scholar
  209. Nachmias, V. T. 1973. Physarum myosin: Two new properties. Cold Spring Harbor Symp. Quant. Biol. 37:607–612.Google Scholar
  210. Nagaro, T., and Suzuki, F. 1975. Microtubules with 15 subunits in cockroach epidermal cells. J. Cell Biol. 64:242–245.Google Scholar
  211. Nakamura, T., Takahashi, K., and Watanabe, S. 1978. Myosin and actin from E. coli K12 C600. J. Biochem. 84:1453–1458.Google Scholar
  212. Nakamura, T., Yamaguchi, M., and Yanagisawa, T. 1979. Comparative studies on actins from various sources. J. Biochem. 85:627–631.Google Scholar
  213. Nath, J., and Flavin, M. 1978. A structural difference between cytoplasmic and membrane-bound tubulin of brain. FEBS Lett. 95:335–338.Google Scholar
  214. Ng, S. F. 1978. Directionality of microtubule assembly: An in vivo study with the ciliate Tetrahymena. J. Cell Sci. 33:227–234.Google Scholar
  215. Offer, G. 1973. C-protein and the periodicity in the thick filament of vertebrate skeletal muscle. Cold Spring Harbor Symp. Quant. Biol. 37:87–93.Google Scholar
  216. Offer, G., and Elliott, A. 1978. Can a myosin molecule bind to two actin filaments? Nature (London) 271:325–329.ADSGoogle Scholar
  217. Olmsted, J. B. 1976. The role of divalent cations and nucleotides in microtubule assembly in vitro. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book C, pp. 1081–1092.Google Scholar
  218. Olmsted, J. B., and Borisy, G. G. 1973. Microtubules. Annu. Rev. Biochem. 42:507–540.Google Scholar
  219. Olmsted, J. B., and Borisy, G. G. 1975. Ionic and nucleotide requirements for microtubule polymerization in vitro. Biochemistry 14:2996–3005.Google Scholar
  220. Osborn, M., Webster, R. E., and Weber, K. 1978. Individual microtubules viewed by immunofluorescence and electron microscopy in the same PtK2 cell. J. Cell Biol. 21:R27–R34.Google Scholar
  221. Overton, J. 1966. Microtubules and microfibrils in morphogenesis of the scale cells of Ephestia kühniella. J. Cell Biol. 29:293–305.Google Scholar
  222. Palay, S. L., McGee-Russell, S. M., Gordon, S., and Grillo, M. A. 1962. Fixation of neural tissues for electron microscopy by perfusion with solutions of OsO4. J. Cell Biol. 12:385–410.Google Scholar
  223. Palmer, E., and Saborio, J. L. 1978. In vivo and in vitro synthesis of multiple forms of rat brain actin. J. Biol. Chem. 253:7482–7489.Google Scholar
  224. Penningroth, S. M., and Kirschner, M. W. 1977. Nucleotide binding and phosphorylation in microtubule assembly in vitro. J. Mol. Biol. 115:643–673.Google Scholar
  225. Penningroth, S. M., and Kirschner, M. W. 1978. Nucleotide specificity in microtubule assembly in vitro. Biochemistry 17:734–740.Google Scholar
  226. Penningroth, S. M., Cleveland, D. W., and Kirschner, M. W. 1976. In vitro studies of the regulation of microtubule assembly. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book C, pp. 1233–1257.Google Scholar
  227. Pepe, F. A. 1973. The myosin filament: Immuno-chemical and ultrastructural approaches to molecular organization. Cold Spring Harbor Symp. Quant. Biol. 37:97–108.Google Scholar
  228. Perry, S. V., Cole, H. A., Head, J. F., and Wilson, F. J. 1972. Localization and mode of action of the inhibitory protein component of the troponin complex. Cold Spring Harbor Symp. Quant. Biol. 37:251–262.Google Scholar
  229. Peters, A., and Vaughn, J. E. 1967. Microtubules and filaments in the axons and astrocytes of early postnatal rat optic nerves. J. Cell Biol. 32:113–119.Google Scholar
  230. Pfeffer, T. A., Asnes, C. F., and Wilson, L. 1978. Polymerization and colchicine-binding properties of outer doublet microtubules solubilized by the French pressure cell. Cytobiologie 16:367–373.Google Scholar
  231. Pollard, T. D. 1976. Contractile proteins in nonmuscle cells. In: Fasman, G. D., ed., Handbook of Biochemistry and Molecular Biology: Proteins Section, Cleveland, CRC Press, Vol. 2, pp. 307–324.Google Scholar
  232. Pollard, T. D. 1977. Cytoplasmic contractile proteins. In: Brinkley, B. R., and Porter, K. R., eds., International Cell Biology, 1976–1977, New York, Rockefeller University Press, pp. 378–387.Google Scholar
  233. Pollard, T. D., and Ito, S. 1970. Cytoplasmic filaments of Amoeba proteus I. The role of filaments in consistency changes and movement. J. Cell Biol. 46:267–289.Google Scholar
  234. Pollard, T. D., and Korn, E. D. 1973a. The “contractile” proteins of Acanthamoeba castellanii. Cold Spring Harbor Symp. Quant. Biol. 37:573–583.Google Scholar
  235. Pollard, T. D., and Korn, E. D. 1973b. Acanthamoeba myosin. I. Isolation of an enzyme similar to muscle myosin. J. Biol. Chem. 248:4682–4690.Google Scholar
  236. Pollard, T. D., and Korn, E. D. 1973c. Acanthamoeba myosin. II. Interaction with actin and with a new cofactor protein required for actin activation of Mg ATPase activity. J. Biol. Chem. 248:4691–4697.Google Scholar
  237. Pollard, T. D., and Weihing, R. R. 1974. Actin and myosin and cell movement. Crit. Rev. Biochem. 2:1–65.Google Scholar
  238. Pollard, T. D., Stafford, W. F., and Porter, M. E. 1978. Characterization of a second myosin from Acanthamoeba castellanii. J. Biol. Chem. 253:4798–4808.Google Scholar
  239. Pope, L. M., and Jurtshuk, P. 1967. Microtubule in Azotobacter veinlandii strain O. J. Bacteriol. 94:2062–2064.Google Scholar
  240. Porter, K. R. 1955. The fine structure of cells. Fed. Proc. 14:673–682.Google Scholar
  241. Potter, J. D. 1976. The content of troponin, tropomyosin, actin, and myosin in rabbit skeletal myofibrils. Arch. Biochem. Biophys. 162:436–441.Google Scholar
  242. Raybin, D., and Flavin, M. 1977a. Enzyme which specifically adds tyrosine to the α chain of tubulin. Biochemistry 16:2189–2194.Google Scholar
  243. Raybin, D., and Flavin, M. 1977b. Modification of tubulin by tyrosylation in cells and extracts and its effect on assembly in vitro. J. Cell Biol. 73:492–504.Google Scholar
  244. Rebhun, L. I. 1972. Polarized intracellular particle transport. Saltatory movements and cytoplasmic streaming. Int. Rev. Cytol. 32:93–139.Google Scholar
  245. Redman, C. M., Banerjee, D., Howell, K., and Palade, G. E. 1975. The step at which colchicine blocks the secretion of plasma protein by rat liver. Ann. N.Y. Acad. Sci. 253:780–788.ADSGoogle Scholar
  246. Renaud, F. L., Rowe, A. J., and Gibbons, I. R. 1968. Some properties of the protein forming the outer fibers of cilia. J. Cell Biol. 36:79–90.Google Scholar
  247. Roisen, F. J., Braden, W. G., and Friedman, J. 1975. Neurite development in vitro. III. The effects of several derivatives of cAMP, colchicine, and colcemid. Ann. N.Y. Acad. Sci. 253:545–561.ADSGoogle Scholar
  248. Romera-Herrara, A. E., Castillo, O., and Lehmann, H. 1976. Human skeletal muscle proteins: The primary structure of troponin C. J. Mol. Evol. 8:251–270.Google Scholar
  249. Rosenbaum, J. L., and Child, F. M. 1967. Flagellar regeneration in protozoan flagellates. J. Cell Biol. 34:345–364.Google Scholar
  250. Rosenbaum, J. L., Binder, L. I., Granett, S., Dentier, W. L., Snell, W. S., Sloboda, R., and Haimo, L. 1975. Directionality and rate of assembly of chick brain tubulin onto pieces of chick brain neurotubules, flagellar axonemes, and basal bodies. Ann. N.Y. Acad. Sci. 253:147–177.ADSGoogle Scholar
  251. Rosenfeld, A. C., Zackroff, R. V., and Weisenberg, R. C. 1976. Magnesium stimulation of calcium binding to tubulin and calcium induced depolymerization of microtubules. FEBS Lett. 65:144–147.Google Scholar
  252. Rudolph, R., Gruber, S., Suzuki, M., and Woodward, M. 1977. The life cycle of the myofibroblast. Surg. Gynecol. Obstet. 145:389–394.Google Scholar
  253. Sabatini, D. D., Bensch, K., and Barrnett, R. J. 1963. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17:19–58.Google Scholar
  254. Sarkar, S. 1972. Stoichiometry and sequential removal of light chains of myosin. Cold Spring Harbor Symp. Quant. Biol. 37:14–17.Google Scholar
  255. Sarkar, S., Stréter, F. A., and Gergely, J. 1971. Light chains of myosins from white, red, and cardiac muscles. Proc. Natl. Acad. Sci. USA 68:946–950.ADSGoogle Scholar
  256. Schliwa, M. 1978. Microtubular apparatus of melanophores. J. Cell Biol. 76:605–614.Google Scholar
  257. Schollmeyer, J., Goll, D., Tilney, L., Mooseker, M., Robson, R., and Stromer, M. 1974. Localization of α-actinin in non-muscle material. J. Cell Biol. 63:304a.Google Scholar
  258. Schollmeyer, J. E., Furcht, L. T., Goll, D. E., Robson, R. M., and Stromer, M. H. 1976. Localization of contractile proteins in smooth muscle cells and in normal and transformed fibroblasts. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book A, pp. 361–388.Google Scholar
  259. Schook, W., Ores, C., and Puszkin, S. 1978. Isolation and properties of brain α-actinin. Biochem. J. 175:63–72.Google Scholar
  260. Scordilis, S. P., and Adelstein, R. S. 1978. A comparative study of the myosin light chain kinases from myoblast and muscle sources. J. Biol. Chem. 253:9041–9048.Google Scholar
  261. Scordilis, S. P., Anderson, J. L., Pollock, R., and Adelstein, R. S. 1977. Characterization of the myosin-phosphorylating system in normal murine astrocytes and derivative SV40 wild-type and A-mutant transformations. J. Cell Biol. 74:940–949.Google Scholar
  262. Shelanski, M. L. 1973. Microtubules. In: Schneider, D. J., Angeletti, R. H., Bradshax, R. A., Grasso, A., and Moore, B. W., eds., Proteins of the Nervous System, New York, Raven Press, pp. 227–242.Google Scholar
  263. Shelanski, M. L., and Taylor, E. W. 1968. Properties of the protein subunit of central-pair and outer-doublet microtubules of sea urchin flagella. J. Cell Biol. 38:304–315.Google Scholar
  264. Shelanski, M. L., Yen, S. H., and Lee, V. M. 1976. Neurofilaments and glial filaments. In: Goldman, R., Pollard, T., and Rosenbaum, J., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book C, pp. 1007–1020.Google Scholar
  265. Sherline, P., and Schiavone, K. 1978. High molecular weight MAPs are part of the mitotic spindle. J. Cell Biol. 77:R9–R12.Google Scholar
  266. Shizuta, Y., Shizuta, H., Gallo, M., Davies, P., Pastan, I., and Lewis, M. S. 1976. Purification properties of filamin, an active binding protein from chicken gizzard. J. Biol. Chem. 251:6562–6567.Google Scholar
  267. Siemankowski, R. F., and Zobel, C. R. 1976. Comparative studies on the structure and aggregative properties of the myosin molecule. I. The structure of the lobster myosin molecule. J. Mechanochem. Cell Motil. 3:171–184.Google Scholar
  268. Sloboda, R. D., Dentier, W. L., Bloodgood, R. A., Telzer, B. R., Granett, S., and Rosenbaum, J. L. 1976. Microtubule-associated proteins (MAPs) and the assembly of microtubules in vitro. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book C, pp. 1171–1212.Google Scholar
  269. Smith, U., and Smith, D. S. 1965. A microtubular complex in the epidermal nucleus of an insect, Carausius morosus. J. Cell Biol. 26:961–964.Google Scholar
  270. Snell, W. J., Dentler, W. L., Haimo, L. T., Binder, L. I., and Rosenbaum, J. L. 1974. Assembly of chick brain tubulin onto isolated basal bodies of Chlamydomonas reinhardii. Science. 185:357–360.ADSGoogle Scholar
  271. Snyder, J. A., and McIntosh, J. R. 1976. Biochemistry and physiology of microtubules. Annu. Rev. Biochem. 45:699–720.Google Scholar
  272. Sodek, J., Hodges, R. S., and Smillie, L. B. 1978. Amino acid sequence of rabbit skeletal muscle α-tropomyosin. The COOH-terminal half (residues 142–284). J. Biol. Chem. 253:1129–1136.Google Scholar
  273. Someya, A., and Tanaka, N. 1979. Heavy meromyosin-and ATP-binding protein from Escherichia coli. FEBS Lett. 101:166–169.Google Scholar
  274. Sommer, J. R., and Blum, J. J. 1965. Cell division in Astasia longa. Exp. Cell Res. 39:504–527.Google Scholar
  275. Spiegelman, B. M., Penningroth, S. M., and Kirschner, M. W. 1977. Turnover of tubulin and the N site GTP in Chinese hamster ovary cells. Cell 12:587–600.Google Scholar
  276. Squire, J. M. 1975. Muscle filament structure and muscle contraction. Annu. Rev. Biophys. Bioeng. 4:137–163.Google Scholar
  277. Stearns, M. E., and Brown, D. L. 1979. Purification of a microtubule-associated protein based on its preferential association with tubulin during microtubule initiation. FEBS Lett. 101:15–19.Google Scholar
  278. Stearns, M. E., Connolly, J. A., and Brown, D. L. 1976. Cytoplasmic microtubule organizing centers isolated from Polytomella agilis. Science 191:188–191.ADSGoogle Scholar
  279. Steinert, P., Idler, W. W., and Zimmerman, S. B. 1976. Self-assembly of bovine epidermal keratin filaments in vitro. J. Mol. Biol. 108:547–567.Google Scholar
  280. Stephens, R. E. 1968. On the structural protein of flagellar outer fibers. J. Mol. Biol. 32:277–283.Google Scholar
  281. Stephens, R. E., and Edds, K. T. 1976. Microtubules: Structure, chemistry, and function. Physiol. Rev. 56:709–777.Google Scholar
  282. Stephens, R. E., Renaud, F. L., and Gibbons, I. R. 1967. Guanine nucleotide associated with the protein of the outer fibers of flagella and cilia. Science 156:1606–1608.ADSGoogle Scholar
  283. Stone, D., and Smillie, L. B. 1978. The amino acid sequence of rabbit skeletal α-tropomyosin: The NH2-terminal half and complete sequence. J. Biol. Chem. 253:1137–1148.Google Scholar
  284. Stone, D., Sodek, J., Johnson, P., and Smillie, L. B. 1975. Tropomyosin: Correlation of amino acid sequence and structure. Proc. 9th Meet. FEBS 31:125–136.Google Scholar
  285. Stossel, T. P. 1978. Contractile proteins in cell structure and function. Annu. Rev. Med. 29:427–457.Google Scholar
  286. Stossel, T. P., and Pollard, T. D. 1974. Myosin in polymorphonuclear leukocytes. J. Biol. Chem. 248:8288–8294.Google Scholar
  287. Summers, K. E. 1974. ATP-induced sliding of microtubules in bull sperm flagella. J. Cell Biol. 60:321–324.Google Scholar
  288. Sutoh, Ka., Sutoh, Ke., Karr, T., and Harrington, W. F. 1978. Isolation and physico-chemical properties of a high-molecular-weight subfragment-2 of myosin. J. Mol. Biol. 126:1–22.Google Scholar
  289. Suzuki, H., Onishi, H., Takahashi, K., and Watanabe, S. 1978. Structure and function of chicken gizzard myosin. J. Biochem. 84:1529–1542.Google Scholar
  290. Takahashi, K. 1978. Topography of the myosin molecule as visualized by an improved negative staining method. J. Biochem. 83:905–908.Google Scholar
  291. Tamura, S., Tsuruhara, T., and Watanabe, Y. 1969. Functioning nuclear microtubules in macronuclear division of Tetrahymena pyriformis. Exp. Cell Res. 55:351–358.Google Scholar
  292. Taylor, A., Mamelak, M., Reaven, E., and Maffly, R. 1973. Vasopressin: Possible role of microtubules and microfilaments in its action. Science 181:247–250.Google Scholar
  293. Taylor, A., Maffly, R., Wilson, L., and Reaven, E. 1975. Evidence for involvement of microtubules in the action of vasopressin. Ann. N.Y. Acad. Sci. 253:723–737.ADSGoogle Scholar
  294. Tilney, L. G., and Gibbins, J. R. 1969. Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. II. An experimental analysis of their role in development and maintenance of cell shape. J. Cell Biol. 41:227–250.Google Scholar
  295. Tilney, L. G., and Porter, K. R. 1965. Studies on the microtubules in Heliozoa. I. Fine structure of Actinosphaerium with particular reference to axial rod structure. Protoplasma 60:317–344.Google Scholar
  296. Toh, B. H., Yildiz, A., Sotelo, J., Osung, O., Holborow, E. J., and Fairfax, A. 1979. Distributions of actin and myosin in muscle and non-muscle cells. Cell Tissue Res. 199:117–126.Google Scholar
  297. Tsuchiya, T., Yamada, N., and Matsumota, J. J. 1978. Extraction and purification of squid myosin. Bull. Jpn. Soc. Sci. Fish. 44:175–180.Google Scholar
  298. Ueno, H. 1978. Cyanogen-bromide fragments of rabbit skeletal muscle α-tropomyosin. J. Biochem. 84:1559–1565.Google Scholar
  299. Ullrick, W. C., Toselli, P. A., Smith, J. D., and Phear, W. P. C. 1977. Fine structure of the vertebrate Z-disk. J. Mol. Biol. 115:61–74.Google Scholar
  300. Uyemura, D. G., Brown, S. S., and Spudich, J. A. 1978. Biochemical and structural characterization of actin from Dictyostelium discoideum. J. Biol. Chem. 253:9088–9096.Google Scholar
  301. van Eerd, J. P., and Takahashi, K. 1975. The amino acid sequence of bovine cardiac troponin-C. Comparison with rabbit skeletal troponin-C. Biochem. Biophys. Res. Commun. 64:122–127.Google Scholar
  302. van Eerd, J. P., and Takahashi, K. 1976. Determination of the complete amino acid sequence of bovine cardiac troponin-C. Biochemistry 15:1171–1180.Google Scholar
  303. van Eerd, J. P., Capony, J. P., Ferraz, C., and Pechere, J. F. 1978. The amino-acid sequence of troponin C from frog skeletal muscle. Eur. J. Biochem. 91:231–242.Google Scholar
  304. van Iterson, W., Hoeniger, J. F. M., and van Zanten, E. N. 1967. Microtubule in a bacterium. J. Cell Biol. 32:1–10.Google Scholar
  305. Vivier, E. 1965. Présence de microtubules intranucléaires chez Metchnikovella hovassei Vivier. J. Microsc. (Paris) 4:559–562.Google Scholar
  306. von Olenhusen, K. G., and Wohlfarth-Bottermann, K. E. 1979. Evidence for actin transformation during contraction-relaxation cycle of cytoplasmic actomyosin: Cycle blockade by phalloidin injection. Cell Tissue Res. 196:455–470.Google Scholar
  307. Wang, K., and Singer, S. J. 1977. Interaction of filamin with F-actin in solution. Proc. Natl. Acad. Sci. USA 74:2021–2025.ADSGoogle Scholar
  308. Warner, F. D., and Mitchell, D. R. 1978. Structural conformation of ciliary dynein arms and the generation of sliding forces in Tetrahymena cilia. J. Cell Biol. 76:261–277.Google Scholar
  309. Warner, F. D., Mitchell, D. R., and Perkins, C. R. 1977. Structural conformation of the ciliary ATPase dynein. J. Mol. Biol. 114:367–384.Google Scholar
  310. Watanabe, T., and Flavin, M. 1976. Nucleotide-metabolizing enzymes in Chlamydomonas flagella. J. Biol. Chem. 251:182–192.Google Scholar
  311. Weatherbee, J. A., Luftig, R. B., and Weihing, R. R. 1978. In vitro polymerization of microtubules from HeLa cells. J. Cell Biol. 78:47–57.Google Scholar
  312. Weber, K. 1976. Visualization of tubulin-containing structures by immunofluorescence microscopy. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book A, pp. 403–417.Google Scholar
  313. Weber, K., Rathke, P. C., and Osborn, M. 1978. Cytoplasmic microtubular images in glutaraldehyde-fixed tissue culture cells by electron microscopy and by immunofluorescence microscopy. Proc. Natl. Acad. Sci. USA 75:1820–1824.ADSGoogle Scholar
  314. Weeds, A., and Frank, G. 1972. Structural studies on the light chains of myosin. Cold Spring Harbor Symp. Quant. Biol. 37:9–14.Google Scholar
  315. Weingarten, M. D., Lockwood, A. H., Horo, S. Y., and Kirschner, M. W. 1975. A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. USA 72:1858–1862.ADSGoogle Scholar
  316. Weisenberg, R. C. 1972. Microtubule formation in vitro in solutions containing low calcium concentrations. Science 177:1104–1105.ADSGoogle Scholar
  317. Weisenberg, R. D., Borisy, G. G., and Taylor, E. W. 1968. The colchicine binding protein of mammalian brain and its relation to microtubules. Biochemistry 7:4466–4479.Google Scholar
  318. Whalen, R. G., Butler-Browne, G. S., and Gros, F. 1976. Protein synthesis and actin heterogeneity in calf muscle cells in culture. Proc. Natl. Acad. Sci. USA 73:2018–2122.ADSGoogle Scholar
  319. Wilkinson, J. M. 1976. The amino acid sequence of troponin C from chicken skeletal muscle. FEBS Lett. 70:254–256.Google Scholar
  320. Wilkinson, J. M. 1978. The components of troponin from chicken fast skeletal muscle: A comparison of troponin T and troponin I from breast and leg muscle. Biochem. J. 169:229–238.Google Scholar
  321. Wikinson, J. M., and Grand, R. J. A. 1975. The amino acid sequence of troponin I from rabbit skeletal muscle. Biochem. J. 149:493–496.Google Scholar
  322. Wilkinson, J. M., and Grand, R. J. A. 1978. The amino acid sequence of chicken fast skeletal muscle troponin I. Eur. J. Biochem. 82:493–502.Google Scholar
  323. Wilkinson, J. M., Perry, S. V., Cole, H. A., and Trayer, I. P. 1972. The regulatory proteins of the myofibril. Biochem. J. 127:215–228.Google Scholar
  324. Wise, B. N. 1965. Fine structure of Euplotes: Filaments, vesicles and kinetosomes. J. Cell Biol. 27:113A–114A.Google Scholar
  325. Witman, G. B. 1975. The site of in vivo assembly of flagellar microtubules. Ann. N.Y. Acad. Sci. 253:178–191.ADSGoogle Scholar
  326. Witman, G. B., Carlson, K., and Rosenbaum, J. L. 1972. Chlamydomonas flagella. II. The distribution of tubulins 1 and 2 in the outer doublet microtubules. J. Cell Biol. 54:540–555.Google Scholar
  327. Witman, G. B., Cleveland, D. W., Weingarten, M. D., and Kirschner, M. W. 1976. Tubulin requires tau for growth onto microtubule initiating sites. Proc. Natl. Acad. Sci. USA 73:4070–4074.ADSGoogle Scholar
  328. Wolff, J., and Bhattacharyya, B. 1975. Microtubules and thyroid hormone mobilization. Ann. N.Y. Acad. Sci. 253:763–770.ADSGoogle Scholar
  329. Wuerker, R. B. 1970. Neurofilaments and glial filaments. Tissue Cell 2:1–9.Google Scholar
  330. Yanagisawa, T., Hasegawa, S., and Mohri, H. 1968. The bound nucleotides of the isolated microtubules of sea urchin sperm flagella and their possible role in flagellar movement. Exp. Cell Res. 52:86–100.Google Scholar
  331. Yen, S., Lee, V., and Shelanski, M. L. 1975. Evidence for identity of 9 nm filaments in neurons and astroglia. J. Cell Biol. 67:468a.Google Scholar
  332. Zigmond, S. H., Otto, J. J., and Bryan, J. 1979. Organization of myosin in a submembranous sheath in well-spread human fibroblasts. Exp. Cell Res. 119:205–220Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Lawrence S. Dillon
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations