Secretory Organelles: II The Vesicular System

  • Lawrence S. Dillon


In addition to the cisternae and tubules that comprise the endomembrane system just given attention, several major types of vesicles are involved in the secretory processes of cells. One of these, the lysosome, has already received mention as being part of GERL (Chapter 6) and still earlier in connection with endocytosis and receptor sites in the discussion of membranes (Chapter 1, Sections 1.2.1 and 1.2.2). Here even more clearly than in the membranous organelles, secretion is revealed as the underlying mechanism for most cellular functions, for these little bodies carry the secreted products to where the action is finally to take place. But much more is involved in the functioning of these vesicular particles than mere conduction of finished products, as becomes evident as the lysosome, peroxisome, spherosome, and others of lesser importance are discussed.


Pollen Tube Acid Phosphatase Lipid Body Acid Phosphatase Activity Acid Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aaronson, S. 1973. Digestion in phytoflagellates. In: Dingle, J. T., ed., Lysosomes in Biology and Pathology, Amsterdam, North-Holland, Vol. 3, pp. 18–37.Google Scholar
  2. Ackerman, G. A. 1963. Cytochemical properties of the blood basophilic granulocyte. Ann. N.Y. Acad. Sci. 103:376–393.ADSGoogle Scholar
  3. Afzelius, B. A. 1977. Spermatozoa and spermatids of the crinoid Antedon petasus, with a note on primitive spermatozoa from deuterostome animals. J. Ultrastruct. Res. 59:272–281.Google Scholar
  4. Afzelius, B. A., and Ferraguti, M. 1978. The spermatozoon of Priapulus caudatus Lamarck. J. Submicrosc. Cytol. 10:71–79.Google Scholar
  5. Allison, A. C., and Hartree, E. F. 1970. Lysosomal enzymes in the acrosome and their possible role in fertilization. J. Reprod. Fertil. 21:501–515.Google Scholar
  6. Archer, G. T., and Hirsch, J. G. 1963. Isolation of granules from eosinophil leucocytes and study of their enzyme content. J. Exp. Med. 118:277–285.Google Scholar
  7. Archer, G. T., Air, G., Jackas, M., and Morell, D. B. 1965. Studies on rat eosinophil peroxidase. Biochim. Biophys. Acta 99:96–101.Google Scholar
  8. Armentrout, V. N., and Wilson, C. L., 1969. Haustorium-host interaction during mycoparasitism of Mycotypha microspora by Pyptocephalis virginiana. Phytopathology 59:897–905.Google Scholar
  9. Armentrout, V. N., Graves, L. B., and Maxwell, D. P. 1978. Localization of enzymes of oxalate biosynthesis in microbodies of Sclerotium rolfsii. Phytopathology 68:1597–1599.Google Scholar
  10. Arnold, G., and Holtzman, E. 1978. Microperoxisomes in the central nervous system of the postnatal rat. Brain Res. 155:1–18.Google Scholar
  11. Arnold, G., Liscum, L., and Holtzman, E. 1979. Ultrastructural localization of D-amino acid oxidase in microperoxisomes of the rat nervous tissue. J. Histochem. Cytochem. 27:735–745.Google Scholar
  12. Ashworth, J. M., and Quance, J. 1972. Enzyme synthesis in myxamoebae of the cellular slime mold Dictyostelium discoideum during growth in axenic culture. Biochem. J. 126:601–608.Google Scholar
  13. Ashworth, J. M., and Wiener, E. 1973. The lysosomes of the cellular slime mold Dictyostelium discoideum. In: Dingle, J. T., ed., Lysosomes in Biology and Pathology, Amsterdam, North-Holland, Vol. 3, pp. 38–48.Google Scholar
  14. Ashworth, J. M., Duncan, D., and Rowe, A. J. 1969. Changes in fine structure during cell differentiation of the cellular slime mold Dictyostelium discoideum. Exp. Cell Res. 58:73–78.Google Scholar
  15. Avers, C. J., and Federman, M. 1968. The occurrence in yeast of cytoplasmic granules which resemble microbodies. J. Cell Biol. 37:555–559.Google Scholar
  16. Bainton, D. F. 1972. Origin, content, and fate of PMN granules. In: Williams, R. C., and Fudenberg, H. H., eds., Phagocytic Mechanisms in Health and Disease, New York, Intercontinental Medical Book Corp., p. 123.Google Scholar
  17. Bainton, D. F., and Farquhar, M. G. 1970. Segregation and packaging of granule enzymes in eosinophilic leukocytes. J. Cell Biol. 43:54–73.Google Scholar
  18. Bainton, D. F., Ullyot, J. L., and Farquhar, M. G. 1971. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J. Exp. Med. 134:907–934.Google Scholar
  19. Bainton, D. F., Nichols, B. A., and Farquhar, M. G. 1976. Primary lysosomes of blood leukocytes. In: Dingle, J. T., and Dean, R. T., eds., Lysosomes in Biology and Pathology, Amsterdam, North-Holland, Vol. 5, pp. 3–32.Google Scholar
  20. Baudhuin, P. 1969. Liver peroxisomes, cytology and function. Ann. N.Y. Acad. Sci. 168:214–228.ADSGoogle Scholar
  21. Baudhuin, P., Beaufay, H., and deDuve, C. 1965a. Combined biochemical and morphological study of particulate fractions from rat-liver. J. Cell Biol. 26:219–243.Google Scholar
  22. Baudhuin, P., Müller, M., Poole, B., and deDuve, C. 1965b. Non-mitochondrial oxidizing particles (microbodies) in rat liver and kidney and in Tetrahymena pyriformis. Biochem. Biophys. Res. Commun. 20:53–59.Google Scholar
  23. Bennuh, A., and Blum, J. J. 1966. Properties of the induced acid phosphatase and of the constitutive acid phosphatase of Euglena. Biochim. Biophys. Acta 128:106–123.Google Scholar
  24. Berg, C. P. 1959. Utilization of D-amino acids. In: Albanese, A. A., ed., Protein and Amino Acid Nutrition, New York, Academic Press, pp. 57–96.Google Scholar
  25. Berjak, P., and Villiers, T. A. 1970. Aging in plant embryos. New Phytol. 69:929–938.Google Scholar
  26. Bird, J. W. C., Spanier, A. M., and Schwartz, W. N. 1978. Cathepsins B and D: Proteolytic activity and ultrastructural localization in skeletal muscle. In: Segal, H. L., and Doyle, D. J., eds., Protein Turnover and Lysosome Function, New York, Academic Press, pp. 589–604.Google Scholar
  27. Blanchard, M., Green, D. E., Nocito, V., and Ratner, S. 1944. L-Amino acid oxidase of animal tissue. J. Biol. Chem. 155:421–440.Google Scholar
  28. Bowen, I. D., and Bryant, J. A. 1978. The fine structural localization of p-nitrophenyl phosphatase activity in the storage cells of pea cotyledon. Protoplasma 97:241–250.Google Scholar
  29. Bowen, I. D., Coakley, W. T., and James, C. J. 1979. The digestion of Saccharomyces cerevisiae by Acanthamoeba castellanii. Protoplasma 98:63–71.Google Scholar
  30. Breidenbach, R. W. 1969. Characterization of some glyoxysomal proteins. Ann. N.Y. Acad. Sci. 168:342–347.ADSGoogle Scholar
  31. Breidenbach, R. W., and Beevers, H. 1967. Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm. Biochem. Biophys. Res. Commun. 27:462–469.Google Scholar
  32. Brenner, D. M., and Carroll, G. C. 1968. Fine structural correlates of growth in hyphae of Ascodesmis sphaerospora. J. Bacteriol. 95:658–671.Google Scholar
  33. Claude, A. 1943. The constitution of protoplasm. Science 97:451–456.ADSGoogle Scholar
  34. Clayton, R. K. 1959. Purified catalase from Rhodopseudomonas sphaeroides. Biochim. Biophys. Acta 36:40–47.Google Scholar
  35. Clermont, Y., and Leblond, C. P. 1955. Spermiogenesis of man, monkey, ram, and other mammals as shown by the “periodic acid-Schiff” technique. Am. J. Anat. 96:229–253.Google Scholar
  36. Cohn, Z. A., and Wiener, E. 1963. The particulate hydrolases of macrophages. II. Biochemical and morphological response to particle ingestion. J. Exp. Med. 118:1009–1019.Google Scholar
  37. Cullen, M. J., Appleyard, S. T., and Bindoff, L. 1979. Morphologic aspects of muscle breakdown and lysosomal activation. Ann. N.Y. Acad. Sci. 317:440–463.ADSGoogle Scholar
  38. Curtis, S. K., Cowden, R. R., and Nagel, J. W. 1979. Ultrastructure of the bone marrow of the salamander, Plethodon glutinosus. J. Morphol. 159:151–184.Google Scholar
  39. de Duve, C. 1964. From cytases to lysosomes. Fed. Proc. Fed. Am. Soc. Exp. Biol. 23:1045–1049.Google Scholar
  40. de Duve, C. 1969. Evolution of the peroxisomes. Ann. N.Y. Acad. Sci. 168:369–381.ADSGoogle Scholar
  41. de Duve, C. 1971. Tissue fractionation, past and present. J. Cell Biol. 50:20d–55d.Google Scholar
  42. de Duve, C. 1973. Biochemical studies on the occurrence, biogenesis, and life history of mammalian peroxisomes. J. Histochem. Cytochem. 21:941–948.Google Scholar
  43. de Duve, C., and Baudhuin, P. 1966. Peroxisomes (microbodies and related particles). Physiol. Rev. 46:323–357.Google Scholar
  44. de Duve, C., and Wattiaux, R. 1966. Functions of lysosomes. Annu. Rev. Physiol. 28:435–492.Google Scholar
  45. de Duve, C., Pressman, B. C., Gianetto, R., Wattiaux, R., and Appelmans, F. 1955. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem. J. 60:604–617.Google Scholar
  46. de Duve, C., Beaufay, H., Jacques, P., Rahman-Li, Y., Sellinger, O. Z., Wattiaux, R., and de Coninck, S. 1960. Intracellular localization of catalase and of some oxidases in rat liver. Biochim. Biophys. Acta 40:186–187.Google Scholar
  47. Dingle, J. T. 1972. Lysosomes: A Laboratory Handbook, Amsterdam, North-Holland.Google Scholar
  48. Dixon, M., and Webb, E. C. 1964. Enzymes, 2nd ed., New York, Academic Press.Google Scholar
  49. Drawert, H., and Mix, M. 1962. Licht-und elektronenmikroskopische Untersuchungen an Desmidiaceen. X. Beiträge zur Kenntnis der “Haütung” von Desmidiaceae. Arch. Mikrobiol. 42:96–109.Google Scholar
  50. Drum, R. W. 1963. The cytoplasmic fine structure of the diatom, Nitzchia palea. J. Cell Biol. 18:429–440.Google Scholar
  51. Eeckhout, Y. 1970. Propriétés et localisation des hydrolases acides du Trypanosomide Crithidia luciliae. Arch. Int. Physiol. Biochem. 78:993–994.Google Scholar
  52. Eeckhout, Y. 1972. Studies on acid hydrolases and on catalase of the trypanosomatid Crithidia luciliae. In:van den Bossche, H., ed., The Comparative Biochemistry of Parasites, New York, Academic Press.Google Scholar
  53. Eeckhout, Y. 1973. Digestion and lysosomes in zooflagellates. In: Dingle, J. T., ed., Lysosomes in Biology and Pathology, Amsterdam, North-Holland, Vol. 3, pp. 3–17.Google Scholar
  54. El-Hawawi, A. S. N., and King, P. E. 1978. Spermiogenesis in a pycnogonid Nymphon gracile (Leach). J. Submicrosc. Cytol. 10:345–356.Google Scholar
  55. Ericsson, J. L. E. 1969. Mechanism of cellular autophagy. In: Dingle, J. T., and H. B. Fell, eds., Lysosomes in Biology and Pathology, Amsterdam, North-Holland, Vol. 2, pp. 345–394.Google Scholar
  56. Essner, E. 1966. Endoplasmic reticulum and the origin of microbodies in fetal liver. Fed. Proc. Fed. Am. Soc. Exp. Biol. 25:361.Google Scholar
  57. Essner, E. 1967. Endoplasmic reticulum and the origin of microbodies in fetal mouse liver. Lab. Invest. 17:71–87.Google Scholar
  58. Farquhar, M. G. 1969. Lysosome function in regulating secretion: Disposal of secretory granules in cells of the anterior pituitary gland. In: Dingle, J. T., and Fell, H. B., eds., Lysosomes in Biology and Pathology, Amsterdam, North-Holland, Vol. 2, pp. 462–482.Google Scholar
  59. Farquhar, M. G. 1971. Processing of secretory products by cells of the anterior pituitary gland. Mem. Soc. Endocrinol. 19:79–124.Google Scholar
  60. Fawcett, D. W. 1966. The Cell: Its Organelles and Inclusions, Philadelphia, Saunders.Google Scholar
  61. Franzén, Å. 1977. Sperm structure with regard to fertilization biology and phylogenetics. Verh. Dtsch. Zool. Ges. 1977:123–138.Google Scholar
  62. Franzén, Å. 1979. A fine structure study on spermiogenesis in the Entoprocta. J. Submicrosc. Cytol. 11:73–84.Google Scholar
  63. Frederick, S. E., and Newcomb, E. H. 1969. Microbody-like organelles in leaf cells. Science 163:1353–1355.ADSGoogle Scholar
  64. Frey-Wyssling, A., and Mühlethaler, K. 1965. Ultrastructural Plant Cytology, New York, American Elsevier.Google Scholar
  65. Frey-Wyssling, A., Greishaber, E., and Mühlethaler, K. 1963. Origin of spherosomes in plant cells. J. Ultrastruct. Res. 8:506–516.Google Scholar
  66. Friend, D. S., and Farquhar, M. G. 1967. Functions of coated vesicles during protein absorption in the rat vas deferens. J. Cell Biol. 35:357–376.Google Scholar
  67. Gahan, P. B. 1973. Plant lysosomes. In: Dingle, J. T., ed., Lysosomes in Biology and Pathology, Amsterdam, North-Holland, Vol. 3, pp. 69–85.Google Scholar
  68. Gezelius, K. 1966. Acid phosphatase in Dictyostelium discoideum. Physiol. Plant. 19:946–959.Google Scholar
  69. Gibson, R. A., and Paleg, L. G. 1972. Lysosomal nature of hormonally induced enzymes in wheat aleurone cells. Biochem. J. 128:367–375.Google Scholar
  70. Giranello, R. D., and Axelrod, J. 1973. Genetically controlled alterations in the rate of degradation of phenylethanolamine N-methyl transferase. J. Biol. Chem. 248:5616–5623.Google Scholar
  71. Girbardt, M. 1961. Licht-und elektronmikroskopische Untersuchungen an Polystictus versicolor. II. Die Feinstruktur von Grundplasma und Mitochondrien. Arch. Mikrobiol. 39:351–359.Google Scholar
  72. Goff, L. J. 1979a. The biology of Harveyella mirabilis (Rhodophyceae). VI. Translocation of photoassimilated 14C1,2. J. Phycol. 15:82–87.Google Scholar
  73. Goff, L. J. 1979b. The biology of Harveyella mirabilis (Cryptonemiales, Rhodophyceae). VII. Structure and proposed function of host-penetrating cells. J. Phycol. 15:87–100.Google Scholar
  74. Gonzalez, E., and Beevers, H. 1976. Role of the endoplasmic reticulum in glyoxysome formation in castor bean endosperm. Plant Physiol. 57:406–409.Google Scholar
  75. Grieshaber, E. 1964. DeEntwicklung und Feinbau der Sphärosomen in Pflanzenzellen. Vierteljahrsschr. Naturforsch. Ges. Zürich 109:1–23.Google Scholar
  76. Hamburger, V., and Hamilton, H. L. 1951. A series of normal stages in the development of the chick embryo. J. Morphol. 88:49–92.Google Scholar
  77. Hanstein, J. V. 1880. Bot. Abhandl. Morph. Physiol. 4:1.Google Scholar
  78. Hartree, E. F. 1975. The acrosome-lysosome relationship. J. Reprod. Fertil. 44:125.Google Scholar
  79. Hayashi, H., and Sugo, T. 1978. Some characteristics of peroxisomes in the slime mold, Dictyostelium discoideum. J. Biochem. 84:513–520.Google Scholar
  80. Heath, M. F., Gandy, G., and Jacobson, W. 1976. Lysosomes in the lung. In: Dingle, J. T., and Dean, R. T., eds., Lysosomes in Biology and Pathology, Amsterdam, North-Holland, Vol. 5, pp. 33–58.Google Scholar
  81. Herbert, D., and Pinsent, J. 1948. Crystalline bacterial catalase. Biochem. J. 43:193–202.Google Scholar
  82. Hess, W. M. 1968. Ultrastructural comparisons of fungus hyphal cells using frozen-etched replicas and thin sections of the fungus Pyrenochaeta terrestris. Can. J. Microbiol. 14:205–210.Google Scholar
  83. Hieber, V., Distler, J., Myerowitz, R., Schnickel, R. D., and Jourdian, G. W. 1976. The role of glycosidically bound mannose in the assimilation of β-galactosidase by generalized gangliosidosis fibroblasts. Biochem. Biophys. Res. Commun. 73:710–717.Google Scholar
  84. Higashi, T., and Peters, T. 1963a. Studies on rat liver catalase. I. Combined immunochemical and enzymatic determination of catalase in liver cell fractions. J. Biol. Chem. 238:3945–3951.Google Scholar
  85. Higashi, T., and Peters, T. 1963b. Studies on rat liver catalase. II. Incorporation of 14C-leucine into calatase of liver cell fractions in vivo. J. Biol. Chem. 238:3952–3954.Google Scholar
  86. Hinklemann, W. 1966. Thesis, Technische Hochschule, Braunschweig.Google Scholar
  87. Hirsch, J. G. 1962. Cinemicrophotographic observations on granule lysis in polymorphonuclear leucocytes during phagocytosis. J. Exp. Med. 116:827–834.Google Scholar
  88. Hirsch, J. G., and Cohn, Z. A. 1960. Degranulation of polymorphonuclear leucocytes following phagocytosis of microorganisms. J. Exp. Med. 112:1005–1014.Google Scholar
  89. Hirsch, J. G., and Cohn, Z. A. 1964. Digestive and autolytic function of lysosomes in phagocytic cells. Fed. Proc. Fed. Am. Soc. Exp. Biol. 23:1023–1025.Google Scholar
  90. Hohl, H. R. 1965. Nature and development of membrane systems in food vacuoles of cellular slime molds predatory upon bacteria. J. Bacteriol. 90:755–765.Google Scholar
  91. Hohl, H. R., and Hamamoto, S. T. 1967. Ultrastructural changes during zoospore formation in Phytophthora parasitica. Am. J. Bot. 54:1121–1139.Google Scholar
  92. Holtzman, E. 1969. Lysosomes in the physiology and pathology of neurons. In: Dingle, J. T., and Fell, H. B., eds., Lysosomes in Biology and Pathology, Amsterdam, North-Holland, Vol. 1, pp. 192–216.Google Scholar
  93. Holtzman, E. 1976. Lysosomes: A Survey, Vienna, Springer-Verlag.Google Scholar
  94. Holtzman, E., Novikoff, A. B., and Villaverde, H. 1967. Lysosomes and GERL in normal and chromatolytic neurons of the rat ganglion nodosum. J. Cell Biol. 33:419–436.Google Scholar
  95. Hruban, Z., and Rechcigl, M. 1969. Microbodies and related particles. Int. Rev. Cytol. Suppl. 1:1–265.Google Scholar
  96. Hruban, Z., and Swift, H. 1964. Uricase: Localization in hepatic microbodies. Science 146:1316–1318.ADSGoogle Scholar
  97. Hurle, J. M., Lafarga, M., and Ojeda, J. L. 1977. Cytological and cytochemical studies of the nectoric area of the bulbous of the chick embryo heart. Phagocytosis by developing myocardial cells. J. Embryol. Exp. Morphol. 41:161–173.Google Scholar
  98. Hurle, J. M., Lafarga, M., and Ojeda, J. L. 1978. In vivo phagocytosis by developing myocardial cells. An ultrastructural study. J. Cell Sci. 33:363–369.Google Scholar
  99. Ishikawa, T., Wicher, K., and Arbesman, C. E., 1974. In vitro and in vivo studies on uptake of antigen-antibody complexes by eosinophils. Int. Arch. Allergy Appl. Immunol. 46:230–248.Google Scholar
  100. Jamieson, B. G. M., and Daddow, L. 1979. An ultrastructural study of microtubules and the acrosome in spermiogenesis of Tubificidae (Oligochaeta). J. Ultrastruct. Res. 67:209–224.Google Scholar
  101. Jamieson, B. G. M., Daddow, L., and Bennett, J. D. 1978. Ultrastructure of the tubificid acrosome (Annelida, Oligochaeta). Zool. Scr. 7:115–118.Google Scholar
  102. Jarosch, R. 1961. Das Characeen-protoplasma und seine Inhaltskörper. Protoplasma 53:34–56.Google Scholar
  103. Kagawa, T., Lord, J. M., and Beevers, H. 1973. The origin and turnover of organelle membranes in castor bean endosperm. Plant Physiol. 51:61–65.Google Scholar
  104. Kaltwasser, H. 1968. Induktive Bildung partikel gebundener Uricase bei Hydrogenomonas H16 und anderen aeroben Bakterien. Arch. Mikrobiol. 60:160–171.Google Scholar
  105. Kaplan, A., Fischer, D., Achord, D. T., and Sly, W. S. 1977. Phosphohexosyl recognition is a general characteristic of pinocytosis of lysosomal glycoside bases by human fibroblasts. J. Clin. Invest. 60:1088–1093.Google Scholar
  106. Kaplan, A., Fischer, D., and Sly, W. S. 1978. Correlation of structural features of phosophomannans with their ability to inhibit pinocytosis of human β-glucuronidase by human fibroblasts. J. Biol. Chem. 253:647–650.Google Scholar
  107. Kemmler, W., Steiner, D. F., and Borg, J. 1973. Studies on the conversion of proinsulin to insulin. J. Biol. Chem. 248:4544–4551.Google Scholar
  108. Kerr, J. F. R. 1973. Some lysosome functions in liver cells reacting to sublethal injury. In: Dingle, J. T., ed., Lysosomes in Biology and Pathology, Amsterdam, North-Holland, Vol. 3, pp. 365–394.Google Scholar
  109. Kisaki, T., and Tolbert, N. E. 1969. Glycolate and glyoxylate metabolism by isolated peroxisomes or chloroplasts. Plant Physiol. 44:242–250.Google Scholar
  110. Klebanoff, S. J., and Hamon, C. B. 1975. Antimicrobial systems of mononuclear leukocytes. In:van Furth, R., ed., Mononuclear Phagocytes in Immunity, Infection, and Pathology, Oxford, Blackwell, pp. 507–529.Google Scholar
  111. Kleinig, H., Steinki, C., Kopp, C., and Zaar, K. 1978. Oleosomes (spherosomes) from Daucus carota suspension culture cells. Planta 140:233–238.Google Scholar
  112. Knox, R. B., and Heslop-Harrison, J. 1970. Pollen wall proteins: Localization and enzymatic activity. J. Cell Sci. 6:1–27.Google Scholar
  113. Köller, W., Frevert, J., and Kindl, H. 1979. Albumins, glyoxysomal enzymes and globulins in dry seeds of Cucumis sativus: Qualitative and quantitative analysis. Hoppe-Seyler’s Z. Physiol. Chem. 36:167–176.Google Scholar
  114. Kozar, F., and Weijer, J. 1969. Electron-dense structures in Neurospora crassa. II. Lomasomelike structures, Can. J. Genet. Cytol. 11:617–621.Google Scholar
  115. Lamb, J. E., Riezman, H., Becker, W. M., and Leaver, C. J. 1978. Regulation of glyoxysomal enzymes during germination of cucumber. 2. Isolation and immunological detection of isocitrate lyase and catalase. Plant Physiol. 62:754–760.Google Scholar
  116. Lange, L., and Olson, L. W. 1977. The zoospore of Phlyctochytrium aestuarii. Protoplasma 93:27–43.Google Scholar
  117. Lange, L., and Olson, L. W. 1978. The zoospore of Synchytrium endobioticum. Can. J. Bot. 56:1229–1239.Google Scholar
  118. Lee, D. 1970. The relative permeability of lysosomes from Tetrahymena pyriformis to carbohydrates, lactate, and the cryoprotective nonelectrolytes, glycerol and dimethylsulfoxide. Biochim. Biophys. Acta 211:550–554.Google Scholar
  119. Levitt, J. 1967. The mechanism of stomatal action. Planta 74:101–118.ADSGoogle Scholar
  120. Locke, M., and Collins, J. V. 1968. Protein uptake into multivesicular bodies and storage granules in the fat body of an insect. J. Cell Biol. 36:453–483.Google Scholar
  121. Locke, M., and McManon, J. T. 1971. The origin and fate of microbodies in the fat body of an insect. J. Cell Biol. 48:61–78.Google Scholar
  122. Lockwood, W. R., and Allison, F. 1963. Electron micrographic studies of phagocytic cells. 1. Morphological changes of the cytoplasm and granules of rabbit granulocytes associated with ingestion of rough Pneumococcus. Bot. J. Exp. Pathol. 44:593–600.Google Scholar
  123. Lui, N. S. T., Roels, O. A., Trout, M. E., and Anderson, O. R. 1968. Subcellular distribution of enzymes in Ochromonas malhamensis. J. Protozool. 15:536–542.Google Scholar
  124. McGowan, E. B., Shafiq, S. A., and Stracher, A. 1976. Delayed degeneration of dystrophic and normal muscle cell cultures treated with pepstatin, leupeptin and antipain. Exp. Neurol. 50:649–657.Google Scholar
  125. Mannering, G. J., Van Harken, D. R., Makar, A. B., Tephly, T. R., Watkins, W. D., and Goodman, J. I. 1969. Role of the intracellular distribution of hepatic catalase in the peroxidative oxidation of methanol. Ann. N.Y. Acad. Sci. 168:265–280.ADSGoogle Scholar
  126. Manocha, M. S., and Shaw, M. 1964. Occurrence of lomasomes in mesophyll cells of “Khapli” wheat. Nature (London) 203:1402–1403.ADSGoogle Scholar
  127. Matile, P. 1964. Die Funktion proteolytischer Enzyme bei der Proteinaufnahme durch Neurospora crassa. Naturwissenschaften 51:489–490.ADSGoogle Scholar
  128. Matile, P. 1965. Intrazelluläre Lokalisation proteolytischer Enzyme von Neurospora crassa. I. Funktion und subzellulare Verteilung protolytischer Enzyme. Z. Zellforsch. Mikrosk. Anat. 65:884–896.Google Scholar
  129. Matile, P. 1968a. Aleurone vacuoles as lysosomes. Z. Pflanzenphysiol. 58:365–368.Google Scholar
  130. Matile, P. 1968b. Utilization of peptides in yeasts. Proc. 2nd Symp. Yeasts, Bratislavia, p. 1966.Google Scholar
  131. Matile, P. 1969. Plant lysosomes. In: Dingle, J. T., and Fell, H. B., eds., Lysosomes in Biology and Pathology, Amsterdam, North-Holland, Vol. 1, pp. 406–430.Google Scholar
  132. Matile, P. 1975. The Lytic Compartment of Plant Cells. New York, Springer-Verlag.Google Scholar
  133. Matile, P., and Moore, H. 1968. Vacuolation: Origin and development of the lysosomal apparatus in root-tip cells. Planta 80:159–175.Google Scholar
  134. Mayagkaya, G., Schellens, J. P. M., and Vreeling-Sinderlárová, H. 1979. Lysosomal breakdown of erythrocytes in the sheep placenta. Cell Tissue Res. 197:79–94.Google Scholar
  135. Mego, J. L. 1973. Protein digestion in isolated heterolysosomes. In: Dingle, J. T., ed., Lysosomes in Biology and Pathology, Amsterdam, North-Holland, Vol. 3, pp. 138–168.Google Scholar
  136. Miller, F., de Harven, E., and Palade, G. E. 1966. Structure of eosinophil leukocytic granules in rodents and man. J. Cell Biol. 31:349–362.Google Scholar
  137. Moor, H., and Mühlethaler, K. 1963. Fine structure in frozen etched yeast cells. J. Cell Biol. 17:609–628.Google Scholar
  138. Mooradian, B. A., and Cutler, L. S. 1978. Developmental distribution of microperoxisomes in the rat submandibular gland. J. Histochem. Cytochem. 26:989–999.Google Scholar
  139. Moore, T., and McAlear, J. H. 1961. Fine structure of Mycota. 5. Lomasomes—Previously uncharacterized hyphal structures. Mycologia 53:194–200.Google Scholar
  140. Morton, D. B. 1976. Lysosomal enzymes in mammalian spermatozoa. In: Dingle, J. T., and Dean, R. T., eds., Lysosomes in Biology and Pathology, Amsterdam, North-Holland, Vol. 5, pp. 203–255.Google Scholar
  141. Müller, M. 1969. Peroxisomes of Protozoa. Ann. N.Y. Acad. Sci. 168:292–301.ADSGoogle Scholar
  142. Müller, M. 1972. Secretion of acid hydrolase and its intracellular source in Tetrahymena pyriformis. J. Cell Biol. 52:478–487.Google Scholar
  143. Müller, M. 1973. Biochemical cytology of trichomonad flagellates. J. Cell Biol. 57:453–474.Google Scholar
  144. Müller, M., and Møller, K. M. 1969a. Studies on some enzymes of purine metabolism in the amoebae Chaos chaos and Amoeba proteus. C. R. Trav. Lab. Carlsberg 36:463–497.Google Scholar
  145. Müller, M., and Møller, K. M. 1969b. Urate oxidase and its association with peroxisomes in Acanthamoeba sp. Eur. J. Biochem. 9:424–430.Google Scholar
  146. Müller, M., Baudhuin, P., and deDuve, C. 1966. Lysosmes in Tetrahymena pyriformis. I. Some properties and lysosomal localization of acid hydrolases. J. Cell. Physiol. 68:165–175.Google Scholar
  147. Müller, M., Hogg, J. F., and deDuve, C. 1968. Distribution of tricarboxylic acid cycle enzymes and of glyoxylate cycle enzymes between mitochondria and peroxisomes in Tetrahymena pyriformis. J. Biol. Chem. 243:5385–5395.Google Scholar
  148. Nakabayashi, T., and Ikezawa, H. 1978. An isoelectric focusing study of acid phosphohydrolases in rat liver lysosomes. J. Biochem. 84:351–360.Google Scholar
  149. Neims, A. H., and Hellerman, L. 1962. Specificity of the D-amino acid oxidase in relation to glycine oxidase activity. J. Biol. Chem. 237:PC976–PC978.Google Scholar
  150. Neufeld, E. F., Sando, G. N., Garvin, A. J., and Rome, L. H. 1977. The transport of lysosomal enzymes. J. Supramol. Struct. 6:95–101.Google Scholar
  151. Nicholls, P., and Schonbaum, G. R. 1963. Catalases. In: Boyer, P. D., Lardy, H., and Myrbäck, K., eds., The Enzymes, New York, Academic Press, Vol. VIII, pp. 147–225.Google Scholar
  152. Nichols, B. A., and Bainton, D. F. 1973. Differentiation of human monocytes in bone marrow and blood. Sequential formation of two granule populations. Lab. Invest. 29:27–40.Google Scholar
  153. Nichols, B. A., and Bainton, D. F. 1975. Ultrastructure and cytochemistry of mononuclear phagocytes, In:van Furth, R., ed., Mononuclear Phagocytes in Immunity, Infection, and Pathology, Oxford, Blackwell, pp. 17–55.Google Scholar
  154. Nichols, B. A., Bainton, D. F., and Farquhar, M. G. 1971. Differentiation of monocytes: Origin, nature, and fate of their azurophil granules. J. Cell Biol. 50:498–515.Google Scholar
  155. Noguchi, T., Takada, Y., and Fujiwara, S. 1979. Degradation of uric acid to urea and glyoxylate in peroxisomes. J. Biol. Chem. 254:5272–5275.Google Scholar
  156. Novikoff, A. B. 1961. Lysosomes and related particles. In: Brachet, J., and Mirsky, A. E., eds., The Cell: Biochemistry, Physiology, Morphology, Vol. II, Cells and Their Component Parts, New York, Academic Press, pp. 423–488.Google Scholar
  157. Novikoff, A. B. 1976. The endoplasmic reticulum: A cytochemist’s view (A review). Proc. Natl. Acad. Sci. USA 73:2781–2787.ADSGoogle Scholar
  158. Novikoff, A. B., and Essner, E. 1962. Pathological changes in cytoplasmic organelles. Fed. Proc. Fed. Am. Soc. Exp. Biol. 21:1130–1142.Google Scholar
  159. Novikoff, A. B., and Shin, W. Y. 1964. The endoplasmic reticulum in the Golgi zone and its relation to microbodies, Golgi apparatus and autophagic vacuoles in rat liver cells. J. Microsc. (Paris) 3:187–206.Google Scholar
  160. Novikoff, A. B., Essner, E., and Quintana, N. 1964. Golgi apparatus and lysosomes. Fed. Proc. Fed. Am. Soc. Exp. Biol. 23:1010–1023.Google Scholar
  161. Novikoff, A. B., Novikoff, P. M., Davis, C., and Quintana, N. 1973. Studies on microspherosomes. V. Are microperoxisomes ubiquitous in mammalian cells? J. Histochem. Cytochem. 21:737–755.Google Scholar
  162. Owen, K. 1979. Biochemical studies of dystrophy in the young chicken: Lysosomal and sarcolemma enzymes. Ann. N.Y. Acad. Sci. 317:247–262.ADSGoogle Scholar
  163. Paavola, L. G. 1979a. Cellular mechanisms involved in luteolysis. In: Channing, C. P., Marsh, J. M., and Sadler, W. A., eds., Ovarian Follicular and Corpus Luteum Function, New York, Plenum Press, pp. 527–533.Google Scholar
  164. Paavola, L. G. 1979b. The corpus leuteum of the guinea pig. IV. Fine structure of macrophages during pregnancy and postpartum luteolysis, and the phagocytosis of luteal cells. Am. J. Anat. 154:337–364.Google Scholar
  165. Pagano, R. E., and Weinstein, J. N. 1978. Interactions of liposomes with mammalian cells. Annu. Rev. Biophys. Bioeng. 7:435–468.Google Scholar
  166. Palay, S. L., and Revel, J. P. 1964. The morphology of fat absorption. In: Meng, H. C., ed., Lipid Transport, Springfield, Ill., Thomas, pp. 33–43.Google Scholar
  167. Papahadjopoulos, D. 1978. Liposomes and their uses in biology and medicine. Ann. N.Y. Acad. Sci. 308:1–462.ADSGoogle Scholar
  168. Parish, R. W. 1975. Mitochondria and peroxisomes from the cellular slime mold Dictyostelium discoideum. Eur. J. Biochem. 58:523–531.Google Scholar
  169. Pasteels, J. J. 1973. Yolk and lysosomes. In: Dingle, J. T., ed., Lysosomes in Biology and Pathology, Amsterdam, North-Holland, Vol. 3, pp. 216–234.Google Scholar
  170. Patton, G. W., and Nishimura, E. T. 1967. Developmental changes of hepatic catalase in the rat. Cancer Res. 27:117–123.Google Scholar
  171. Pearson, C. M., and Kar, N. C. 1979. Muscle breakdown and lysosomal activation (biochemistry). Ann. N.Y. Acad. Sci. 317:465–476.ADSGoogle Scholar
  172. Perner, E. S. 1953. Die Vitalfärbung mit Berber insulfat und iher physiologische Wirkung und Zellen höherer Pflanzen. Ber. Dtsch. Bot. Ges. 65:52–59.Google Scholar
  173. Poole, A. R. 1973. Tumour lysosomal enzymes and invasive growth. In: Dingle, J. T., ed., Lysosomes in Biology and Pathology, Amsterdam, North-Holland, Vol. 3, pp. 303–337.Google Scholar
  174. Poole, B. 1971. Synthesis and degradation of proteins in relation to cellular structure. In: Rechcigl, M., ed., Enzyme Synthesis and Degradation in Mammalian Systems, Baltimore, University Park Press, pp. 375–402.Google Scholar
  175. Poole, B., Ohkuma, S., and Warburton, M. 1978. Some aspects of the intracellular breakdown of exogenous and endogenous proteins. In: Segal, H. L., and Doyle, D. L., Protein Turnover and Lysosome Function, New York, Academic Press, pp. 43–58.Google Scholar
  176. Powell, M. J. 1976. Ultrastructure and isolation of glyoxysomes (microbodies) in zoospores of the fungus Entophlyctis sp. Protoplasma 89:1–27.Google Scholar
  177. Powell, M. J. 1978. Phylogenetic implications of the microbody-lipid globule complex in zoosporic fungi. BioSystems 10:167–180.Google Scholar
  178. Powell, M. J. 1979. The structure of microbodies and their associations with other organelles in zoosporangia of Entophlyctis variabilis. Protoplasma 98:177–198.Google Scholar
  179. Price, C. A. 1962. Repression of acid phophatase synthesis in Euglena gracilis. Science 135:46.ADSGoogle Scholar
  180. Pringsheim, E. G. 1952. On the nutrition of Ochromonas. Q. J. Microsc. Sci. 93:71–96.Google Scholar
  181. Rechcigl, M. 1971. Intracellular protein turnover and the role of synthesis and degradation in regulation of enzyme levels. In: Rechcigl, M., ed., Enzyme Synthesis and Degradation in Mammalian Systems, Baltimore, University Park Press, pp. 237–310.Google Scholar
  182. Reddy, J. K., and Kumar, N. S. 1977. The peroxisome proliferation-associated polypeptide in rat liver. Biochem. Biophys. Res. Commun. 77:824–829.Google Scholar
  183. Robineaux, J., and Frederic, J. 1955. Contribution a l’étude des granulations neutrophiles des polynucléaires par la microcinématographie en contraste de phase. C. R. Seances Soc. Biol. Paris 149:486–489.Google Scholar
  184. Robinson, J. C., Keay, L., Molinari, R., and Sizer, I. W. 1962. L-α-Hydroxyacid oxidases of hog renal cortex. J. Biol. Chem. 237:2001–2010.Google Scholar
  185. Rome, L. H., Garvin, A. J., Allietta, M. M., and Neufeld, E. F. 1979. Two species of lysosomal organelles in cultured human fibroblasts. Cell 17:143–153.Google Scholar
  186. Rosen, O. M., Rosen, S. M., and Horecker, B. L. 1965. Fate of the cell wall of Salmonella typhimurium upon ingestion by the cellular slime mold Polysphondylium pallidum. Biochem. Biophys. Res. Commun. 18:270–276.Google Scholar
  187. Sampson, D., and Archer, G. T. 1967. Release of histamine from human basophils. Blood 29:722–736.Google Scholar
  188. Sando, G. N., and Neufeld, E. F. 1977. Recognition and receptor-mediated uptake of a lysosomal enzyme, α-L-iduronidase, by cultured human fibroblasts. Cell 12:619–627.Google Scholar
  189. Sando, G. N., Titus-Dillon, P., Hall, C. W., and Neufeld, E. F. 1979. Inhibition of receptormediated uptake of a lysosomal enzyme into fibroblasts by chloroquine, procaine and ammonia. Exp. Cell Res. 119:359–364.Google Scholar
  190. Sapra, G. R., and Kloetzel, J. A. 1975. Programmed autophagocytosis accompanying conjugation in the ciliate Stylonychia mytilus. Dev. Biol. 42:84–94.Google Scholar
  191. Scannone, H., Wellner, D., and Novogrodsky, A. 1964. A study of amino acid oxidase specificity using a new sensitive assay. Biochemistry 3:1742–1745.Google Scholar
  192. Schneider, D. L., and Cornell, E. 1978. Evidence for a proton pump in rat liver lysosomes. In: Segal, H. L., and Doyle, D. J., eds., Protein Turnover and Lysosome Function, New York, Academic Press, pp. 59–66.Google Scholar
  193. Seeman, P. M., and Palade, G. E. 1967. Acid phosphatase localization in rabbit eosinophils. J. Cell Biol. 34:745–756.Google Scholar
  194. Segal, H. L., Brown, J. A., Dunaway, G. A., Winkler, J. R., Madnick, H. M., and Rothstein, D. M. 1978. Factors involved in the regulation of protein turnover. In: Segal, H. L., and Doyle, D. J., eds., Protein Turnover and Lysosome Function, New York, Academic Press, pp. 9–28.Google Scholar
  195. Seiguer, A. C., and Castro, A. E. 1972. Electron microscopic demonstration of arylsulfatase activity during acrosome formation in the rat. Biol. Reprod. 7:31–42.Google Scholar
  196. Sergeyeva, G. I. 1967. Activity of acid phosphatase at different stages of the life cycle of Opalina ranarum Ehrbg. Tsitologiya 9:324–332.Google Scholar
  197. Sergeyeva, G. I. 1969. An electron microscope study of lysosomes in Opalina ranarum Ehrbg. Tsitologiya 11:714–720.Google Scholar
  198. Shio, H. 1971. Master of arts thesis, Queens College, City University of New York, Flushing.Google Scholar
  199. Shnitka, T. K. 1966. Comparative ultrastructure of hepatic microbodies in some mammals and birds in relation to species differences in uricase activities. J. Ultrastruct. Res. 16:598–625.Google Scholar
  200. Silveira, S. R., and Hadler, W. A. 1978. Catalases and peroxidases histochemical detection. Techniques suitable to discriminate these enyzmes. Acta Histochem. 63:1–10.Google Scholar
  201. Smith, C. G. 1974. The ultrastructural development of spherosomes and oil bodies in the developing embryo of Crambe abyssinica. Planta 119:125–142.Google Scholar
  202. Smith, R. E. 1969. Phosphohydrolases in cell organelles: Electron microscopy. Ann. N.Y. Acad. Sci. 166:525–564.ADSGoogle Scholar
  203. Smith, R. E., and Farquhar, M. G. 1966. Lysosome function in the regulation of the secretory process in cells of the anterior pituitary gland. J. Cell Biol. 31:319–336.Google Scholar
  204. Smith, R. E., and van Frank, R. M. 1975. The use of amino acid derivatives of 4-methoxy-β-naphthylamine for the assay and subcellular localization of tissue proteinases. In: Dingle, J. T., and Dean, R. T., eds., Lysosmes in Biology and Pathology, Amsterdam, North-Holland, Vol. 4, p. 195.Google Scholar
  205. Solomon, E. P., Johnson, E. M., and Gregg, J. H. 1964. Multiple forms of enzymes in a cellular slime mold during morphogenesis. Dev. Biol. 9:314–326.Google Scholar
  206. Sommer, J. R., and Blum, J. J. 1965. Cytochemical localization of acid phosphatases in Euglena gracilis. J. Cell Biol. 24:235–248.Google Scholar
  207. Sorokin, H. P. 1967. The spherosomes and the reserve fat in plant cells (Persea americana, Cocosmucifera, Helianthus annuus, Brassica napus, Cucurbita pepo). Am. J. Bot. 54:1008–1016.Google Scholar
  208. Sorokin, H. P., and Sorokin, S. 1968. Fluctuations in the acid phosphatase activity of spherosomes in guard cells of Campanula persicifolia. J. Histochem. Cytochem. 16:791–802.Google Scholar
  209. Steinman, R. M, Brodie, S. E., and Cohn, Z. A. 1976. Membrane flow during pinocytosis. A stereologic analysis. J. Cell Biol. 68:665–687.Google Scholar
  210. Stossel, T. P. 1974. Phagocytosis. N. Engl. J. Med. 290:717–723, 774–780, 833–839.Google Scholar
  211. Strickland, J. D. H., and Solorzano, L. 1966. Determination of monoesterase hydrolysable phosphate and phosphomonoesterase activity in sea water. In: Some Contemporary Studies in Marine Science, New York, Hafner, pp. 665–674.Google Scholar
  212. Stroun, M., Anker, P., Charles, P., and Ledoux, L. 1966. Fate of bacterial DNA in Lycopersicum esculentum. Nature (London) 212:397–398.ADSGoogle Scholar
  213. Sussman, M., and Sussman, R. 1969. Patterns of RNA synthesis and of enzyme accumulation and disappearance during cellular slime mold differentiation. Symp. Soc. Gen. Microbiol. 19:403–435.Google Scholar
  214. Svoboda, D., and Reddy, J. 1972. Microbodies in experimentally altered cells. IX. The fate of microbodies. Am. J. Pathol. 67:541–554.Google Scholar
  215. Svoboda, D., Grady, H., and Azarnoff, D. 1967. Microbodies in experimentally altered cells. J. Cell Biol. 35:127–152.Google Scholar
  216. Szabo, A. S., and Avers, C. J. 1969. Some aspects of regulation of peroxisomes and mitochondria in yeast. Ann. N.Y. Acad. Sci. 168:302–312.ADSGoogle Scholar
  217. Szego, C. M. 1974. In: Dingle, J. T., and Dean, R. T., eds., Lysosomes in Biology and Pathology, Amsterdam, North-Holland, Vol. 4.Google Scholar
  218. Tappel, A. L. 1968. Lysosomes. In: Florkin, M., and Stotz, E. H., eds., Comprehensive Biochemistry, Amsterdam/New York, Elsevier, Vol. 23, pp. 77–98.Google Scholar
  219. Thorton, R. M. 1968. The fine structure of Phycomyces. I. Autophagic vacuoles. J. Ultrastruct. Res. 21:269–280.Google Scholar
  220. Thurman, R. G., and Chance, B. 1969. Inhibition of catalase in perfused rat liver by sodium azide. Ann. N.Y. Acad. Sci. 168:348–353.ADSGoogle Scholar
  221. Tiffon, Y., Rasmont, R., deVos, L., and Bouillon, J. 1973. Digestion in lower metazoa. In: Dingle, J. T., ed., Lysosomes in Biology and Pathology, Amsterdam, North-Holland, Vol. 3, pp. 49–68.Google Scholar
  222. Tolbert, N. E. 1962. Glycolate pathway. NSF-NRC Publ. 1145:648–662.Google Scholar
  223. Tolbert, N. E., and Yamazaki, R. K. 1969. Leaf peroxisomes and their relation to photorespiration and photosynthesis. Ann. N.Y. Acad. Sci. 168:325–341.ADSGoogle Scholar
  224. Tolbert, N. E., Oeser, A., Kisake, T., Hageman, R. H., and Yamazaki, R. K. 1968. Peroxisomes from spinach leaves containing enzymes related to glycolate metabolism. J. Biol. Chem. 243:5179–5184.Google Scholar
  225. Tomlinson, G. 1967. The glyoxylate pathway in Acanthamoeba sp. J. Protozool. 14:114–116.Google Scholar
  226. Trout, J. J., Stauber, W. T., and Schottelius, B. A. 1979. Cytochemical observations of two distinct acid phosphatase-reactive structures in anterior latissimus dorsi muscle of the chicken. Histochem. J. 11:223–230.Google Scholar
  227. Tsukahara, T., and Yamada, M. 1965. Cytological structure of Aspergillus niger by electron microscopy. Jpn. J. Microbiol. 9:35–48.Google Scholar
  228. Tu, M., Deyoe, C. W., and Eustace, P. 1978. Exploring buffalo gourd seeds with scanning electron microscopy. Cereal Chem. 55:773–778.Google Scholar
  229. Ulrich, K., Mersmann, G., Weber, E., and von Figura, K. 1978. Evidence for lysosomal enzyme recognition by human fibroblasts via a phosphorylated carbohydrate moiety. Biochem. J. 170:643–650.Google Scholar
  230. van Furth, R., and Cohn, Z. A. 1968. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 128:415–435.Google Scholar
  231. Vigil, E. L. 1973. Structure and function of plant microbodies. Subcell. Biochem. 2:237–285.Google Scholar
  232. Walek-Czernecka, A. 1962. Mise en évidence de la phosphatase acide (Monophosphoesterase II) dans les sphérosomes des cellules épidermiques des écailles bulbaires d’Allium cepa. Acta Soc. Bot. Pol. 31:539–543.Google Scholar
  233. Wanner, G., and Theimer, R. R. 1978. Membranous appendages of spherosomes (oleosomes): Possible role in fat utilization in germinating oil seeds. Planta 140:163–170.Google Scholar
  234. Watts, D. J., and Ashworth, J. M. 1970. Growth of myxamoebae of the cellular slime mold Dictyostelium discoideum in axenic culture. Biochem. J. 119:171–174.Google Scholar
  235. Wellner, D., and Scannone, H. 1964. Oxidation of L-proline and L-3,4-dehydroproline by D-amino acid oxidase. Biochemistry 3:1746–1749.Google Scholar
  236. Wells, K. 1965. Ultrastructural features of developing and mature basidia and basidiospores of Schizophyllum commune. Mycologia 57:236–261.Google Scholar
  237. Werb, Z., and Dingle, J. T. 1976. Lysosomes as modulators of cellular functions. Influence on the synthesis and secretion of non-lysosomal materials. In: Dingle, J. T., and Dean, R. T., eds., Lysosomes in Biology and Pathology, Amsterdam, North-Holland, Vol. 5, pp. 127–156.Google Scholar
  238. West, B. C., Rosenthal, A. S., Gelb, N. A., and Kimball, H. R. 1974. Separation and characterization of human neutrophil granules. Am. J. Pathol. 77:41–61.Google Scholar
  239. Westheide, W. 1978. Ultrastructure of the genital organs in interstitial Polychaeta. I. Structure, development, and function of the copulatory stylets in Microphthalmus. Zoomorphologie 91:101–118.Google Scholar
  240. Westheide, W. 1979. Unusual granules in the ejaculatory duct of a Microphthalmus species (Annelida, Polychaeta). Cell Tissue Res. 197:61–68.Google Scholar
  241. Wetzel, B. K. 1970. The comparative fine structure of normal and diseased mammalian granulocytes. In: Gordon, A. S., ed., Regulation of Hematopoiesis, New York, Appleton-Century-Crofts, Vol. 2, pp. 819–872.Google Scholar
  242. Wetzel, B. K., Spicer, S. S., and Horn, R. G. 1967. Fine structural localization of acid and alkaline phosphatases in cells of rabbit blood and bone marrow. J. Histochem. Cytochem. 15:311–334.Google Scholar
  243. Wheeler, H., and Hanchey, P. 1971. Pinocytosis and membrane dilation in uranyl treated plant roots. Science 171:68–71.ADSGoogle Scholar
  244. Wiener, E., and Ashworth, J. M. 1979. The isolation and characterization of lysosomal particles from myxamoeba of the cellular slime mold Dictyostelium discoideum. Biochem. J. 118:505–512.Google Scholar
  245. Williams, D. M., Gillett, R., and Linde, J. E. 1979. Light microscope and electron microscope alkaline phosphatase cytochemistry of rat bone marrow leukocytes. J. Histochem. Cytochem. 27:665–675.Google Scholar
  246. Williams, N. E., and Luft, J. H. 1968. Use of a nitrogen mustard derivative in fixation for electron microscopy and observations on the ultrastructure of Tetrahymena. J. Ultrastruct. Res. 25:271–292.Google Scholar
  247. Wilsenach, R., and Kessel, M. 1965. The role of lomasomes in wall formation in Penicillium vermiculatum. J. Gen. Microbiol. 40:401–404.Google Scholar
  248. Zachariah, K., and Fitz-James, P. C. 1967. The structure of phialides in Penicillium claviforme. Can. J. Microbiol. 13:249–256.Google Scholar
  249. Zelich, I. 1968. Investigations on photorespiration with a sensitive 14C-assay. Plant Physiol. 43:1829–1837.Google Scholar
  250. Zeligs, J. D., and Wollman, S. H. 1977. Ultrastructure of erythrophagocytosis and red blood cell fission by thyroid epithelial cells in vivo. J. Ultrastruct. Res. 59:57–69.Google Scholar
  251. Zucker-Franklin, D., and Hirsch, J. G. 1964. Electron microscopic study on the degranulation of rabbit peritoneal leukocyte during phagocytosis. J. Exp. Med. 120:569–576.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Lawrence S. Dillon
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations