Energy-Oriented Organelles and Activities: I Cell Respiration

  • Lawrence S. Dillon


In eukaryotic cells two specialized organelles are involved in energy transfer, the chloroplast, which actively stores solar energy in the form of carbohydrates or lipids, and the mitochondrion, which provides a site for many respiratory processes that make the energy thus stored available to the cell. These processes share many common chemical components, so it is advantageous to discuss their ingredients without regard to function. Then after those have received attention, the respiratory processes become the center of focus. Next the energy-related organelles are reviewed in the following two chapters, the mitochondrion first, followed by the chloroplast and photosynthesis.


Succinic Acid Malic Acid Tricarboxylic Acid Cycle Prosthetic Group Cell Respiration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adman, E. T., Sieker, L. C., and Jensen, L. H. 1973. The structure of a bacterial ferredoxin. J. Biol. Chem. 248:3987–3996.Google Scholar
  2. Aitken, A. 1977. Purification and primary structure of cytochrome f from the cyanobacterium Plectonema boryanum. Eur. J. Biochem. 78:273–279.Google Scholar
  3. Ambler, R. P. 1968. The amino acid sequence of cytochrome c 3 from Desulfovibrio vulgaris. Biochem. J. 109:47P–48P.Google Scholar
  4. Ambler, R. P., and Bartsch, R. G. 1975. Amino acid sequence similarity between cytochrome f from a blue-green bacterium and algal chloroplasts. Nature (London) 253:285–288.ADSGoogle Scholar
  5. Ambler, R. P., Bruschi, M., and LeGall, J. 1969. The structure of cytochrome c 3 from Desulfovibrio gigas (NCIB 9332). FEBS Lett. 5:115–117.Google Scholar
  6. Ambler, R. P., Bruschi, M., and LeGall, J. 1971. The amino acid sequence of cytochrome c 3 from Desulfovibrio desulfuricans. FEBS Lett. 18:347–350.Google Scholar
  7. Ambler, R. P., Meyer, T. E., and Kamen, M. D. 1976. Primary structure determination of two cytochromes c 2: Close similarity to functionally unrelated mitochondrial cytochrome c. Proc. Natl. Acad. Sci. USA 73:472–475.ADSGoogle Scholar
  8. Andreu, J. M., Warth, R., and Muñoz, E. 1978. Glycoprotein nature of energy-transducing AT-Pases. FEBS Lett. 86:1–5.Google Scholar
  9. Apps, D. K. 1970. The NAD kinases of Saccharomyces cerevisiae. Eur. J. Biochem. 13:223–230.Google Scholar
  10. Awasthi, Y. C., Chuang, T. F., Keeman, T. W., and Crane, F. L. 1971. Tightly bound cardiolipin in cytochrome oxidase. Biochim. Biophys. Acta 226:42–52.Google Scholar
  11. Baccarini-Melandri, A., Jones, O. T. G., and Hauska, G. 1978. Cytochrome c 2—An electron carrier shared by the respiratory and photosynthetic electron transport chain of Rhodopseudomonas capsulata. FEBS Lett. 86:151–154.Google Scholar
  12. Baird, B. A., and Hammes, G. G. 1979. Structure of oxidative-and photophosphorylation coupling factor complexes. Biochim. Biophys. Acta 549:31–53.Google Scholar
  13. Barber, D., Parr, S. R., and Greenwood, C. 1976. Some spectral and steady state kinetic properties of Pseudomonas cytochrome oxidase. Biochem. J. 157:431–438.Google Scholar
  14. Barrett, J. 1956. The prosthetic group of cytochrome a 2. Biochem. J. 64:626–639.Google Scholar
  15. Bartsch, R. G. 1977. Cytochromes. In: Clayton, R. K., and Sistrom, W. R. eds., The Photosynthetic Bacteria, New York, Plenum Press, pp. 249–280.Google Scholar
  16. Baum, H., Rieske, J. S., Sillman, H. I., and Lipton, S. H. 1967. On the mechanism of electron transfer in complex III of the electron transfer chain. Proc. Natl. Acad. Sci. USA 57:798–805.ADSGoogle Scholar
  17. Beinert, H. 1963. Electron-transferring flavoproteins, In: Boyer, P.D., Lardy, H., and Myrbäck, K., eds., The Enzymes, 2nd ed., Vol. 7, pp. 467–476.Google Scholar
  18. Bell, R. L., and Capaldi, R. A. 1976. The polypeptide composition of ubiquinone-cytochrome c reductase (complex III) from beef heart mitochondria. Biochemistry 15:996–1001.Google Scholar
  19. Berden, J. A., and Opperdoes, F. R. 1972. An antimycin-sensitive cytochrome b component in beef-heart mitochondria. Biochim. Biophys. Acta 267:7–14.Google Scholar
  20. Berg, A., Ingelman-Sundberg, M., and Gustafsson, J. A. 1979. Purification and characterization of cytochrome P-450meg. J. Biol. Chem. 254:5264–5271.Google Scholar
  21. Bertoli, E., Parenti-Castelli, G., Sechi, M., Trigari, G., and Lenaz, G. 1978. A requirement for ubiquinone in ATPase activity and oxidative phosphorylation. Biochem. Biophys. Res. Commun. 85:1–6.Google Scholar
  22. Bisalputra, T., Brown, D. L., and Weier, T. E. 1969. Possible respiratory sites in a blue-green alga, Nostoc sphaericum, as demonstrated by potassium tellurite and TNBT reduction. J. Ultrastruct. Res. 27:182–197.Google Scholar
  23. Blazy, B., Thusius, D., and Baudras, A. 1976. Mechanism of yeast cytochrome b 2 action. Biochemistry 15:257–261.Google Scholar
  24. Boardman, N. K., and Anderson, J. M. 1967. Fractionation of the photochemical systems of photosynthesis. II. Cytochrome and carotenoid contents of particles isolated from spinach chloroplasts. Biochim. Biophys. Acta. 143:187–203.Google Scholar
  25. Böhme, H. 1976. Photoreactions of cytochrome b 6 and cytochrome f in chloroplast photosystem I fragments. Z. Naturforsch. 31c:68–77.Google Scholar
  26. Bonner, W. D. 1964. Plant cytochromes. Sixth Int. Congr. Biochem. N.Y. 4:291–292.Google Scholar
  27. Bonner, W. D., and Slater, E. C. 1970. Effect of antimycin on the potato mitochondrial cytochrome b system. Biochim. Biophys. Acta 223:349–353.Google Scholar
  28. Botelho, L. H., Ryan, D. E., and Levin, W. 1979. Amino acid composition and partial amino acid sequences of three highly purified forms of liver microsomal cytochrome P-450 from rats treated with polychlorinated biphenyls, phenobarbital, or 3-methylcholanthrene. J. Biol. Chem. 254:5635–5640.Google Scholar
  29. Boulter, D. 1973. The molecular evolution of higher plant cytochrome c. Pure Appl. Chem. 34:539–552.Google Scholar
  30. Boulter, D., Laycock, M. V., Ramshaw, J. A. M., and Thompson, E. W. 1970. Amino acid sequence studies of plant cytochrome c with particular reference to mung bean cytochrome c. In: Harbourne, J. B., ed., Phytochemical Phylogeny, New York, Academic Press, pp. 179–186.Google Scholar
  31. Boyer, P. D. 1977. Coupling mechanisms in capture, transmission, and use of energy. Annu. Rev. Biochem. 46:957–966.Google Scholar
  32. Briggs, M., Kamp, P. F., Robinson, N. C., and Capaldi, R. A. 1975. The subunit structure of the cytochrome c oxidases complex. Biochemistry 14:5123–5128.Google Scholar
  33. Bright, H. J., and Porter, D. J. T. 1975. Flavoprotein oxidases. In: Boyer, P. D., ed., The Enzymes, New York, Academic Press, Vol. 12B, pp. 421–505.Google Scholar
  34. Broda, E. 1971. The origins of bacterial respiration. In: Buvet, R., and Ponnamperuma, C., eds., Chemical Evolution and the Origin of Life, Amsterdam, North-Holland, pp. 446–452.Google Scholar
  35. Brodie, A. F., and Gray, C. T. 1956. Activation of coupled oxidative phosphorylation in bacterial particulates by a soluble factor (S). Biochim. Biophys. Acta 19:384–386.Google Scholar
  36. Brown, G. G., and Beattie, D. S. 1977. Role of coenzyme Q in the mitochondrial respiratory chain. Biochemistry 16:4449–4454.Google Scholar
  37. Brown, R. H., and Boulter, D. 1974. The amino acid sequences of cytochrome c from four plant sources. Biochem. J. 137:93–100.Google Scholar
  38. Bruder, G., Fink, A., and Jarasch, E. D. 1978. The b-type cytochrome in ER of mammary gland epithelium and milk fat globule membranes consists of two components, cytochrome b 5 and cytochrome P-420. Exp. Cell Res. 117:207–218.Google Scholar
  39. Burton, K. 1959. Formation constants for the complexes of ADP or ATP with magnesium or calcium ions. Biochem. J. 71:388–395.Google Scholar
  40. Burton, S. D., Morita, R. Y., and Miller, W. 1966. Utilization of acetate by Beggiatoa. J. Bacteriol. 91:1192–1200.Google Scholar
  41. Buse, G., and Steffens, G. J. 1978. Studies on cytochrome c oxidase. II. The chemical constitution of a short polypeptide from the beef heart enzyme. Hoppe-Seyler’s Z. Physiol. Chem. 359:1005–1009.Google Scholar
  42. Buvet, R., and LePort, L. 1973. Non-enzymic origin of the metabolism. Space Life Sci. 4:434–447.ADSGoogle Scholar
  43. Callely, A. G., Rigopoulos, N., and Fuller, R. C. 1968. The assimilation of carbon by Chloropseudomonas ethylicum. Biochem. J. 106:615–622.Google Scholar
  44. Campbell, W. H., Orme-Johnson, W. H., and Burns, R. H. 1973. A comparison of the physical and chemical properties of four cytochromes c from Azotobacter vinelandii. Biochem. J. 135:617–630.Google Scholar
  45. Capaldi, R. A., and Briggs, M. 1976. The structure of cytochrome oxidase. In: Martonosi, A., ed., The Enzymes of Biological Membranes, New York, Plenum Press, Vol. 4, pp. 87–102.Google Scholar
  46. Capaldi, R. A., Sweetland, J., and Merli, A. 1977. Polypeptides in the succinate-coenzyme Q reductase segment of the respiratory chain. Biochemistry 16:5707–5710.Google Scholar
  47. Carlson, S. S., Moss, G. A., Wilson, A. C., Mead, R. T., Wolin, L. D., Bowers, S. F., Foley, N. T., Muijsers, A. O., and Margoliash, E. 1977. Primary structure of mouse, rat, and guinea pig cytochrome c. Biochemistry 16:1437–1442.Google Scholar
  48. Case, G. D., Ohnishi, T., and Leigh, J. S. 1976. Intramitochondrial positions of ribiquinone and iron-sulfur centres determined by dipolar interactions with paramagnetic ions. Biochem. J. 160:785–795.Google Scholar
  49. Castor, L. N., and Chance, B. 1959. Photochemical determinations of the oxidases of bacteria. J. Biol. Chem. 234:1587–1592.Google Scholar
  50. Chance, B. 1958. The kinetics and inhibition of cytochrome components of the succinic oxidase system. III. Cytochrome b. J. Biol. Chem. 233:1223–1229.Google Scholar
  51. Chance, B. 1977. Electron transfer: Pathways, mechanisms, and controls. Annu. Rev. Biochem. 46:967–980.Google Scholar
  52. Chance, B., Bonner, W. D., and Storey, B. T. 1968. Electron transport in respiration. Annu. Rev. Plant Physiol. 19:295–320.Google Scholar
  53. Chance, B., Wilson, D. F., Dutton, P. L., and Erecińska, M. 1970. Energy-coupling mechanisms in mitochondria: Kinetic, spectroscopic, and thermodynamic properties of an energy-transducing form of cytochrome b. Proc. Natl. Acad. Sci. USA 66:1175–1182.ADSGoogle Scholar
  54. Chiang, Y. L., and Coon, M. J. 1979. Comparative study of two highly purified forms of liver microsomal cytochrome P-450. Arch. Biochem. Biophys. 195:178–187.Google Scholar
  55. Chiang, Y. L., and King, T. E. 1979. Cytochrome c 1 complexes. J. Biol. Chem. 254:1845–1853.Google Scholar
  56. Clayton, R. K., and Sistrom, W. R. 1964. The importance of reaction centers for the photochemistry of photosynthesis. Proc. Natl. Acad. Sci. USA 52:67–74.ADSGoogle Scholar
  57. Cookson, D. J., Moore, G. R., Pitt, R. C., Williams, R. J. P., Campbell, I. D., Ambler, R. P., Bruschi, M., and Le Gall, J. 1978. Structural homology of cytochromes c. Eur. J. Biochem. 83:261–275.Google Scholar
  58. Copenhaver, J. H., and Lardy, H. A. 1952. Oxidative phosphorylations: Pathways and yield in mitochondrial preparations. J. Biol. Chem. 195:225–238.Google Scholar
  59. Crespi, H. L., Smith, U., Gajda, L., Tisue, T., and Ammeraal, R. M. 1972. Extraction and purification of 1H, 2H, and isotope hybrid algal cytochrome, ferredoxin, and flavoprotein. Biochim. Biophys. Acta 256:611–618.Google Scholar
  60. Csonka, L. N., and Fraenkel, D. G. 1977. Pathways of NADPH formation in E. coli. J. Biol. Chem. 252:3382–3391.Google Scholar
  61. Cusanovich, M. A., and Edmundson, D. E. 1971. The isolation and characterization of Rhodospirillum rubrum flavodoxin. Biochem. Biophys. Res. Commun. 45:327–336.Google Scholar
  62. Dailey, H. A., and Strittmatter, P. 1978. Structural and functional properties of the membrane binding segment of cytochrome b 5. J. Biol. Chem. 253:8203–8209.Google Scholar
  63. Dalziel, K. 1975. Kinetics and mechanism of nicotinamide-nucleotide-linked dihydrogeneses. In: Boyer, P. D., ed., The Enzymes, New York, Academic Press, Vol. 11A, pp. 1–60.Google Scholar
  64. Daniel, R. M. 1979. Occurrence and role of ubiquinone in electron transport to oxygen and nitrate in aerobically, anaerobically, and symbiotically grown Rhizobium japonicum. J. Gen. Microbiol. 110:333–337.ADSGoogle Scholar
  65. D’Anna, J. A., and Tollin, G. 1972. Studies of flavin-protein interaction in flavoproteins using protein fluorescence and circular dichroism. Biochemistry 11:1073–1080.Google Scholar
  66. Davenport, H. E. 1952. Cytochrome components in chloroplasts. Nature (London) 170:1112–1114.ADSGoogle Scholar
  67. Davis, K. A., Hatefi, Y., Poff, K. L., and Butler, W. L. 1972. The b-type cytochromes of beef heart mitochondria. Biochem. Biophys. Res. Commun. 46:1984–1990.Google Scholar
  68. Davis, K. A., Hatefi, Y., Poff, K. L., and Butler, W. L. 1973. The b-type cytochromes of bovine heart mitochondria: Absorption spectra, enzymatic properties, and distribution in the electron transfer complexes. Biochim. Biophys. Acta 325:341–356.Google Scholar
  69. Dayhoff, M. O. 1972. Atlas of Protein Sequence and Structure, Vol. 5, Silver Springs, Md., National Biomedical Research Foundation.Google Scholar
  70. Dayhoff, M. O. 1973. Atlas of Protein Sequence and Structure, Vol. 5, Suppl. 1, Washington, D.C., National Biomedical Research Foundation.Google Scholar
  71. Dayhoff, M. O. 1976. Atlas of Protein Sequence and Structure, Vol. 5, Suppl. 2, Silver Springs, Md., National Biomedical Research Foundation.Google Scholar
  72. DeLange, R. J., Glazer, A. M., and Smith, E. L. 1969. Presence and location of an unusual amino acid, ∈-N-trimethyllysine, in cytochrome c of wheat germ and Neurospora. J. Biol. Chem. 244:1385–1388.Google Scholar
  73. DeLange, R. J., Glazer, A. M., and Smith, E. L. 1970. Identification and location of ∈-N-trimethyllysine in yeast cytochrome c. J. Biol. Chem. 245:3325–3327.Google Scholar
  74. DePierre, J. W., and Ernster, L. 1977. Enzyme topology of intracellular membranes. Annu. Rev. Biochem. 46:201–262.Google Scholar
  75. Dickerson, R. E., and Timkovich, R. 1975. Cytochromes c. In: Boyer, P. D., ed., The Enzymes, New York, Academic Press, Vol. 11A, pp. 397–547.Google Scholar
  76. Dickerson, R. E., Timkovich, R., and Almassy, R. J. 1976. The cytochrome fold and the evolution of bacterial energy metabolism. J. Mol. Biol. 100:473–491.Google Scholar
  77. Dillon, L. S. 1978. The Genetic Mechanism and the Origin of Life, New York, Plenum Press.Google Scholar
  78. DiMaria, P., Polastro, E., DeLange, R. J., Kim, S., and Paik, W. K. 1979. Studies on cytochrome c methylation in yeast. J. Biol. Chem. 254:4645–4652.Google Scholar
  79. Dolin, M. I. 1961. Survey of microbial electron transport mechanisms. In: Gunsalus, I. C., and Stanier, R. Y., eds., Bacteria: A Treatise on Structure and Function, New York, Academic Press, Vol. 2, pp. 319–363.Google Scholar
  80. Dubourdieu, M., and Fox, J. L. 1977. Amino acid sequence of Desulfovibrio vulgaris flavodoxin. J. Biol. Chem. 252:1453–1463.Google Scholar
  81. DuPraw, E. J. 1968. Cell and Molecular Biology, New York, Academic Press.Google Scholar
  82. Dutton, P. L., Wilson, D. F., and Lee, C. P. 1970. Oxidation-reduction potentials of cytochromes in mitochondria. Biochemistry 9:5077–5082.Google Scholar
  83. Dutton, P. L., Wilson, D. F., and Lee, C. P. 1971. Energy dependence of oxidation-reduction potentials of the b and c cytochromes in beef heart submitochondrial particles. Biochem. Biophys. Res. Commun. 43:1186–1191.Google Scholar
  84. Elhammer, Å., Dallner, G., and Omura, T. 1978. Glycosylation of rat liver cytochrome b 5 on the ribosomal level. Biochem. Biophys. Res. Commun. 84:572–580.Google Scholar
  85. Erecińska, M., Blaise, J. K., and Wilson, D. F. 1977. Orientation of the hemes of cytochrome c oxidase and cytochrome c in mitochondria. FEBS Lett. 76:235–239.Google Scholar
  86. Ernster, L. 1977. Chemical and chemiosmotic aspects of electron transport-linked phosphorylation. Annu. Rev. Biochem. 46:981–995.Google Scholar
  87. Eytan, G. D., and Schatz, G. T. 1975. Cytochrome c oxidase from baker’s yeast: Arrangement of the subunits in the isolated and membrane-bound enzyme. J. Biol. Chem. 250:767–774.Google Scholar
  88. Falmange, P., Vanderwinkle, E., and Wiane, J. M. 1965. Mise en evidence de deux malate synthases chez Escherichia coli. Biochim. Biophys. Acta 99:246–258.Google Scholar
  89. Fan, C. C., Lin, J. P. F., and Plaut, G. W. E. 1975. Effects of temperature on diphosphopyridine nucleotide-linked isocitrate dehydrogenase from bovine heart. J. Biol. Chem. 250:2022–2027.Google Scholar
  90. Fauque, G., Bruschi, M., and LeGall, J. 1979. Purification and some properties of cytochrome C 553 (550) isolated from Desulfovibrio desulfuricans Norway. Biochem. Biophys. Res. Commun. 86:1020–1029.Google Scholar
  91. Ferguson-Miller, S., Brautigon, D. L., and Margoliash, E. 1976. Correlation of the kinetics of electron transfer activity of various cytochromes c with binding to mitochondrial cytochrome c oxidase. J. Biol. Chem. 251:1104–1115.Google Scholar
  92. Fox, J. L., Smith, S. S., and Brown, J. R. 1972. Amino acid sequences of Clostridium pas-teurianum flavodoxin. Z. Naturforsch. 27b: 1096–1100.Google Scholar
  93. Fritz, I. B., and Beyer, R. E. 1969. Apparent respiratory control in uncoupled mitochondria. J. Biol. Chem. 244:3075–3083.Google Scholar
  94. Fry, M., and Green, D. E. 1979. Ion-channel component of cytochrome oxidase. Proc. Natl. Acad. Sci. USA 76:2664–2668.ADSGoogle Scholar
  95. Fukumori, Y., and Yamanaka, T. 1979. Flavocytochrome c of Chromatium vinosum. J. Biochem. 85:1405–1414.Google Scholar
  96. Fuller, R. C., Smillie, F. M., Sisler, E. C., and Kornberg, H. L. 1961. Carbon metabolism in Chromatium. J. Biol. Chem. 236:2140–2149.Google Scholar
  97. Gellerfors, P., and Nelson, B. D. 1975. Analysis of the peptide composition of purified beef-heart complex III by dodecylsulfate electrophoresis. Eur. J. Biochem. 52:433–443.Google Scholar
  98. Gellerfors, P., and Nelson, B. D. 1977. Topology of the peptides in free and membrane-bound complex III (ubiquinol-cytochrome c reductase) as revealed by lactoperoxidase and p-diazoni-trobenzene [35S]sulfonate labeling. Eur. J. Biochem. 80:275–282.Google Scholar
  99. Gillespie, R. J., Maw, G. A., and Vernon, C. A. 1953. The concept of phosphate bond-energy. Nature (London) 171:1147–1149.ADSGoogle Scholar
  100. Giorgio, N. A., Yip, A. T., Fleming, J., and Plaut, G. W. E. 1970. Diphosphopyridine nucleotide-linked isocitrate dehydrogenase from bovine heart. J. Biol. Chem. 245:5469–5477.Google Scholar
  101. Glass, T. L., Bryant, M. P., and Wolin, M. J. 1977. Partial purification of ferredoxin from Ruminococcus albus and its role in pyruvate metabolism and reduction of NAD by H2. J. Bac-teriol. 131:463–472.Google Scholar
  102. Gleason, F. H. 1968. Respiratory electron transport systems of aquatic fungi. I. Leptomitus lacteus and Apodachyla punctata. Plant Physiol. 43:597–605.Google Scholar
  103. Goewert, R. R., Sippel, C. J., and Olson, R. E. 1977. The isolation and identification of a novel intermediate in ubiquinone-6 biosynthesis by S. cerevisiae. Biochem. Biophys. Res. Commun. 77:599–605.Google Scholar
  104. Goldberg, E., Sberna, D., Wheat, T. E., Urbanski, G. J., and Margoliash, E. 1977. Cytochrome c: Immunofluorescent localization of the testis-specific form. Science 196:1010–1012.ADSGoogle Scholar
  105. Gómez-Puijou, M. T., Beigel, M., and Gómez-Puijou, A. 1976. On the problem of site specific agents in oxidative phophorylation. In: Packer, L., and Gómez-Puijou, A., eds., Mitochondria: Bioenergetics, Biogenesis, and Membrane Structure, New York, Academic Press, pp. 155–165.Google Scholar
  106. Green, D. E., and Blondin, G. A. 1975. Molecular mechanism of mitochondrial energy coupling. BioScience 28:18–24.Google Scholar
  107. Griffiths, D. E. 1976. Biochemical genetic studies of oxidative phosphorylation. In: Packer, L., and Gómez-Puijou, A., eds., Mitochondria: Bioenergetics, Biogenesis, and Membrane Structure, New York, Academic Press, pp. 265–274.Google Scholar
  108. Griffiths, M. M., and Bernofsky, C. 1972. Purification and properties of reduced diphosphopyridine nucleotide kinase from yeast mitochondria. J. Biol. Chem. 247:1473–1478.Google Scholar
  109. Groudinsky, O. 1971. Study of heme-protein linkage in cytochrome b. Eur. J. Biochem. 18:480–484.Google Scholar
  110. Gudat, J., Singh, J., and Wharton, D. C. 1973. Cytochrome oxidase from Pseudomonas aeruginosa. Biochim. Biophys. Acta 292:376–398.Google Scholar
  111. Guerrieri, F., and Nelson, B. D. 1975. Studies on the characteristics of a proton pump in phospholipid vesicles inlayed with purified complex III from beef heart mitochondria. FEBS Lett. 54:339–342.Google Scholar
  112. Guiard, B., Groudinsky, O., and Lederer, F., 1974. Homology between baker’s yeast cytochrome b 2 and liver microsomal cytochrome b 5. Proc. Natl. Acad. Sci. USA 71:2539–2543.ADSGoogle Scholar
  113. Guiard, B., Lederer, F., and Jacq, C. 1975. More similarity between baker’s yeast L(+)-lactate dehydrogenase and liver microsomal cytochrome b 5. Nature (London) 255:422–423.ADSGoogle Scholar
  114. Haddock, B. A., and Jones, C. W. 1977. Bacterial respiration. Bacteriol. Rev. 41:47–99.Google Scholar
  115. Hagele, E., Neeff, J., and Necke, D. 1978. The malate dehydrogenase isozymes of S. cerevisiae. Eur. J. Biochem. 83:67–76.Google Scholar
  116. Hagihara, B., Sato, N., and Yamanaka, T. 1975. Type b cytochromes. In: Boyer, P. D., ed., The Enzymes, New York, Academic Press, Vol. 11A, pp. 549–593.Google Scholar
  117. Haneishi, T., and Shirasaka, M. 1968. Comparison of yeast cytochrome c. In: Okuniki, K., Kamen, M. D., and Sekuzu, I., eds., Structure and Function of Cytochromes, Tokyo, University of Tokyo Press, pp. 404–412.Google Scholar
  118. Harano, T., and Omura, T. 1977. Biogenesis of endoplasmic reticulum membrane in rat liver cells. J. Biochem. 82:1541–1549.Google Scholar
  119. Harmon, H. J., and Crane, F. L. 1976. Inhibition of mitochondrial electron transport by hydrophi-lic metal chelators. Biochim. Biophys. Acta 440:45–58.Google Scholar
  120. Harmon, H. J., Hall, J. D., and Crane, F. L. 1974. Structure of mitochondrial cristae membranes. Biochim. Biophys. Acta 344:119–155.Google Scholar
  121. Hartman, H. 1975. Speculations on the origin and evolution of metabolism. J. Mol. Evol. 4:359–370.Google Scholar
  122. Hase, T., Wada, K., and Matsubara, H. 1976a. Amino acid sequence of the major component of Aphanothece sacrum ferredoxin. J. Biochem. 79:329–343.Google Scholar
  123. Hase, T., Wada, K., Ohmiya, M., and Matsubara, H. 1976b. Amino acid sequence of the major component of Nostoc muscorum ferredoxin. J. Biochem. 80:993–999.Google Scholar
  124. Hase, T., Wakabayashi, S., Matsubara, H., Kerscher, L., Oesterhelt, D., Rao, K. K., and Hall, D. O. 1977a. Halobacterium halobium ferredoxin. FEBS Lett. 77:308–310.Google Scholar
  125. Hase, T., Wada, K., and Matsubara, H. 1977b. Horsetail (Equisetum telmateia) ferredoxins I and II. Amino acid sequences. J. Biochem. 82:267–276.Google Scholar
  126. Hase, T., Wada, K., and Matsubara, H. 1977c. Horsetail (Equisetum arvense ferredoxins I and II. Amino acid sequences and gene duplication. J. Biochem. 82:277–286.Google Scholar
  127. Hase, T., Matsubara, H., and Evans, M. C. W. 1977d. Amino acid sequence of Chromatium vinosum ferredoxin: Revisions. J. Biochem. 81:1745–1749.Google Scholar
  128. Hase, T., Wakabayashi, S., Matsubara, H., Evans, M. C. W., and Jennings, J. N. 1978a. Amino acid sequence of a ferredoxin from Chlorobium thiosulfatophilum strain tassajara, a pho-tosynthetic green sulfur bacterium. J. Biochem. 83:1321–1325.Google Scholar
  129. Hase, T., Wakabayashi, S., Wada, K., and Matsubara, H. 1978b. Amino acid sequences of Aphanothece sacrum ferredoxin II. J. Biochem. 83:761–770.Google Scholar
  130. Hase, T., Wakabayashi, S., Matsubara, H., Kerscher, L., Oesterhelt, D., Rao, K. K., and Hall, D. O. 1978c. Complete amino acid sequence of Halobacterium halobium ferredoxin containing an N acetyllysine residue. J. Biochem. 83:1657–1670.Google Scholar
  131. Hase, T., Wakabayashi, S., Matsubara, H., Ohmori, D., and Suzuki, K. 1978d. Pseudomonas ovalis ferredoxin: Similarity to Azotobacter and Chromatium ferredoxins. FEBS Lett. 91:315–319.Google Scholar
  132. Hase, T., Wakabayashi, S., Wada, K., Matsubara, H., Jüttner, F., Rao, K. K., Fry, I., and Hall, D. O. 1978e. Cyanidium caldarum ferredoxin: A red algae type? FEBS Lett. 96:41–44.Google Scholar
  133. Hatefi, Y. 1966. The functional complexes of the electron-transfer system. Compr. Biochem. 14:199–231.Google Scholar
  134. Hatefi, Y., and Stiggall, D. L. 1976. Metal-containing flavoprotein dehydrogenases. In: Boyer, P. D., ed., The Enzymes, New York, Academic Press, Vol. 13C, pp. 175–297.Google Scholar
  135. Hatefi, Y., Haavik, A. G., Fowler, L. R., and Griffiths, D. E. 1962. Studies on the electron transfer system. XLII. Reconstitution of the electron transfer system. J. Biol. Chem. 237:2661–2669.Google Scholar
  136. Haugen, D. A., van der Hoe ven, T. A., and Coon, M. J. 1975. Purified liver microsomal cytochrome P-450. Separation and characterization of multiple forms. J. Biol. Chem. 250:3567–3570.Google Scholar
  137. Hensagens, L. A. M., Grivell, L. A., Borst, P., and Bos, J. L. 1979. Nucleotide sequence of the mitochondrial structural gene for subunit 9 of yeast ATPase complex. Proc. Natl. Acad. Sci. USA 76:1663–1667.ADSGoogle Scholar
  138. Hermans, L. 1979. Purification of mitochondrial NADH dehydrogenase from Drosophila hydei and comparisons with the ‘heat shark’ polypeptides. Biochim. Biophys. Acta 567:125–134.Google Scholar
  139. Hill, R. 1954. The cytochrome b component of chloroplasts. Nature (London) 174:501–503.ADSGoogle Scholar
  140. Hill, T. J. 1979. Steady-state coupling of four membrane systems in mitochondrial oxidative phosphorylation. Proc. Natl. Acad. Sci. USA 76:2236–2238.ADSGoogle Scholar
  141. Hind, G., and Olson, J. M. 1966. Light-induced changes in cytochrome b 6 in spinach chloroplasts. Brookhaven Symp. Biol. 19:188–194.Google Scholar
  142. Hinkle, P. C., and Yu, M. L. 1979. The phosphorus/oxygen ratio of mitochondrial oxidative phosphorylation. J. Biol. Chem. 254:2450–2455.Google Scholar
  143. Hiroshi, I., Komogata, K., and Uchino, C. 1964. Studies on the microorganisms of cereal grains. VI. Aerobacter, Bacillus, and Micrococcus isolated from rice. Agric. Biol. Chem. 28:A 1.Google Scholar
  144. Hoare, D. S., Hoare, S. L., and Moore, R. B. 1967. The photoassimilation of organic compounds by autotrophic blue-green algae. J. Gen. Microbiol. 49:351–370.Google Scholar
  145. Horio, T. 1958a. Purification of cytochromes from Pseudomonas aeruginosa. J. Biochem. 45:195–205.Google Scholar
  146. Horio, T. 1958b. Some physical and physiological properties of purified cytochromes of Pseudomonas aeruginosa. J. Biochem. 45:267–279.Google Scholar
  147. Horio, T., Higashi, T., Yamanaka, T., Matsubara, H., and Okunuki, K. 1961. Purification and properties of cytochrome oxidase from Pseudomonas aeruginosa. J. Biol. Chem. 236:944–951.Google Scholar
  148. Hutson, K. G., Rogers, L. J., Haslett, B. G., Boulter, D., and Cammack, R. 1978. Comparative studies on two ferredoxins from the cyanobacterium Nostoc strain MAC. Biochem. J. 172:465–477.Google Scholar
  149. Ichikawa, Y., and Yamano, T. 1965. Cytochrome 559 in the microsomes of the adrenal medulla. Biochem. Biophys. Res. Commun. 20:263–268.Google Scholar
  150. Ikegami, I., Katoh, S., and Takamiya, A. 1968. Nature of heme moiety and oxidation-reduction potential of cytochrome 558 in Euglena chloroplasts. Biochim. Biophys. Acta 162:604–606.Google Scholar
  151. Ito, A. 1971. Hepatic sulfite oxidase identified as cytochrome b 5-like pigment extractable from mitochondria by hypotonic treatment. J. Biochem. 70:1061–1064.Google Scholar
  152. Jablonski, E., and DeLuca, M. 1977. Purification and properties of NADH and NADPH specific FMN oxido-reductases from Beneckea harveyi. Biochemistry 16:2932–2936.Google Scholar
  153. Jacobs, E. E., and Sanadi, D. R. 1960. The reversible removal of cytochrome c from mitochondria. J. Biol. Chem. 235:531–534.Google Scholar
  154. Jacobs, N. J., and Conti, S. F. 1965. Effect of hemin on the formation of the cytochrome system of anaerobically grown Staphylococcus epidermidis. J. Bacteriol. 89:675–679.Google Scholar
  155. Jefcoate, C. R. E., and Gaylor, J. L. 1969. Ligand interactions with hemoprotein P-450. Biochemistry 8:3464–3472.Google Scholar
  156. Jeffreys, A. J., and Craig, I. W. 1977. Differences in the mitochondrially synthesized subunits of human and mouse cytochrome c oxidase. FEBS Lett. 77:151–154.Google Scholar
  157. Johnson, E. F., and Muller-Eberhard, U. 1977a. Resolution of multiple forms of rabbit liver cytochrome P-450. Am. Chem. Soc. Symp. Ser. 44:72–80.Google Scholar
  158. Johnson, E. F., and Muller-Eberhard, U. 1977b. Multiple forms of cytochrome P-450. Resolution and purification of rabbit liver aryl hydrocarbon hydroxylase. Biochem. Biophys. Res. Commun. 76:644–651.Google Scholar
  159. Johnson, E. F., and Muller-Eberhard, U. 1977c. Purification of the major cytochrome P-450 of liver microsomes from rabbits treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Biochem. Biophys. Res. Commun. 76:652–659.Google Scholar
  160. Johnson, E. F., Zounes, M. C., and Muller-Eberhard, U. 1979. Characterization of three forms of rabbit microsomal cytochrome P-450 by peptide mapping utilizing limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. Arch. Biochem. Biophys. 192:282–289.Google Scholar
  161. Jones, C. W., and Redfearn, E. R. 1966. Electron transport in Azotobacter vinelandii. Biochim. Biophys. Acta 113:467–481.Google Scholar
  162. Kagawa, Y. 1976. Reconstitution of the inner mitochondrial membrane. In: Martonosi, A., ed., The Enzymes of Biological Membranes, New York, Plenum Press, Vol. 4, pp. 125–142.Google Scholar
  163. Kapke, G. F., Redick, J. A., and Baron, J. 1979. Immunohistochemical demonstration of an adrenal ferredoxin-like iron-sulfur protein in rat hepatic mitochondria. J. Biol. Chem. 253:8604–8608.Google Scholar
  164. Kaplan, N. O. 1972. Pyridine nucleotide transhydrogenases. Harvey Lect. 66:105–133.Google Scholar
  165. Katoh, S. 1959. Studies on the algal cytochromes of c-type. J. Biochem. 46:629–632.Google Scholar
  166. Keilin, D., and Hartree, E. F. 1940. Succinic dehydrogenease-cytochrome system of cells. Proc. R. Soc. London Ser. B 129:277–306.ADSGoogle Scholar
  167. Kerscher, L., and Oesterhelt, D. 1977. Ferredoxin is the coenzyme of α-ketoacid oxidoreductases in Halobacterium halobium. FEBS Lett. 83: 197–201.Google Scholar
  168. Kessler, R. J., Blondin, G. A., Van de Zande, H., Haworth, R. A., and Green, D. E. 1977. Coupling in cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 74:3662–3666.ADSGoogle Scholar
  169. Kikuchi, G., and Motokawa, Y. 1968. Cytochrome oxidase of Rhodopseudomonas sphaeroides. In: Okunuki, K., Kamin, M. D., and Sekuzu, I., eds., Structure and Function of Cytochromes, Tokyo, University of Tokyo Press, pp. 174–181.Google Scholar
  170. Kita, K., Yamato, I., and Anraku, Y. 1978. Purification and properties of cytochrome b 556 in the respiratory chain of aerobically grown E. coli K12. J. Biol. Chem. 253:8910–8915.Google Scholar
  171. Knaff, D. B. 1977. The role of cytochromes b 6 and f in cyclic electron flow in a blue-green alga. Arch. Biochem. Biophys. 182:540–545.Google Scholar
  172. Konstantinov, A. A., and Ruuge, E. A. 1977. Semiquinone Q in the respiratory chain of electron transport particles. FEBS Lett. 81:137–141.Google Scholar
  173. Korb, H., and Neupert, W. 1978. Biogenesis of cytochrome c in Neurospora crassa. Eur. J. Biochem. 91:609–620.Google Scholar
  174. Kornberg, H. L., and Sadler, J. R. 1961. Metabolism of C2-compounds in microorganisms. VIII. A dicarboxylic acid cycle as a route for the oxidation of glycolate by E. coli. Biochem. J. 81:503–513.Google Scholar
  175. Krampitz, L. O. 1961. Cyclic mechanisms of terminal oxidation. In: Gunsalus, I. C., and Stanier, R. Y., eds., Bacteria: A Treatise on Structure and Function, New York, Academic Press, Vol. 2, pp. 209–256.Google Scholar
  176. Kuboyama, M., Yong, F. C., and King, T. E. 1972. Studies on cytochrome oxidase. J. Biol. Chem. 247:6375–6383.Google Scholar
  177. Künze, U., and Junge, W. 1977. Ellipticity of cytochrome a 3 and rotational mobility of cytochrome c oxidase in the cristae membrane of mitochondria. FEBS Lett. 80:429–434.Google Scholar
  178. Kuronen, T., and Ellfolk, N. 1972. A new purification procedure and molecular properties of Pseudomonas cytochrome oxidase. Biochim. Biophys. Acta 275:308–318.Google Scholar
  179. Kuwahara, M., and Chaykin, S. 1973. Biosynthesis of pyridine nucleotides in early embryos of the mouse (Mus musculus). J. Biol. Chem. 248:5095–5099.Google Scholar
  180. Lance, C., and Bonner, W. D. 1968. The respiratory chain components of higher plant mitochondria. Plant Physiol. 43:756–766.Google Scholar
  181. Lawford, H. G., Cox, J. C., Garland, P. B., and Haddock, B. A. 1976. Electron transport in aerobically-grown Paracoccus dinitrificans. FEBS Lett. 64:369–374.Google Scholar
  182. Laycock, M. V. 1975. The amino acid sequence of cytochrome f from the brown alga Alaria esculenta (L.) Grev. Biochem. J. 149:271–279.Google Scholar
  183. Lee, C. P., Sottocasa, G. L., and Ernster, L. 1967. Use of artificial electron acceptors for abbreviated phosphorylating electron transport: Flavin-cytochrome c. Methods Enzymol. 10:33–37.Google Scholar
  184. Lemberg, R., and Barrett, J. 1973. Cytochromes, New York, Academic Press.Google Scholar
  185. Leung, K. H., and Hinkle, P. C. 1975. Reconstitution of ion transport and respiratory control in vesicles formed from reduced CoQ-cytochrome c reductase and phospholipids. J. Biol. Chem. 250:8467–8471.Google Scholar
  186. Lindsay, J. G., Dutton, P. L., and Wilson, D. F. 1972. Energy-dependent effects on the oxidation-reduction midpoint potentials of the b and c cytochromes in phosphorylating submi-tochondria particles from pigeon heart. Biochemistry 11:1937–1942.Google Scholar
  187. Ludwig, B., Downer, N. W., and Capaldi, R. A. 1979. Labeling of cytochrome c oxidase with (35S)diazobenzenesulfonate. Orientation of this electron transfer complex in the inner mitochondrial membrane. Biochemistry 18:1401–1407.Google Scholar
  188. Lundegårdh, H. 1962. The respiratory system of wheat roots. Biochim. Biophys. Acta 57:352–358.Google Scholar
  189. Lundegårdh, H. 1964. Actin spectra of the reducing and oxidizing systems in spinach chloroplasts. Biochim. Biophys. Acta 88:37–56.Google Scholar
  190. Mackey, L. N., Kuwana, T., and Hartzeil, C. R. 1973. Evaluation of the energetics of cytochrome c oxidase in the absence of cytochrome c. FEBS Lett. 36:326–329.Google Scholar
  191. MacKnight, M. L., Gray, W. R., and Tollin, G. 1974. N-terminal amino acid sequences of Azo-tobacter vinelandii and Rhodospirillum rubrum flavodoxins. Biochem. Biophys. Res. Comm. 59:630–635.Google Scholar
  192. McLaughlin, P. J., and Dayhoff, M. O. 1973. Eukaryote evolution: A view based on cytochrome c sequence data. J. Mol. Evol. 2:99–166.Google Scholar
  193. Marks, G. S. 1969. Heme and Chlorophyll, London, Van Nostrand.Google Scholar
  194. Martin, E., and Mukkada, A. J. 1979. Respiratory chain components of Leishmania tropica promastigotes. J. Protozool. 26:138–142.Google Scholar
  195. Masaki, R., Wada, K., and Matsubara, H. 1977. Chemical modification of spinach ferredoxin. Properties of acetylated spinach ferredoxin, J. Biochem. 81:1–9.Google Scholar
  196. Mason, T. L., and Schatz, G. 1973. Cytochrome c oxidase from baker’s yeast. II. Site of translation of the protein components. J. Biol. Chem. 248:1355–1360.Google Scholar
  197. Massey, V., and Hemmerich, P. 1975. Flavin and pteridine monooxygenases. In: Boyer, P. D., ed., The Enzymes, New York, Academic Press, Vol. 12B, pp. 191–252.Google Scholar
  198. Mathews, F. S., and Czerwinski, E. W. 1976. Cytochrome b 5 and cytochrome b 5 reductase from a chemical and x-ray diffraction viewpoint. In: Martonosi, A., ed., The Enzymes of Biological Membranes, New York, Plenum Press, Vol. 4, pp. 143–197.Google Scholar
  199. Matsubara, H., Hase, T., Wakabayashi, S., and Wade, K. 1978. Gene duplications during evolution of chloroplast type ferredoxins. In: Matsubara, H., and Yamanaka, eds., Evolution of Protein Molecules, Tokyo, Japanese Scientific Society Press, pp. 209–219.Google Scholar
  200. Mattoon, J. R., and Sherman, F. 1966. Reconstitution of phosphorylating electron transport in mitochondria from a cytochrome c-deficient yeast mutant. J. Biol. Chem. 241:4330–4338.Google Scholar
  201. Matuda, S. 1979a. Biochemical studies on the muscle microsomes of Ascaris lumbricoides var. suum. I. Biochemical characterization and electron transport of Ascaris microsomes, J. Biochem. 85:343–350.Google Scholar
  202. Matuda, S. 1979. Biochemical studies on the muscle microsomes of Ascaris lumbricoides var. suum. II. Purification and characterization of b-type cytochrome and NADH-ferricyanide reductase from Ascaris muscle microsomes. J. Biochem. 85:351–358.Google Scholar
  203. Mayhew, S. G., and Ludwig, M. L. 1975. Flavodoxins and electron-transferring proteins. In: Boyer, P. D., ed., The Enzymes, New York, Academic Press, Vol. 12B, pp. 57–118.Google Scholar
  204. Meatyard, B. T., and Boulter, D. 1974. The amino acid sequence of cytochrome c from En-teromorpha intestinalis. Phytochemistry 13:2777–2782.Google Scholar
  205. Mendel-Hartvig, I., and Nelson, B. D. 1978. Labeling of complex III peptides in beef heart mitochondria and submitochondrial particle by diazonium benzene (35S) sulfonate. FEBS Lett. 92:36–40.Google Scholar
  206. Merli, A., Capaldi, R. A., Ackrell, B. A. C., and Kearney, E. B. 1979. Arrangement of complex II (succinate-ubiquinone reductase) in the mitochondrial inner membrane. Biochemistry 18:1393–1400.Google Scholar
  207. Mével-Ninio, M. 1972. Subunit structure of L-lactate dehydrogenase (cytochrome b2) of S. cerevi-siae. Eur. J. Biochem. 25:254–261.Google Scholar
  208. Mével-Ninio, M., Risler, Y., and Labeyrie, F. 1977. Structural studies of yeast flavocytochrome b 2: cooperative roles of the α and β globules in the formation of the flavin-binding sites. Eur. J. Biochem. 73:131–140.Google Scholar
  209. Mitchell, P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-os-motic type of mechanism. Nature (London) 191:144–148.ADSGoogle Scholar
  210. Mitchell, P. 1977. Vectorial chemiosmotic processes. Annu. Rev. Biochem. 46:996–1005.Google Scholar
  211. Mitchell, P., and Moyle, J. 1967. Proton-transport phosphorylation, some experimental tests. In: Slater, E. C., Kaniuga, Z., and Wojtczak, L., eds., Biochemistry of Mitchondria, New York, Academic Press, pp. 53–74.Google Scholar
  212. Moore, A. L., and Wilson, S. B. 1978. An estimation of the proton conductance of the inner membrane of turnip (Brassica napae L.) mitochondria. Planta 141:297–302.Google Scholar
  213. Moore, A. L., Bonner, W. D., and Rich, P. R. 1978a. The determination of the proton-motive force during cyanide-insensitive respiration in plant mitochondria. Arch. Biochem. Biophys. 186:298–306.Google Scholar
  214. Moore, A. L., Rich, P. R., and Bonner, W. D. 1978b. Factors influencing the components of the total proton-motive force in mung bean mitochondria. J. Exp. Bot. 29:1–12.Google Scholar
  215. Morton, R. K., and Sturtevant, J. M. 1964. The dehydrogenation of L-lactate in the presence of and absence of ferricyanide as electron acceptor. J. Biol. Chem. 239:1614–1624.Google Scholar
  216. Nicholls, P. 1964. Observations on the oxidation of cytochrome c. Arch. Biochem. Biophys. 106:25–48.Google Scholar
  217. Nicholls, P. 1974. Cytochrome c binding to enzymes and membranes. Biochim. Biophys. Acta 346:261–310.Google Scholar
  218. Niece, R. L., Margoliash, E., and Fitch, W. M. 1977. Complete amino acid sequence of guanaco (Lama guanicoe) cytochrome c. Biochemistry 16:68–72.Google Scholar
  219. Nisimoto, Y., Takeuchi, F., and Shibata, Y. 1977. Purifications and properties of a cytochrome b 5 -like hemeprotein from mitochondrial outer membranes of rat liver. J. Biochem. 82:1257–1266.Google Scholar
  220. Nóbrega, F. G., and Ozols, J. 1971. Amino acid sequences of tryptic peptides of cytochrome b 5 from microsomes of human, monkey, porcine, and chicken liver. J. Biol. Chem. 246:1706–1717.Google Scholar
  221. Nóbrega, F. G., Araujo, P. S., Pasetto, M., and Rao, I. 1969. Some properties of cytochrome b from liver microsomes of man, monkey, pig and chicken. Biochem. J. 115:849–856.Google Scholar
  222. Nochumson, S., Durban, E., Kim, S., and Paik, W. K. 1977. Cytochrome c-specific protein methylase III from Neurospora crassa. Biochem. J. 165:11–18.Google Scholar
  223. Ochoa, S. 1943. Efficiency of aerobic phosphorylation in cell-free heart extracts. J. Biol. Chem. 151:493–505.Google Scholar
  224. Ohnishi, T., Kawaguchi, K., and Hagihara, B., 1966. Preparation and some properties of yeast mitochondria. J. Biol. Chem. 241:1797–1806.Google Scholar
  225. Okuda, J., Nagamine, J., and Yagi, K. 1979. Exchange of free and bound coenzyme of flavin enzymes studied with [14C] FAD. Biochim. Biophys. Acta 566:245–252.Google Scholar
  226. Omura, T., and Sato, R. 1964. The carbon monoxide-binding pigment of liver microsomes. II. Solubilization, purification, and properties. J. Biol. Chem. 239:2379–2385.Google Scholar
  227. Ozols, J., and Strittmatter, P. 1968. The amino acid sequence of cytochrome b 5. J. Biol. Chem. 243:3376–3381.Google Scholar
  228. Ozols, J., and Strittmatter, P. 1969. Correction of the amino acid sequence of calf liver microsomal cytochrome b 5. J. Biol. Chem. 244:6617–6618.Google Scholar
  229. Pajot, P., and Caisse, M. L. 1974. Utilization by yeast of D-lactate and L-lactate as sources of energy in the presence of antimycin A. Eur. J. Biochem. 49:275–285.Google Scholar
  230. Pajot, P., and Groudinsky, O. 1970. Molecular weight and quaternary structure of yeast L-lactate dehydrogenase cytochrome b 2. Eur. J. Biochem. 12:158–164.Google Scholar
  231. Palmer, G., Babcock, G. T., and Vickery, L. E. 1976. A model for cytochrome oxidase. Proc. Natl. Acad. Sci. USA 73:2206–2210.ADSGoogle Scholar
  232. Papa, S. 1976. Proton translocation reactions in the respiratory chain. Biochim. Biophys. Acta 456:39–84.Google Scholar
  233. Parr, S. R., Wilson, M. T., and Greenwood, C. 1974. The reactions of Pseudomonas aeruginosa cytochrome c oxidase with sodium metabisulphite. Biochem. J. 139:273–276.Google Scholar
  234. Parr, S. R., Barber, D., Greenwood, C., Phillips, B. W., and Melling, J. 1976. A purification procedure for the soluble cytochrome oxidase and some other respiratory proteins from Pseudomonas aeruginosa. Biochem. J. 157:423–430.Google Scholar
  235. Pearce, J., Leach, C. K., and Carr, N. G. 1969. The incomplete tricarboxylic acid cycle in the blue-green alga Anabaena variabilis. J. Gen. Microbiol. 55:371–378.Google Scholar
  236. Peck, H. D. 1962. The role of adenosine 5′-phosphosulfate in the reduction of the sulfate to sulfite in Desulfovibrio de sulfuricans. J. Biol. Chem. 237:198–203.Google Scholar
  237. Peck, H. D., Deacon, T. E., and Davidson, J. T. 1965. Studies on adenosine 5′-phosphosulfate reductase from Desulfovibrio desulfuricans and Thiobacillus thioparus. Biochim. Biophys. Acta 96:429–446.Google Scholar
  238. Perlish, J. S., and Eichel, J. H. 1971. A succinate-and DPNH-reducible o-type cytochrome in mitochondrial preparations from Tetrahymena pyriformis. Biochem. Biophys. Res. Commun. 44:973–980.Google Scholar
  239. Petersen, L. C., and Andréasson, L. E. 1976. The reaction between oxidized cytochrome c and reduced cytochrome c oxidase. FEBS Lett. 66:52–57.Google Scholar
  240. Peterson, J. A., Ebel, R. E., O’Keefe, D. H., Matsubara, T., and Estabrook, R. W. 1976. Temperature dependence of cytochrome P-450 reduction. A model for NADPH-cytochrome P-450 reductase:cytochrome P-450 interaction. J. Biol. Chem. 251:4010–4016.Google Scholar
  241. Peterson, J. A., White, R. E., Yasukochi, Y., Coomes, M. L., O’Keeffe, D. H., Ebel, R. E., Masters, B. S. S., Ballou, D. P., and Coon, M. J. 1977. Evidence that purified liver microsomal cytochrome P-450 is a one-electron acceptor. J. Biol. Chem. 252:4431–4434.Google Scholar
  242. Petrucci, D., Amicarelli, F., and Paponetti, B. 1977. NAD+-linked malic enzyme in mitochondria of amphibian oocytes. Int. J. Biochem. 8:149–157.Google Scholar
  243. Pettigrew, G. W., Leaver, J. L., Meyer, T. E., and Ryle, A. P. 1975. Purification, properties, and amino acid sequence of atypical cytochrome c from two protozoans, Euglena gracilis and Crithidia oncopelta. Biochem. J. 147:291–302.Google Scholar
  244. Phan, S. H., and Mahler, H. R. 1976a. Studies on cytochrome oxidase. Partial resolution of enzymes containing 7 or 6 subunits, from yeast and beef heart, respectively. J. Biol. Chem. 251:257–269.Google Scholar
  245. Phan, S. H., and Mahler, H. R. 1976b. Studies on cytochrome oxidase. Preliminary characterization of an enzyme containing only four subunits. J. Biol. Chem. 251:270–276.Google Scholar
  246. Pinchot, G. B. 1957a. A polynucleotide coenzyme of oxidative phosphorylation. J. Biol. Chem. 229:1–9.Google Scholar
  247. Pinchot, G. B. 1957b. A polynucleotide coenzyme of oxidative phosphorylation. II. J. Biol. Chem. 229:25–37.Google Scholar
  248. Postgate, J. R., and Campbell, L. L. 1966. Classification of Desulfovibrio species, the nonsporu-lating sulfate-reducing bacteria. Bacteriol. Rev. 30:732–738.Google Scholar
  249. Poyton, R. O., and Schatz, G. 1975. Cytochrome c oxidase from baker’s yeast. J. Biol. Chem. 250:762–766.Google Scholar
  250. Pullman, B., and Pullman, A. 1960. Electronic structure of energy-rich phosphates. Radiat. Res. Suppl. 2:160–181.Google Scholar
  251. Quaglianello, E., and Palmieri, F. 1968. Control of succinate oxidation by succinate-uptake by rat-liver mitochondria. Eur. J. Biochem. 4:20–27.Google Scholar
  252. Ragan, C. I. 1976. The structure and subunit composition of the particulate NADH-ubiquinone reductase of bovine heart mitochondria. Biochem. J. 154:295–305.Google Scholar
  253. Rashid, M. A., Hagihara, B., Kobayashi, M., Tani, S., and Tsugita, A. 1973. Sequential studies in human liver cytochrome b 5. J. Biochem. 74:985–1002.Google Scholar
  254. Reddy, V. V. R., Kupfer, D., and Caspi, E. 1977. Mechanism of C-5 double bond introduction in the biosynthesis of cholesterol by rat liver microsomes. Evidence for the participation of microsomal cytochrome b 5. J. Biol. Chem. 252:2797–2801.Google Scholar
  255. Rieske, J. S. 1976. Composition, structure, and function of complex III in the respiratory chain. Biochim. Biophys. Acta 456:195–247.Google Scholar
  256. Ritchey, T. W., and Seeley, H. W. 1976. Distribution of cytochrome-like respiration in streptococci. J. Gen. Microbiol. 93:195–203.Google Scholar
  257. Robbi, M, Berthet, J., Trouet, A., and Beaufay, H. 1978a. The biosynthesis of rat liver cytochrome c. 1. Subcellular distribution of cytochrome c. Eur. J. Biochem. 84:333–340.Google Scholar
  258. Robbi, M., Berthet, J., and Beaufay, H. 1978b. The biosynthesis of rat-liver cytochrome c. 2. Subcellular distribution of newly synthesized cytochrome c. Eur. J. Biochem. 84:341–346.Google Scholar
  259. Rosén, S., Brändén, R., Vänngård, T., and Malmström, B. G. 1977. EPR evidence for an active form of cytochrome c oxidase different from the resting enzyme. FEBS Lett. 74:25–30.Google Scholar
  260. Ross, E., and Schatz, G. 1976a. Cytochrome c 1 of baker’s yeast. I. Isolation and properties. J. Biol. Chem. 251:1991–1996.Google Scholar
  261. Ross, E., and Schatz, G. 1976b. Cytochrome c 1 of baker’s yeast. II. Synthesis on cytoplasmic ribosomes and influence of oxygen and heme on accumulation of the apoprotein. J. Biol. Chem. 251:1997–2004.Google Scholar
  262. Rubin, M. S. 1972. Subunit structure of yeast and beef cytochrome oxidase. Fed. Proc. Fed. Am. Soc. Exp. Biol. 31:3896.Google Scholar
  263. Rubin, M. S., and Tzagoloff, A. 1973. Assembly of the mitochondrial membrane system; Purification, characterization, and subunit structure of yeast and beef heart cytochrome oxidase. J. Biol. Chem. 248:4269–4274.Google Scholar
  264. Rushbrook, J. I., and Harvey, R. A. 1978. NAD-dependent isocitrate dehydrogenase from beef heart. Biochemistry 17:5339–5346.Google Scholar
  265. Ryrie, I. J. 1977. Yeast mitochondrial ATPase complex. Purification, subunit composition, and some effects of protease inhibitors. Arch. Biochem. Biophys. 184:464–475.Google Scholar
  266. Salemme, F. R. 1977. Structure and function of cytochromes c. Annu. Rev. Biochem. 46:299–329.Google Scholar
  267. Saltzgaber-Müller, J., and Schatz, G. 1978. Heme is necessary for the accumulation and assembly of cytochrome c oxidase subunits in S. cerevisiae. J. Biol. Chem. 253:305–310.Google Scholar
  268. Sato, N., Wilson, D. F., and Chance, B. 1971. The spectral properties of the b cytochromes in intact mitochondria. Biochim. Biophys. Acta 253:88–97.Google Scholar
  269. Saunders, G. F., Campbell, L. L., and Postgate, J. R. 1964. Base composition of DNA of sulfate-reducing bacteria deduced from buoyant density measurements in cesium chloride. J. Bac-teriol. 87:1073–1078.Google Scholar
  270. Sebald, W., Weiss, H., and Jackl, G. 1972. Inhibition of the assembly of cytochrome oxidase in Neurospora crassa by chloramphenicol. Eur. J. Biochem. 30:413–417.Google Scholar
  271. Senior, A. E. 1973. The structure of mitochondrial ATPase. Biochim. Biophys. Acta 301:249–277.Google Scholar
  272. Sherman, F., Taber, H., and Campbell, W. 1965. Genetic determination of isocytochromes c in yeast. J. Mol. Biol. 13:21–39.Google Scholar
  273. Shichi, H., and Hackett, D. P. 1962. Studies on the b-type cytochromes from mung bean seedlings. I. Purification of cytochromes b-555 and b-561. J. Biol. Chem. 237:2955–2964.Google Scholar
  274. Shimazaki, K., Takamiya, K., and Nishimura, M. 1978a. Studies on electron transfer system in the marine diatom Phaeodactylum tricornutum I. Isolation and characterization of cytochromes. J. Biochem. 83:1631–1638.Google Scholar
  275. Shimazaki, K., Takamiya, K., and Nishimura, M. 1978b. Studies on electron transfer systems in the marine diatom Phaeodactylum tricornutum. II. Identification and determination of quinones, cytochromes and flavins. J. Biochem. 83:1639–1642.Google Scholar
  276. Sigal, N., Senez, J. C., LeGall, J., and Sebald, M. 1963. Base composition of the DNA of sulfate-reducing bacteria. J. Bacteriol. 85:1315–1318.Google Scholar
  277. Slater, E. C. 1967. The respiratory chain and oxidative phosphorylation: Some of the unsolved problems. In: Slater, E. C., Kaniuga, Z., and Wojtczak, L, Biochemistry of Mitochondria, New York, Academic Press, pp. 1–10.Google Scholar
  278. Slater, E. C. 1977. Mechanism of oxidative phosphorylation. Annu. Rev. Biochem. 46:1015–1026.Google Scholar
  279. Slater, E. C., Lee, C. P., Berden, J. A., and Wegdan, H. J. 1970. High-energy forms of cytochrome b. Nature (London) 226:1248–1249.ADSGoogle Scholar
  280. Slater, E. C., Kemp, A., van der Krann, I., Muller, J. L. M., Roveri, D. A., Verschoor, G. J., Wagenvoord, R. J., and Wielders, J. P. M. 1979. The ATP-and ADP-binding sites in mitochondrial coupling factor F and their possible roles in oxidative phosphorylation. FEBS Lett. 103:7–11.Google Scholar
  281. Slonimski, P. P., Acher, R., Péré, G., Sels, A., and Somlo, M. 1965. In: Mécanismes de Régulation des Activités Cellulaires chez les Microorganismes, Paris, Centre National Recherche Scientifique, p. 435.Google Scholar
  282. Smillie, R. M. 1965. Isolation of two proteins with chloroplast ferredoxin activity from a blue-green alga. Biochem. Biophys. Res. Commun. 20:621–629.Google Scholar
  283. Smith, L. 1954. Bacterial cytochromes. Bacteriol. Rev. 18:106–130.Google Scholar
  284. Smith, L. 1968. The respiratory chain system of bacteria. In: Singer, F. P., ed., Biological Oxidations, New York, Interscience, pp. 55–122.Google Scholar
  285. Sugeno, K., and Matsubara, H. 1969. The amino acid sequence of Scenedesmus ferredoxin. J. Biol. Chem. 244:2979–2989.Google Scholar
  286. Sugimura, Y., Toda, F., Murata, T., and Yakushiji, E. 1968. Studies on algal cytochromes. In: Okunuki, K., Kamen, M. D., and Sekuzu, I., eds., Structure and Function of Cytochromes, Tokyo, University of Tokyo Press, pp. 452–458.Google Scholar
  287. Stadtman, E. R. 1968. The role of multiple enzymes in the regulation of branched metabolic pathways. Ann. N.Y. Acad. Sci. 151:516–530.ADSGoogle Scholar
  288. Steffens, G. J., and Buse, G. 1979. Chemical constitution and subunit function of polypeptide II from cytochrome-c-oxidase. In: King, T. E., Orii, Y., Chance, B., and Okunuki, K., eds., Cytochrome Oxidase, Amsterdam, Elsevier/North-Holland Biomedical Press, pp. 79–90.Google Scholar
  289. Stern, J. O., and Peisach, J. 1976. A model compound for nitrosyl cytochrome P-450: Further evidence for mercaptide sulfur ligation to heme. FEBS Lett. 62:364–368.Google Scholar
  290. Stiggall, D. L., Galante, Y. M., and Hatefi, Y. 1978. Preparation and properties of an ATP-Pi exchange complex (complex V) from bovine heart mitochondria. J. Biol. Chem. 253:956–964.Google Scholar
  291. Straub, J. P., and Colpa-Boonstra, J. P. 1962. The effect of pH on the oxidation-reduction potential of cytochrome b in heart-muscle preparations. Biochim. Biophys. Acta 60:650–652.Google Scholar
  292. Strittmatter, P., and Huntley, T. E. 1970. Protein conformation in haeme binding in cytochrome b 5. Symp. 8th Int. Congr. Biochem., Switzerland 1:21–22.Google Scholar
  293. Srivastava, H. K. 1971. Carbon monoxide reactive haemoproteins in parasitic flagellate Crithidia oncopelti. FEBS Lett. 16:189–191.Google Scholar
  294. Takahashi, H., Taniguchi, S., and Egani, F. 1956. Nitrate reduction in aerobic bacteria and that in E. coli coupled to phosphorylations. J. Biochem. 43:223–233.Google Scholar
  295. Takruri, I., and Boulter, D. 1979. The amino acid sequence of ferredoxin from Triticum aestivum. Biochem. J. 179:373–378.Google Scholar
  296. Takruri, I., Haslett, B. G., Boulter, D., Andrew, P. W., and Rogers, L. J. 1978. The amino acid sequence of ferredoxin from the red alga Porphyra umbilicalis. Biochem. J. 173:459–466.Google Scholar
  297. Tanaka, M., Haniu, M., Yasunobu, K. T., Evans, M. C. W., and Rao, K. K. 1974. Amino acid sequence of ferredoxin from photosynthetic green bacterium, Chlorobium limicola. Biochemistry 13:2953–2959.Google Scholar
  298. Tanaka, M., Haniu, M., Yasunobu, K. T., Evans, M. C. W., and Rao, K. K. 1975a. The amino acid sequence of ferredoxin II from Chlorobium limicola, a photosynthetic green bacterium. Biochemistry 14:1938–1943.Google Scholar
  299. Tanaka, M., Haniu, M., Zeitlin, S., Yasunobu, K. T., Rao, K. K., and Hall, D. O. 1975b. Modification of the automated sequence determination as applied to the sequence determination of the Spirulina maxima ferredoxin. Biochemistry 14:5535–5540.Google Scholar
  300. Tanaka, M., Haniu, M., Yasunobu, K. T., Yu, C. A., Yu, L., Wei, H., and King, T. E. 1977. Amino acid sequence of the heme a subunit of bovine heart cytochrome oxidase and sequence homology with hemoglobin. Biochem. Biophys. Res. Commun. 76:1014–1019.Google Scholar
  301. Thauer, R. K., Jungermann, K., and Decker, K. 1977. Energy conservation in chemotropic anaerobic bacteria. Bacteriol. Rev. 41:100–180.Google Scholar
  302. Thomas, P. E., Korzeniowski, D., Bresnick, E., Bornstein, W. A., Kasper, C. B., Fahl, W. E., Jefcoate, C. R., and Levin, W. 1979. Hepatic cytochrome P-448 and epoxide hydrase: Enzymes of nuclear origin are immunochemically identical to those of microsomal origin. Arch. Biochem. Biophys. 192:22–26.Google Scholar
  303. Thompson, R. B., Borden, D., Tarr, G. E., and Margoliash, E. 1978. Heterogeneity of amino acid sequence in hippopotamus cytochrome c. J. Biol. Chem. 253:8957–8961.Google Scholar
  304. Thusius, D., Blazy, B., and Baudras, A. 1976. Mechanism of yeast cytochrome b 2 action. I. Thermodynamics and relaxation kinetics of the interaction between cytochrome b 2 and oxalate. Biochemistry 15:250–256.Google Scholar
  305. Tikhonov, A. N., Burbaev, D. S., Grigolava, I. V., Konstantinov, A. A., Ksenzenko, M. Y., and Ruuge, E. K. 1977. Interaction of the ubisemiquinone with the high-potential iron-sulfur center of succinate dehydrogenase of submitochondrial particles. ESR study at 240° and 12°K. Biofizika 22:734–736.Google Scholar
  306. Tilley, B. E., Watanuki, M., and Hall, P. F. 1976. Cytochrome P-450 from bovine adrenocortical mitochondria: Two species of subunit. Biochem. Biophys. Res. Commun. 70:1303–1307.Google Scholar
  307. Timkovich, R., and Dickerson, R. E. 1976. Amino acid sequence of Paracoccus denitrificans cytochrome c 550. J. Biol. Chem. 251:2197–2206.Google Scholar
  308. Ting, H. Y., Jacobson, E. L., and Jacobson, M. K. 1977. Regulation of NADP levels in yeast. Arch. Biochem. Biophys. 183:98–104.Google Scholar
  309. Trousil, E. B., and Campbell, L. L. 1974. Amino acid sequence of cytochrome c 3 from Desul-fovibrio vulgaris. J. Biol. Chem. 249:386–393.Google Scholar
  310. Trumpower, B. L. 1976. Evidence for a proton motive Q cycle mechanism of electron transfer through the cytochrome b-c 1 complex. Biochem. Biophys. Res. Commun. 70:73–80.Google Scholar
  311. Tsugita, A., Kobayashi, M., Tani, S., Kyo, S., Rashid, M. A., Yoshida, Y., Kajihara, T., and Hagihara, B. 1970. Comparative study of the primary structures of cytochrome b from four species. Proc. Natl. Acad. Sci, USA 67:442–447.ADSGoogle Scholar
  312. Tyree, B., and Webster, D. A. 1978a. The binding of cyanide and carbon monoxide to cytochrome o purified from Vitreoscilla. J. Biol. Chem. 253:6988–6991.Google Scholar
  313. Tyree, B., and Webster, D. A. 1978b. Electron-accepting properties of cytochrome o purified from Vitreoscilla. J. Biol. Chem. 253:7635–7637.Google Scholar
  314. Tyree, B., and Webster, D. A. 1979a. Intermediates in the reaction of reduced cytochrome (Vitreoscilla) (Vitreoscilla) with oxygen. J. Biol. Chem. 254:176–179.Google Scholar
  315. Tyree, B., and Webster, D. A. 1979b. Intermediates in the reaction of cytochrome o (Vitreoscilla) with oxygen. In: King, T. E., Orii, Y., Chance, B., and Okunuki, K., eds., Cytochrome Oxidase, Amsterdam, Elsevier/North-Holland Biomedical Press, pp. 21–27.Google Scholar
  316. Vanderkooi, J. M., and Erecińska, M. 1976. Cytochrome c, a membrane-bound enzyme. In: Mar-tonosi, A., ed., The Enzymes of Biological Membranes, New York, Plenum Press, Vol. 4, pp. 43–86.Google Scholar
  317. Vanderkooi, J. M., Erecińska, M., and Chance, B. 1973. Cytochrome c interaction with membranes. I. Use of a fluorescent chromophore in a study of cytochrome c interaction with artificial and mitochondrial membranes. Arch. Biochem. Biophys. 154:219–229.Google Scholar
  318. Vanderkooi, J. M., Erecińska, M., and Chance, B. 1973. Cytochrome c interaction with membranes. II. Comparative study of the interaction of c cytochromes with the mitochondrial membrane. Arch. Biochem. Biophys. 157:531–540.Google Scholar
  319. van Lin, B., and Bothe, H. 1972. Flavodoxin from Azotobacter vinelandii. Arch. Mikrobiol. 82:155–172.Google Scholar
  320. Vetter, H., and Knappe, J. 1971. Flavodoxin and ferredoxin of Escherichia coli. Hoppe-Seyler’s Z. Physiol. Chem. 352:433–446.Google Scholar
  321. Wachter, E., Sebald, W., and Tzagoloff, A. 1977. Altered amino acid sequence of the DCCD-binding protein in the OL 1–1 resistant mutant D273-10B/A21 of 5. cerevisiae. In: Bandlow, W., Schweyen, R. J., Wolf, K., and Kaudewitz, F., eds., Mitochondria 1977, Berlin, de Gruyter, pp. 441–449.Google Scholar
  322. Wada, K., and Arnon, D. I. 1971. Three forms of cytochrome b 559 and their relation to the pho-tosynthetic activity of chloroplasts. Proc. Natl. Acad. Sci. USA 68:3064–3068.ADSGoogle Scholar
  323. Wada, K., Hase, T., Tokunaga, H., and Matsubara, H. 1975. Amino acid sequence of Spirulina platensis ferredoxin: A far divergency of blue-green algal ferredoxins. FEBS Lett. 55:102–104.Google Scholar
  324. Wakabayashi, S., Hase, T., Wada, K., Matsubara, H., Suzuki, K., and Takaichi, S. 1978. Amino acid sequences of two ferredoxins from pokeweed, Phytolacca americana. J. Biochem. 83:1305–1319.Google Scholar
  325. Walasek, O. F., and Margoliash, E. 1977. Transmission of the cytochrome c structural gene in horse-donkey crosses. J. Biol. Chem. 252:830–834.Google Scholar
  326. Watanabe, H., Kamita, Y., Nakamura, T., Takimoto, A., and Yamanaka, T. 1979. The terminal oxidase of Photobacterium phosphoreum: A novel cytochrome. Biochim. Biophys. Acta 547:70–78.Google Scholar
  327. Webster, D. A., and Hackett, D. P. 1966. Respiratory chain of colorless algae. II. Cyanophyta. Plant Physiol. 41:599–605.Google Scholar
  328. Webster, D. A., and Orii, Y. 1977. Oxygenated cytochrome o. An active intermediate observed in whole cells of Vitreoscilla. J. Biol. Chem. 252:1834–1836.Google Scholar
  329. Wikström, M. K. F. 1971. Properties of three cytochrome b-like species in mitochondria and submitochondrial particles. Biochim. Biophys. Acta 253:332–345.Google Scholar
  330. Wikström, M. K. F. 1973. The different cytochrome b components in the respiratory chain of animal mitochondria and their role in electron transport and energy conservation. Biochim. Biophys. Acta 301:155–193.Google Scholar
  331. Wikström, M. K. F. 1977. Proton pump coupled to cytochrome c oxidase in mitochondria. Nature (London) 266:271–273.ADSGoogle Scholar
  332. Wikström, M. K. F. 1978. Cytochrome c oxidase. The mechanism of a redox-coupled proton pump. In: Azzone, G. F., et al., eds., The Proton and Calcium Pumps, Amsterdam, Elsevier/North-Holland Biomedical Press, pp. 215–226.Google Scholar
  333. Wikström, M. K. F., and Sarri, H. T. 1977. The mechanism of energy conservation and transduction by mitochondrial cytochrome c oxidase. Biochim. Biophys. Acta 462:347–361.Google Scholar
  334. Wikström, M. K. F., Saari, H., Penttila, T., and Saraste, M. 1977. Functioning of cytochrome c oxidase in the mitochondrial membrane and in vesicles. In: Nicholls, P., et al., eds., Membrane Proteins, New York, Pergamon Press, pp. 85–94.Google Scholar
  335. Williams, R. J. P. 1978. The history and hypotheses concerning ATP-formation by energised protons. FEBS Lett. 85:9–19.Google Scholar
  336. Wilson, D. F., Owens, C. S., and Erecińska, M. 1979. Quantitative dependence of mitochondrial oxidative phosphorylation on oxygen concentration: A mathematical model. Arch. Biochem. Biophys. 195:494–504.Google Scholar
  337. Wiseman, A., Lim, T. K., and Woods, L. F. J. 1978. Regulation of the synthesis of cytochrome P-450 in brewer’s yeast. Role of cyclic AMP. Biochim. Biophys. Acta 544:615–623.Google Scholar
  338. Wong, D. T. O., and Ajl, S. J. 1956. Conversion of acetate and glyoxylate to malate. J. Am. Chem. Soc. 78:3230–3231.Google Scholar
  339. Wong, D. T. O., and Ajl, S. J. 1957. Significance of the malate synthetase reaction in bacteria. Science 126:1013–1014.ADSGoogle Scholar
  340. Yamamoto, T., and Orii, Y. 1974. The polypeptide compositions of bovine cytochrome oxidase and its proteinase treated derivative. J. Biochem. 75:1081–1089.Google Scholar
  341. Yamanaka, T. 1972. Evolution of cytochrome c molecule. Adv. Biophys. 3:227–276.Google Scholar
  342. Yamanaka, T. 1973. Cytochrome c and evolution of the energy acquiring system. Space Life Sci. 4:490–504.ADSGoogle Scholar
  343. Yamanaka, T. 1975. A comparative study on the redox reactions of cytochromes c with certain enzymes. J. Biochem. 77:493–499.Google Scholar
  344. Yamanaka, T. 1976. The subunits of Chlorobium flavocytochrome c. J. Biochem. 79:655–660.Google Scholar
  345. Yamanaka, T., and Fukumori, Y. 1977. Thiobacillus novellus cytochrome oxidase can separate some eucaryotic cytochromes c. FEBS Lett. 77:155–158.Google Scholar
  346. Yamanaka, T., and Okunuki, K. 1963. Crystalline Pseudomonas cytochrome oxidase. I. Enzymatic properties with special reference to the biological specificity. Biochim. Biophys. Acta 67:379–393.Google Scholar
  347. Yamanaka, T., and Okunuki, K. 1968. Comparative studies of cytochrome c with cytochrome oxidases. In: Okunuki, K., Kamen, M. D., and Sekuzu, I., eds., Structure and Function of Cytochromes, Tokyo, University of Tokyo Press, pp. 390–403.Google Scholar
  348. Yamanaka, T., Ota, A., and Okunuki, K. 1961. A nitrite reducing system reconstructed with purified cytochrome components of Pseudomonas aeruginosa. Biochim. Biophys. Acta 53:294–308.Google Scholar
  349. Yang, N. S., Sorenson, J. C., and Scandalios, J. G. 1977. Genetic control of mitochondrial malate dehydrogenases: Evidence for duplicated chromosome segments. Proc. Natl. Acad. Sci. USA 74:310–314.ADSGoogle Scholar
  350. Yasunobu, K. T., Tanaka, M., Haniu, M., Sameshima, M., Reimer, N., Eto, T., King, T. E., Yu, C. A., Yu, L., and Wei, Y. H. 1979. Sequence studies of bovine heart cytochrome oxidase subunits. In: King, T. E., Orii, Y., Chance, B., and Okunuki, K., eds., Cytochrome Oxidase, Amsterdam, Elsevier/North-Holland Biomedical Press, pp. 91–101.Google Scholar
  351. Yatscoff, R. W., Freeman, K. B., and Vail, W. J. 1977. Site of biosynthesis of mammalian cytochrome c oxidase subunits. FEBS Lett. 81:7–9.Google Scholar
  352. Yockey, H. P. 1977. On the information content of cytochrome c. J. Theor. Biol. 67:345–376.Google Scholar
  353. Yu, C. A., Yu, L., and King, T. E. 1974a. Soluble cytochrome b-c complex and the reconstitution of succinate-cytochrome c reductase. J. Biol. Chem. 249:4905–4910.Google Scholar
  354. Yu, C. A., Gunsalus, I. C., Katagiri, M., Suhara, K., and Takemori, S. 1974b. Cytochrome P-450 cam. I. Crystallization and properties. J. Biol. Chem. 249:94–101.Google Scholar
  355. Yu, L., Yu, C. A., and King, T. E. 1978. The indispensability of phospholipid and ubiquinone in mitochondrial electron transfer from succinate to cytochrome c. J. Biol. Chem. 253:2657–2663.Google Scholar
  356. Zumft, W. G., and Spiller, H. 1971. Characterization of a flavodoxin from the green alga Chlorella. Biochem. Biophys. Res. Commun. 45:112–118.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Lawrence S. Dillon
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations