Cell Motility: II The Flagellum

  • Lawrence S. Dillon


In many ways, this second chapter on cell motility is a continuation of the discussion of microtubules pursued in the two that precede it, because flagella and cilia, like pseudopods, contain microfibrillar components in abundance. Actually, these structures could very well be viewed as microtubular organelles, but only in the eukaryotes, for in the prokaryotes they are of completely different structure, displaying an absence of homology, which is discussed more fully later.


Central Tubule Central Pair Basal Apparatus Flagellar Movement Sperm Flagellum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, G. 1977. Rotation of bacterial flagella as driven by cytomembrane streaming. J. Theor. Biol. 65:713–726.Google Scholar
  2. Adler, J. 1976. Some aspects of the structure and function of bacterial flagella. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book A, pp. 29–33.Google Scholar
  3. Adler, J., and Dahl, M. M. 1967. A method for measuring the motility of bacteria and for comparing random and non-random motility. J. Gen. Microbiol. 46:161–173.Google Scholar
  4. Afzelius, B. 1959. Electron microscopy of the sperm tail: Results obtained with a new fixative. J. Biophys. Biochem. Cytol. 5:269–278.Google Scholar
  5. Afzelius, B. 1961. The fine structure of the cilia from ctenophore swimming-plates. J. Biophys. Biochem. Cytol. 9:383–394.Google Scholar
  6. Allen, C., and Borisy, G. G. 1974. Structural polarity and directional growth of microtubules of Chlamydomonas flagella. J. Mol. Biol. 90:381–402.Google Scholar
  7. Allen, R. D. 1968. A reinvestigation of cross-sections of cilia. J. Cell Biol. 37:825–831.Google Scholar
  8. André, J. 1961. Sur quelques details nouvellement connus de l’ultrastructure des organites vibratiles. J. Ultrastruct. Res. 5:86–108.Google Scholar
  9. Auclair, W., and Siegel, B. W. 1966. Cilia regeneration in the sea urchin embryo: Evidence for a pool of ciliary proteins. Science 154:913–915.ADSGoogle Scholar
  10. Baccetti, B., and Dallai, R. 1976. The spermatozoon of Arthropoda. XXVII. Uncommon axoneme patterns in different species of cecydomyid dipterans. J. Ultrastruct. Res. 55:50–69.Google Scholar
  11. Baccetti, B., Burrini, A. G., Dallai, R., and Pallini, V. 1979. The dynein electrophoretic bands in axonemes naturally lacking the inner or the outer arm. J. Cell. Biol. 80:334–340.Google Scholar
  12. Bargmann, W. 1954. Uber Feinbau und Funktion des Saccus vasculosus. Z. Zellforsch. Mikrosk. Anat. 40:49–74.Google Scholar
  13. Bargmann, W., and Knoop, A. 1955. Electronmikroskopische Untersuchungen der Kronichenzellen des Saccus vasculosus. Z. Zellforsch. Mikrosk. Anat. 43:184–194.Google Scholar
  14. Barnes, B. G. 1961. Ciliated secretory cells in the pars distalis of the mouse hypophysis. J. Ultrastruct. Res. 5:453–467.ADSGoogle Scholar
  15. Berg, H. C. 1974. Dynamic properties of bacterial flagellar motors. Nature (London) 249:77–79.ADSGoogle Scholar
  16. Berg, H. C. 1975. Bacterial behaviour. Nature (London) 254:389–392.ADSGoogle Scholar
  17. Berg, H. C. 1976. Does the flagellar rotary motor step? In: Goldman, R., Pollard, T., and Rosenbaum, J., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book A, pp. 47–56.Google Scholar
  18. Black, F. T., Freundt, E. A., Vinther, O., and Christiansen, C. 1979. Flagellation and swimming motility of Thermoplasma acidophilum. J. Bacteriol. 137:456–460.Google Scholar
  19. Bouck, G. B. 1969. Extracellular microtubules. J. Cell Biol. 40:446–460.Google Scholar
  20. Bouck, G. B. 1971. The structure, origin, and composition of the tubular mastigonemes of the Ochromonas flagellum. J. Cell Biol. 50:362–384.Google Scholar
  21. Bouck, G. B., Rogalski, A., and Valaitis, A. 1978. Surface organization and composition of Euglena. II. Flagellar mastigonemes. J. Cell Biol. 77:805–826.Google Scholar
  22. Bovee, G. C., Jahn, T. L., Fonesca, J. R., and Landman, M. D. 1963. Flagellar movements in some species of mastigamoebas. Abstr. Seventh Meet. Biphys. Soc. MD2.Google Scholar
  23. Bradfield, J. R. G. 1955. Fibre patterns in animal flagella and cilia. Symp. Soc. Exp. Biol. 9:306–334.Google Scholar
  24. Bradley, D. E. 1966. The ultrastructure of the flagella of the chrysomonads with particular reference to the mastigonemes. Exp. Cell Res. 41:162–173.Google Scholar
  25. Bradley, T. J., and Satir, P. 1979. Insect axopods. J. Cell Sci. 35:165–176.Google Scholar
  26. Brock, T. D. 1974. Biology of Microorganisms, 2nd ed., Englewood Cliffs, N.J., Prentice-Hall.Google Scholar
  27. Brokaw, C. J. 1961. Movement and nucleoside polyphosphatase activity of isolated flagella from Polytoma uvella. Exp. Cell Res. 22:151–162.Google Scholar
  28. Brokaw, C. J. 1963. Movement of the flagella of Polytoma uvella. J. Exp. Biol. 40:149–156.Google Scholar
  29. Brokaw, C. J. 1965. Non-sinusoidal bending waves of sperm flagella. J. Exp. Biol. 43:155–169.Google Scholar
  30. Brokaw, C. J. 1972. Flagellar movement: A sliding filament model. Science 178:455–462.ADSGoogle Scholar
  31. Brokaw, C. J., and Simonick, T. F. 1976. CO2 regulation of the amplitude of flagellar bending. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book C, pp. 933–940.Google Scholar
  32. Brokaw, C. J., and Wright, L. 1963. Bending waves of the posterior flagellum of Ceratium. Science 142:1169–1170.ADSGoogle Scholar
  33. Brown, D. L., and Rogers, K. A. 1978. Hydrostatic pressure-induced internalization of flagellar axonemes, disassembly, and reutilization during flagellar regeneration in Polytomella. Exp. Cell Res. 117:313–324.Google Scholar
  34. Brown, H. P., and Cox, A. 1954. An electron microscopic study of protozoan flagella. Am. Midl. Nat. 52:106–117.Google Scholar
  35. Brown, W. V., and Bertke, E. M. 1974. Textbook of Cytology, St. Louis, Mosby.Google Scholar
  36. Burns, R. G., and Pollard, D. 1974. A dynein-like protein from brain. FEBS Lett. 40:274–280.Google Scholar
  37. Burton, P. R. 1973. Some structural and cytochemical observations on the axial filament complex of lung-fluke spermatozoa. J. Morphol. 140:185–196.Google Scholar
  38. Burton, P. R., and Silveira, M. 1971. Electron microscopic and optical diffraction studies of negatively stained axial units of certain platyhelminth sperm. J. Ultrastruct. Res. 36:757–767.Google Scholar
  39. Chalcroft, J. P., Bullivant, S., and Howard, B. H. 1973. Ultrastructural studies on Selenomonas ruminantium from the sheep rumen. J. Gen. Microbiol. 79:135–146.Google Scholar
  40. Chang, J. Y., DeLange, R. J., Shaper, J. H., and Glazer, A. N. 1976. Amino acid sequence of flagellin in Bacillus subtilis 168. I. Cyanogen bromide peptides. J. Biol. Chem. 251:695–700.Google Scholar
  41. Chen, L. L., and Haines, T. H. 1976. The flagellar membrane of Ochromonas danica. J. Biol. Chem. 251:1828–1834.Google Scholar
  42. Chen, L. L., Pousada, M., and Haines, T. H. 1976. The flagellar membrane of Ochromonas danica. Lipid composition. J. Biol. Chem. 251:1835–1842.Google Scholar
  43. Claybrook, J. R., and Nelson, L. 1968. Flagellar adenosine triphosphatase from sea urchin sperm: properties and relation to motility. Science 162:1134–1136.ADSGoogle Scholar
  44. Coulton, J. W., and Murray, R. G. E. 1977. Membrane associated components of the bacterial flagellar apparatus. Biochim. Biophys. Acta 465:290–310.Google Scholar
  45. Coulton, J. W., and Murray, R. G. E. 1978. Cell envelope associations of Aquaspirillum serpens flagella. J. Bacteriol. 136:1037–1049.Google Scholar
  46. Davidson, B. E. 1971. The alignment of cyanogen bromide fragments from the flagellin of Salmonella adelaide. Eur. J. Biochem. 18:524–529.Google Scholar
  47. De Lange, R. J., Chang, J. Y., Shaper, J. H., Komatzus, S. K., and Glazer, A. N. 1973. On the amino-acid sequence of flagellin from B. subtilis 168: Comparison with other bacterial flagellins. Proc. Natl. Acad. Sci. USA 70:3428–3431.ADSGoogle Scholar
  48. De Lange, R. J., Chang, J. Y., Shaper, J. H., and Glazer, A. N. 1976. Amino acid sequence of flagellin of Bacillus subtilis 68. III. Tryptic peptides, n-biomosuccinimide peptides, and the complete amino acid sequence. J. Biol. Chem. 251:705–711.Google Scholar
  49. Dentier, W. L. 1977. Structures connecting microtubules and membranes in cilia and flagella. J. Cell Biol. 75:287a.Google Scholar
  50. Dentier, W. L., and Rosenbaum, J. L. 1977. Flagellar elongation and shortening in Chlamydomonas. III. Structures attached to the tips of flagellar microtubules and their relationship to the directionality of flagellar microtubule assembly. J. Cell Biol. 74:747–759.Google Scholar
  51. De Pamphilis, M. L., and Adler, J. 1971a. Purification of intact flagella from E. coli and B. subtilis. J. Bacteriol. 105:376–383.Google Scholar
  52. De Pamphilis, M. L., and Adler, J. 1971b. Fine structure and isolation of the hook-basal body complex of flagella from E. coli and B. subtilis. J. Bacteriol. 105:384–395.Google Scholar
  53. De Pamphilis, M. L., and Adler, J. 1971c. Attachment of flagellar bodies to the cell envelope: Specific attachment to the outer, lipopolysaccharide membrane and the cytoplasmic membrane. J. Bacteriol. 105:396–407.Google Scholar
  54. de Robertis, E. 1956. Electron microscope observations on the submicroscopic organization of the retinal rods. J. Biophys. Biochem. Cytol. 2:319–330.Google Scholar
  55. Dillon, L. S. 1978. The Genetic Mechanism and the Origin of Life, New York, Plenum Press.Google Scholar
  56. Dimmit, K., and Simon, M. I. 1971. Purification and thermal stability of intact E. coli flagella. J. Bacteriol. 105:369–375.Google Scholar
  57. Doetsch, R. N., and Hageage, G. J. 1968. Motility in procaryotic organisms. Biol. Rev. 43:317–362.Google Scholar
  58. Dute, R., and Kung, C. 1978. Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia. J. Cell Biol. 78:451–464.Google Scholar
  59. Eckert, R. 1972. Bioelectric control of ciliary activity. Science 176:473–481.ADSGoogle Scholar
  60. Emerson, S., and Simon, M. 1971. Variation in the primary structure of Bacillus subtilis flagellins. J. Bacteriol. 106:949–954.Google Scholar
  61. Fauré-Fremiet, E. 1958. The origin of metazoa and the stigma of the phytoflagellates. Q. J. Microsc.Sci. 99:123–129.Google Scholar
  62. Fawcett, D. W. 1954. The study of epithelial cilia and sperm flagella with the electron microscope. Laryngoscope 64:557–567.Google Scholar
  63. Fawcett, D. W. 1957. The structure of mammalian spermatozoon. Int. Rev. Cytol. 7:195–234.Google Scholar
  64. Fawcett, D. W. 1961. Cilia and flagella. In: Brachet, J., and Mirsky, A. E., eds., The Cell, New York, Academic Press, Vol. 2, pp. 217–297.Google Scholar
  65. Follett, E. A. C., and Gordon, J. 1963. An electron microscope study of Vibria flagella. J. Gen. Microbiol. 32:235–239.Google Scholar
  66. Friend, D. S. 1966. The fine structure of Giardia muris. J. Cell Biol. 29:317–332.Google Scholar
  67. Fuerst, J. A., and Hayward, A. C. 1969. The sheathed flagellum of Pseudomonas stizolobii. J. Gen. Microbiol. 32:235–245.Google Scholar
  68. Fukuda, A., Koyasu, S., and Okada, Y. 1978. Characterization of two flagella-related proteins from Caulobacter crescentus. FEBS Lett. 95:70–75.Google Scholar
  69. Fulton, C. 1970. Amebo-flagellates as research partners: The laboratory biology of Naegleria and Tetramitus. In: Prescott, D. M. ed., Methods in Cell Physiology, New York, Academic Press, Vol. 4, pp. 341–476.Google Scholar
  70. Fulton, C., and Simpson, P. A. 1976. Selective synthesis and utilization of flagellar tubulin. The multi-tubulin hypothesis. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book C, pp. 987–1005.Google Scholar
  71. Gibbons, B. H., and Gibbons, I. R. 1979. Relationship between the latent ATPase state of dynein 1 and its ability to recombine functionally with KCl-extracted sea urchin sperm flagella. J. Biol. Chem. 254:197–201.Google Scholar
  72. Gibbons, I. R. 1961. The relationship between fine structure and direction of beat in gill cilia of a lamellibranch mollusc. J. Biophys. Biochem. Cytol. 11:179–204.Google Scholar
  73. Gibbons, I. R. 1977. Structure and function of flagellar microtubules. In: Brinkley, B. R., and Porter, K. R., eds., International Cell Biology, 1976–1977, New York, Rockefeller University Press, pp. 348–357.Google Scholar
  74. Gibbons, I. R., and Fronk, E. 1979. A latent ATPase form of dynein 1 from sea urchin sperm flagella. J. Biol. Chem. 254:187–196.Google Scholar
  75. Gibbons, I. R., and Grimstone, A. V. 1960. On flagellar structure in certain flagellates. J. Biophys. Biochem. Cytol. 7:697–716.Google Scholar
  76. Gibbons, I. R., and Rowe, A. J. 1965. Dynein: A protein with ATPase activity from cilia. Science 149:424–425.ADSGoogle Scholar
  77. Gibbons, I. R., Fronk, E., Gibbons, B. H., and Ogawa, K. 1976. Multiple forms of dynein in sea urchin sperm flagella. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book C, pp. 915–932.Google Scholar
  78. Glauert, A. M., Kerridge, D., and Horne, R. W. 1963. The fine structure and mode of attachment of the sheathed flagellum of Vibrio metchnikovii. J. Cell Biol. 18:327–336.Google Scholar
  79. Glossmann, H., and Bode, W. 1972. Cyanogen bromide cleavage of Proteus mirabilis flagellin. Hoppe-Seyler’s Z. Physiol. Chem. 353:298–306.Google Scholar
  80. Gordon, M., and Barnett, R. J. 1967. Fine structural cytochemical localizations of phosphatase activities of rat and guinea pigs. Exp. Cell Res. 48:395–412.Google Scholar
  81. Grimes, G. W., and Adler, J. A. 1976. The structure and development of the dorsal bristle complex. J. Protozool. 23:135–143.Google Scholar
  82. Grimes, G. W., and Adler, J. A. 1978. Regeneration of ciliary pattern in longitudinal fragments of the hypotrichous ciliate, Stylonychia. J. Exp. Zool. 204:57–80.Google Scholar
  83. Grimstone, A. V. 1963. The fine structure of some polymastigate flagellates. Proc. Linn. Soc. London 174:49–52.Google Scholar
  84. Guentzel, M. N., and Berry, L. J. 1975. Motility as a virulence factor for Vibrio cholerae. Infect. Immun. 11:890–897.Google Scholar
  85. Guttmann, S. G. 1978. Doctoral dissertation. University of Rochester, Rochester, N.Y.Google Scholar
  86. Hanson, J., and Huxley, H. E. 1955. The structural basis of contraction in striated muscle. Symp. Soc. Exp. Biol. 9:228–264.Google Scholar
  87. Harris, K. 1963. Observations on Sphaleromantis tetragona. J. Gen. Microbiol. 33:345–348.Google Scholar
  88. Hendelberg, J. 1965. The different types of spermatozoa in Polycladida, Turbellaria. Arkv. Zool. (2)18:267–304.Google Scholar
  89. Hershenov, B. R., Tulloch, G. S., and Johnson, A. D. 1966. The fine structure of trematode sperm tails. Trans. Am. Microsc. Soc. 85:480–483.Google Scholar
  90. Hibberd, D. J., and Leedale, G. F. 1972. Observations on the cytology and ultrastructure of the new algal class, Eustigmatophyceae. Ann. Bot. 36:49–71.Google Scholar
  91. Hilmen, M., and Simon, M. 1976. Motility and the structure of bacterial flagella. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book A, pp 35–45.Google Scholar
  92. Hilmen, M., Silverman, M., and Simon, M. 1974. The regulation of flagellar formation and function. J. Supramol. Struct. 2:360–371.Google Scholar
  93. Hoeniger, J. F. M., van Iterson, W., and van Zanten, E. N. 1966. Basal bodies of bacterial flagella in Proteus mirabilis. II. Electron microscopy of negatively stained material. J. Cell Biol. 31:603–618.Google Scholar
  94. Hoffmann-Berling, H. 1955. Geisselmodelle und Adeninosintriphosphat (ATP). Biochim. Biphys. Acta 16:146–154.Google Scholar
  95. Hopkins, J. M. 1970. Subsidiary components of the flagella of Chlamydomonas reinhardii. J. Cell Sci. 7:823–839.Google Scholar
  96. Horiguchi, T., Yamaguchi, S., Yao, K., Taira, T., and Iino, T. 1975. Genetic analysis of H1, the structural gene for phase 1 flagellin in Salmonella. J. Gen. Microbiol. 91:139–149.Google Scholar
  97. Hotani, H. 1979. Micro-video study of moving bacterial flagellar movements. J. Mol. Biol. 129:305–318.Google Scholar
  98. Houwink, A. L. 1953. A macromolecular mono-layer in the cell wall of Spirillum species. Biochim. Biophys. Acta 10:360–366.Google Scholar
  99. Hufnagel, L. A., and Torch, R. 1967. Intraclonal dimorphism of caudal cirri in Euplotes vannus cortical determination. J. Protozool. 14:429–439.Google Scholar
  100. Hyams, J. S., and Borisy, G. G. 1978. Isolated flagellar apparatus of Chlamydomonas: Characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. J. Cell Sci. 33:235–253.Google Scholar
  101. Iino, T. 1969. Genetics and chemistry of bacterial flagella. Bacteriol. Rev. 33:454–475.Google Scholar
  102. Iino, T. 1974. Assembly of Salmonella flagellin in vitro and in vivo. J. Supramol. Struct. 2:372–384.Google Scholar
  103. Jahn, T. L., and Bovee, E. C. 1965. Movement and locomotion of microorganisms Annu. Rev. Microbiol. 19:21–58.Google Scholar
  104. Jahn, T. L., and Fonseca, J. R. 1963. Mechanisms of locomotion of flagellates: V. Trypanosoma lewisi and T. cruzi. J. Protozool. Suppl. 10.Google Scholar
  105. Jahn, T. L., Landman, M. D., and Fonseca, J. R. 1964. The mechanism of locomotion of flagellates II. Function of the mastigonemes of Ochromonas. J. Protozool. 11:291–296.Google Scholar
  106. Johnson, R. C., Walsh, M. P., Ely, B., and Shapiro, L. 1979. Flagellar hook and basal complex of Caulobacter crescentus. J. Bacteriol. 138:984–989.Google Scholar
  107. Joys, T. M., and Rankis, V. 1972. The primary structure of the phase 1 flagellar protein of Salmonella typhimurium. 1. The tryptic peptides. J. Biol. Chem. 247:5180–5193.Google Scholar
  108. Kauffmann, F. 1964. Das Kauffmann-White schema. In:van Oye, E. L., ed., The World Problem of Salmonellosis, The Hague, June, pp. 21–66.Google Scholar
  109. Kaye, J. S. 1964. The fine structure of flagella in spermatids of the house cricket. J. Cell Biol. 22:710–714.Google Scholar
  110. Kennedy, J. R., and Brittingham, E. 1968. Fine structure changes during chloral hydrate deciliation of Paramecium caudatum. J. Ultrastruct. Res. 22:530–545.Google Scholar
  111. Kirby, H. 1941–1949. Devescovinid flagellates of termites. Univ. Calif. Publ. Zool. 45:1–91.Google Scholar
  112. Komeda, Y., Suzuki, H., Ishidsu, J., and Iino, T. 1975. The role of cAMP in flagellation of Salmonella typhimurium. Mol. Gen. Genet. 142:289–298.Google Scholar
  113. Komeda, Y., Silverman, M., and Simon, M. 1977. Genetic analysis of E. coli K-12 region I flagellar mutants. J. Bacteriol. 131:801–808.Google Scholar
  114. Kort, E. N., Goy, M. F., Larsen, S. H., and Adler, J. 1975. Methylation of a membrane protein involved in bacterial Chemotaxis. Proc. Natl. Acad. Sci. USA 72:3939–3943.ADSGoogle Scholar
  115. Koshland, D. E. 1977. Bacterial chemotaxis and some enzymes in energy metabolism. Symp. Soc. Gen. Microbiol. 27:317–332.Google Scholar
  116. Langford, G. M. and Inoué, S. 1979. Motility of the microtubular axostyle in Pyrsonympha. J. Cell Biol. 80:521–538.Google Scholar
  117. Larsen, S. H., Reader, R. W., Kort, E. N., Tso, W. W., and Adler, J. 1974. Change in direction of flagellar rotation is the basis of the chemotactic response in E. coli. Nature (London) 249:74–77.ADSGoogle Scholar
  118. Läuger, P. 1977. Ion transport and rotation of bacterial flagella. Nature (London) 268:360–362.ADSGoogle Scholar
  119. Leedale, G. F. 1967. Euglenoid Flagellates, Englewood Cliffs, N.J., Prentice-Hall.Google Scholar
  120. Leedale, G. F., Leadbeater, B. S. C., and Massalski, A. 1970. The intracellular origin of the flagellar hairs in the Chyrsophyceae and Xanthophyceae. J. Cell Sci. 6:701–719.Google Scholar
  121. Lefebvre, P. A., Nordstrom, S. A., Moulder, J. E., and Rosenbaum, J. L. 1978. Flagellar elongation and shortening in Chlamydomonas. IV. Effects of flagellar detachment, regeneration, and resorption on the induction of flagellar protein synthesis. J. Cell Biol. 78:8–27.Google Scholar
  122. Lewin, R. A. 1958. The cell wall of Platymonas. J. Gen. Microbiol. 19:87–90.Google Scholar
  123. Linck, R. W. 1973. Chemical and structural differences between cilia and flagella from the lamellibranch mollusc, Aequipecten irradians. J. Cell Sci. 12:951–981.Google Scholar
  124. Linck, R. W. 1976. Fractionation of minor component proteins and tubulin from specific regions of flagellar doublet microtubules. In: Goldman, R., Pollard, R., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book C, pp. 819–890.Google Scholar
  125. Machin, K. E. 1958. Wave propagation along flagella. J. Exp. Biol. 35:796–806.Google Scholar
  126. Manton, I. 1952. The fine structure of plant cilia. Symp. Soc. Exp. Biol. 6:306–319.Google Scholar
  127. Manton, I. 1964. Further observations on the fine structure of the haptonema in Prymnesium parvum. Arch. Mikrobiol. 19:315–330.Google Scholar
  128. Manton, I., and Harris, K. 1966. Observations on the microanatomy of the brown flagellate Sphaleromantis tetragona Skuja with special reference to the flagellar apparatus and scales. J. Linn. Soc. London Bot. 59:397–403.Google Scholar
  129. Manton, I., and Leedale, G. F. 1961. Further observations on the fine structure of Chrysochromulina ericina Parke and Manton. Arch. Mikrobiol. 41:145–155.Google Scholar
  130. Manton, I., and Leedale, G. F. 1963a. Observations on the fine structure of Prymnesium parvum Carter. Arch. Mikrobiol. 45:285–303.Google Scholar
  131. Manton, I., and Leedale, G. F. 1963b. Observation on the micro-anatomy of Chrystallolithus hyalinus Gaarder and Markali. Arch. Mikrobiol. 47:115–136.Google Scholar
  132. Manton, I., and von Stosch, H. A. 1966. Observations on the fine structure of the male gamete of the marine centric diatom Lithodesmium undulatum. J. R. Microsc. Soc. Lond. 85: 119–134.Google Scholar
  133. Manton, I., Rayns, D. G., and Ettl, H. 1965. Further observations on green flagellates with scaly flagella: The genus Heteromastix Korshikov. J. Mar. Biol. Assoc. U.K. 45:241–255.Google Scholar
  134. Marchand, B., and Mattei, X. 1976a. La Spermatogenèse des acanthocéphales. I. L’appareil centriolaire et flagellaire au cours de la Spermiogenèse d’Illiosentis furcatus var. africana Golvan, 1956 (Paleacanthocephala, Rhadinorhynchidae). J. Ultrastruct. Res. 54:347–358.Google Scholar
  135. Marchand, B., and Mattei, X. 1976b. Ultrastructure du spermatozöide de Centrorhynchus milvus Ward, 1956 (Paleacanthocephala, Plymorphidae). C. R. Seances Soc. Biol. Paris 170:237–242.Google Scholar
  136. Marchand, B., and Mattei, X. 1976c. La spermiatogenèse des acanthocéphales. II. Variation du nombre de fibres centrales dans le flagelle spermatique d’Acanthosentis tilapiae Baylis (Eoacanthocephala, Quadrigyridae). J. Ultrastruct. Res. 55:391–399.Google Scholar
  137. Marchand, B., and Mattei, X. 1977. Un type nouveau de structure flagellaire. J. Cell Biol. 72:707–713.Google Scholar
  138. Marchand, B., and Mattei, X. 1978. Flagellogenèse chez un Eoacanthocephala: Mise en place et désorganisation de l’axoneme spermatique. J. Ultrastruct. Res. 63:41–50.Google Scholar
  139. Markey, D. R., and Bouck, G. B. 1977. Mastigoneme attachment in Ochromonas. J. Ultrastruct. Res. 59:173–177.Google Scholar
  140. Maruyama, M., Lodderstaedt, G., and Schmitt, R. 1978. Purification and biochemical properties of complex flagella isolated from Rhizobium lupini H13–3. Biochim. Biphys. Acta 535:110–124.Google Scholar
  141. Massalski, A., and Leedale, G. F. 1969. Cytology and ultrastructure of the Xanthophyceae. I. Comparative morphology of the zoosphores of Bumilleria sicula Borzi and Tribonema vulgare Pascher. Br. Phycol. J. 4:159–180.Google Scholar
  142. Matsumura, P., Silverman, M., and Simon, M. 1977. Cloning and expression of the flagellar hook gene on hybrid plasmids in minicells. Nature (London) 265:758–760.ADSGoogle Scholar
  143. Metzner, P. 1920. Die Bewegung und Reizbeantwortung der bipolar begeisselten Spirillen. Jahrb. Wiss. Bot. 59:325–412.Google Scholar
  144. Miki-Noumura, T., and Kamiya, R. 1979. Conformational change in the outer doublet microtubules from sea urchin sperm flagella. J. Cell Biol. 84:355–360.Google Scholar
  145. Milhaud, M., and Pappas, G. D. 1968. Cilia formation in the adult cat brain after pargyline treatment. J. Cell Biol. 37:599–609.Google Scholar
  146. Miller, W. H. 1958. Derivatives of cilia in the distal sense cells of the retina of Pecten. J. Biophys. Biochem. Cytol. 4:227–228.Google Scholar
  147. Norstag, K. 1967. Fine structure of the spermatozoid of Zamia with special reference to the flagellar apparatus. Am. J. Bot. 54:831–840.Google Scholar
  148. Parke, M. and Manton, I. 1965. Preliminary observations on the fine structure of Prasinocladus marinus. J. Mar. Biol. Assoc. U.K. 45:525–536.Google Scholar
  149. Parke, M. Lund, J. W. G., and Manton, I. 1962. Observations on the biology and fine structure of the type species of Chrysochromulina (C. parva Lackey) in the English Lake District. Arch. Mikrobiol. 42:333–352.Google Scholar
  150. Patterson-Delafield, J., Martinez, R. J., Stocker, B. A. D., and Yamaguchi, S. 1973. A new fla gene in Salmonella typhimurium-flaR and its mutant phenotype—superhooks. Arch. Microbiol. 90:107–120.Google Scholar
  151. Phillips, D. M. 1969. Exceptions to the prevailing pattern of tubules (9 + 9 + 2) in the sperm flagella of certain insect species. J. Cell Biol. 40:28–43.Google Scholar
  152. Pitelka, D. R. 1961. Fine structure of the silverline and fibrillar systems of three tetrahymenid ciliates. J. Protozool. 8:75–89.Google Scholar
  153. Pitelka, D. R. 1963. Electron-Microscopic Structure of Protozoa, Oxford, Pergamon Press.Google Scholar
  154. Pitelka, D. R., and Schooley, C. N. 1955. Comparative morphology of some protistan flagella. Univ. Calif. Publ. Zool. 61:79–128Google Scholar
  155. Pommerville, J. 1978. Analysis of gamete and zygote motility in Allomyces. Exp. Cell Res. 113:161–172.Google Scholar
  156. Raska, I., Mayer, F., Edlebluth, C., and Schmitt, R. 1976. Structure of plain and complex flagellar hooks of Pseudomonas rhodos. J. Bacteriol. 125:679–688.Google Scholar
  157. Reese, T. S. 1965. Olfactory cilia in the frog. J. Cell Biol. 25:209–230.Google Scholar
  158. Rosenbaum, J. L., and Child, F. M. 1967. Flagellar regeneration in protozoan flagellates. J. Cell Biol. 34:345–364.Google Scholar
  159. Rosenbaum, J. L., Moulder, J. E., and Ringo, D. L. 1969. Flagellar elongation and shortening in Chlamydomonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. J. Cell Biol. 41:600–619.Google Scholar
  160. Sager, R., and Palade, G. E. 1957. Structure and development of the chloroplast in Chlamydomonas. J. Biophys. Biochem. Cytol. 3:463–487.Google Scholar
  161. Satir, P. 1963. Studies on cilia: The fixation of the metachronal wave. J. Cell Biol. 18:345–365.Google Scholar
  162. Satir, P. 1965. Studies on cilia. II. Examination of the distal region of the ciliary shaft and the role of the filaments in motility. J. Cell Biol. 26:805–834.Google Scholar
  163. Satir, P. 1968. Studies on cilia. III. J. Cell Biol. 39:77–94.Google Scholar
  164. Satir, P. 1974. How cilia move. Sci. Am. 231(4):44–52.Google Scholar
  165. Schmitt, R., Raska, I., and Mayer, F. 1974a. Plain and complex flagella of Pseudomonas rhodos: Analysis of fine structure and composition. J. Bacteriol. 117:844–857.Google Scholar
  166. Schmitt, R., Bamberger, I., Acker, G., and Mayer, F. 1974b. Fine structure analysis of the complex flagella of Rhizobium lupini H13-3. Arch. Microbiol. 100:145–162.Google Scholar
  167. Schrank, G. D., and Verway, W. F. 1976. Distribution of cholera organisms in experimental Vibrio cholerae infections: Proposed mechanisms of pathogenesis and antibacterial immunity. Infect. Immun. 13:195–203.Google Scholar
  168. Shaper, J. H., DeLange, R. J., Martinez, R. J., and Glazer, A. N. 1976. Amino acid sequence of flagellin of Bacillus subtilis 168. II. Tryptic peptides from methylated flagellin. J. Biol. Chem. 251:701–704.Google Scholar
  169. Shimizu, T. 1975. Recombination of ciliary dynein of Tetrahymena with the outer fibers. J. Biochem. 78:41–49.MathSciNetGoogle Scholar
  170. Silveira, M. 1969. Ultrastructural studies on a 9 + 1 flagellum. J. Ultrastruct. Res. 26:274–288.Google Scholar
  171. Silveira, M. 1973. Intraaxonemal glycogen in “9 + 1” flagella of flatworms. J. Ultrastruct. Res. 44:253–264.Google Scholar
  172. Silveira, M. 1974. The fine structure of 9 + 1 flagella in turbellarian flatworms. In: Afzelius, B. A., ed., Functional Anatomy of the Spermatozoon, New York, Pergamon Press, pp. 289–298.Google Scholar
  173. Silverman, M., and Simon, M. 1972. Flagellar assembly mutants in E. coli. J. Bacteriol. 112:986–993.Google Scholar
  174. Silverman, M., and Simon, M. 1973. Genetic analysis of flagellar mutants in E. coli. J. Bacteriol. 113:105–113.Google Scholar
  175. Silverman, M., and Simon, M. 1974a. Flagellar rotation and the mechanism of bacterial motility. Nature (London) 249:73–74.ADSGoogle Scholar
  176. Silverman, M., and Simon, M. 1974b. Characterization of E. coli flagellar mutants that are insensitive to catabolite repression. J. Bacteriol. 120:1196–1203.Google Scholar
  177. Simon, M. I., Emerson, S. U., Shaper, J. H., Bernard, P. D., and Glazer, A. N. 1977. Classification of Bacillus subtilis flagellins. J. Bacteriol. 130:200–204.Google Scholar
  178. Sleigh, M. A. 1962. The Biology of Cilia and Flagella, New York, Macmillan.Google Scholar
  179. Slifer, E. H., and Sekhon, S. S. 1963. Sense organs on the antennal flagellum of the milkweed bug Lygaeus kalmii Stal. J. Morphol. 112:165–193.Google Scholar
  180. Sonneborn, T. M. 1970. Gene action in development. Proc. R. Soc. London Ser. B. 176:347–366.ADSGoogle Scholar
  181. Sorokin, S. P. 1962. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J. Cell Biol. 15:363–377.Google Scholar
  182. Steinman, R. M. 1968. An electron microscopic study of ciliogenesis in developing epidermis and trachea in the embryo of Xenopus laevis. Am. J. Anat. 122:19–56.Google Scholar
  183. Stephens, R. E. 1970. Thermal fractionation of outer fiber doublet microtubules into A-and B-subfiber components: A-and B-tubulin. J. Mol. Biol. 47:353–363.Google Scholar
  184. Stephens, R. S. 1975. Structural chemistry of the axoneme: Evidence for chemically and functionally unique tubulin dimers in outer fibers. In: Inoué, S., and Stephens, R. E., eds., Molecules and Cell Movement, New York, Raven Press, pp. 181–206.Google Scholar
  185. Stephens, R. E. 1977. Major membrane protein differences in cilia and flagella: Evidence for a membrane associated tubulin. Biochemistry 16:2047–2058.Google Scholar
  186. Summers, K. E., and Gibbons, I. R. 1971. ATP-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc. Natl. Acad. Sci. USA 68:3092–3096.ADSGoogle Scholar
  187. Summers, K. E., and Gibbons, I. R. 1973. Effects of trypsin digestion on flagellar structures and their relationship to motility. J. Cell Biol. 58:618–629.Google Scholar
  188. Suzuki, H., and Iino, T. 1975. Absence of mRNA specific for flagellin in non-flagellate mutants of Salmonella. J. Mol. Biol. 95:549–556.Google Scholar
  189. Suzuki, H., Iino, T., Horiguchi, T., and Yamaguchi, S. 1978. Incomplete flagellar structures in nonflagellate mutants of Salmonella typhimurium. J. Bacteriol. 133:904–915.Google Scholar
  190. Takahashi, M., and Tonomura, Y. 1978. Binding of 30 S dynein with the B-tubule of the outer doublet of axonemes from Tetrahymena pyriformis and ATP-induced dissociation. J. Biochem. 84:1339–1355.Google Scholar
  191. Tamm, S. L. 1967. Flagellar development in the protozoan Peranema trichophorum. J. Exp. Zool. 164:163–186.Google Scholar
  192. Tamm, S. L. 1976. Properties of a rotary motor in eukaryotic cells. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book C, pp. 949–967.Google Scholar
  193. Tamm, S. L. 1978. Laser microbeam study of a rotary motor in termite flagellates. J. Cell Biol. 78:76–92.Google Scholar
  194. Tamm, S. L. 1979. Membrane movements and fluidity during rotational motility of a termite flagellate. J. Cell Biol. 80:141–149.Google Scholar
  195. Tamm, S. L., and Tamm, S. 1974. Direct evidence for fluid membranes. Proc. Natl. Acad. Sci. USA 71:4589–4593.ADSGoogle Scholar
  196. Tamm, S. L., and Tamm, S. 1976. Rotary movements and fluid membranes in termite flagellates. J. Cell Sci. 20:619–639.Google Scholar
  197. Tawara, J. 1965. The root of flagella of Vibrio cholerae. Jpn. J. Microbiol. 9:49–54.Google Scholar
  198. To, L. P., and Margulis, L. 1978. Ancient locomotion: Prokaryotic motility systems. Int. Rev. Cytol. 54:267–293.Google Scholar
  199. Tulloch, G. S., and Hershenov, B. R. 1967. Fine structure of platyhelminth sperm tails. Nature (London) 213:299–300.ADSGoogle Scholar
  200. Turner, F. R. 1968. An ultrastructural study of plant spermatogenesis. Spermatogenesis in Nitella. J. Cell Biol. 37:370–393.Google Scholar
  201. van Iterson, W., Hoeniger, J. F. M., and van Zanten, E. N. 1966. Basal bodies of bacterial flagella in Proteus mirabilis. I. Electron microscopy of sectioned material. J. Cell Biol. 31:585–601.Google Scholar
  202. Vary, P. S., and Stocker, B. A. D. 1973. Nonsense motility mutants in Salmonella typhimurium. Genetics 73:229–245.Google Scholar
  203. von Bonsdorff, C. H., and Telkkä, A. 1965. The spermatozoon flagella in Diphyllobothrium laterum (fish tapeworm). Z. Zellforsch. Mikrosk. Anat. 66:643–648.Google Scholar
  204. Warner, F. D. 1978. Cation-induced attachment of ciliary dynein cross-bridges. J. Cell Biol. 77:R19–R26.Google Scholar
  205. Warner, F. D., and Mitchell, D. R. 1978. Structural conformation of ciliary dynein arms and the generation of sliding forces in Tetrahymena cilia. J. Cell Biol. 76:261–277.Google Scholar
  206. Warner, F. D., and Satir, P. 1974. The structural basis of ciliary bend formation. Radial spoke positional changes accompanying microtubule sliding. J. Cell Biol. 63:35–63.Google Scholar
  207. Warner, F. D., Mitchell, D. R., and Perkins, C. R. 1977. Structural conformation in the ciliary ATPase dynein. J. Mol. Biol. 114:367–384.Google Scholar
  208. Williams, H. R., Verwey, W. F., Schrank, G. D., and Hurry, E. K. 1973. An in vitro antigen-antibody reaction in relation to a hypothesis of intestinal immunity to cholera. Proc. Joint Cholera Res. Conf., U.S. Department of State, pp. 161–173.Google Scholar
  209. Willmer, E. N. 1955. The physiology of vision. Annu. Rev. Physiol. 17:339–366.Google Scholar
  210. Witman, G. B., Carlson, K., Berliner, J., and Rosenbaum, J. L. 1972. Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J. Cell. Biol. 54:507–539.Google Scholar
  211. Witman, G. B., Fay, R., and Plummer, J. 1976. Chlamydomonas mutants: Evidence for the roles of specific axonemal components in flagellar movement. In: Goldman, R., Pollard, T., and Rosenbaum, J., eds., Cell Motility, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory, Book C, pp. 969–986.Google Scholar
  212. Witman, G. B., Plummer, J., and Sander, G. 1978. Chlamydomonas flagellar mutants lacking radial spokes and central tubules. J. Cell Biol. 76:729–747.Google Scholar
  213. Yamaguchi, S., Iino, T., Horiguchi, T., and Ohta, K. 1972. Genetic analysis of fla and mot cistrons closely linked to H1 in Salmonella abortuesequi and its derivatives. J. Gen. Microbiol. 70:59–75.Google Scholar
  214. Yang, G. C. H., Schrank G. D., and Freeman, B. A. 1977. Purification of flagellar cores of Vibrio cholerae. J. Bacteriol. 129:1121–1128.Google Scholar
  215. Zanetti, N. C., Mitchell, D. R., and Warner, F. D. 1979. Effects of divalent cations on dynein cross bridging and ciliary microtubule sliding. J. Cell Biol. 80:573–588.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Lawrence S. Dillon
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations