Advertisement

The Chemistry and Reactivity of Silk

  • M. S. Otterburn
Chapter

Abstract

Silk fibers have long caught the imagination of man from both scientific and technological viewpoints. The production of silk for textile purposes, sericulture, was practiced in the Far East over 4000 years ago. The first recorded commercial production was during the reign of the Chinese emperor Huang Ti in 2640 B.C. This emperor based the Chinese economy on silk production and the fiber had a vital role as a medium of exchange within the country, as well as being an important export commodity. The Chinese guarded their knowledge of sericulture and weaving techniques for many centuries, but, eventually, the techniques spread via Korea to Japan and India.

Keywords

Silk Fibroin Silk Fiber Silk Protein Cysteic Acid Wild Silk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Fischer, Chem. Ber. 34, 433 (1901).CrossRefGoogle Scholar
  2. 2.
    E. Fischer and A. Skita, Z. Physiol Chem. 33, 177 (1901).CrossRefGoogle Scholar
  3. 3.
    E. Fischer and E. Abderhalden, Chem. Ber. 40, 3544 (1907).CrossRefGoogle Scholar
  4. 4.
    E. Abderhalden, Z. Physiol. Chem. 120, 207 (1922).Google Scholar
  5. 5.
    F. Lucas, J. T. B. Shaw, and S. G. Smith, Advan. Protein Chem. 13, 107 (1958).CrossRefGoogle Scholar
  6. 6.
    M. Florkin and C. Jeuniaux, Arch. Intern. Physiol. Biochim. 66, 552 (1958).CrossRefGoogle Scholar
  7. 7.
    M. Florkin, S. Bricteux-Grégorie, and A. Dewandre, Biochim. Z. 333, 370 (1960).Google Scholar
  8. 8.
    M. Florkin, Bull. Acad. Roy. Belg. 4, 441 (1965).Google Scholar
  9. 9.
    Anonymous, Turtox News 26, No. 8 (1948).Google Scholar
  10. 10.
    G. Fraenkel and K. M. Rudall, Proc. Roy. Soc. (Lond.) B 134, 111 (1947).CrossRefGoogle Scholar
  11. 11.
    R. H. Hackmann and M. Goldberg, J. Insect Physiol. 2, 221 (1958).CrossRefGoogle Scholar
  12. 12.
    R. H. Hackmann, Proc. 4th Intern. Congr. Biochem., Vienna (1958).Google Scholar
  13. 13.
    K. M. Rudall, in: Comparative Biochemistry (M. Florkin and H. S. Mason, eds.) Vol. IVB, Chap. 9, p. 397, Academic Press, New York (1962).Google Scholar
  14. 14.
    F. Lucas, Discovery 25, 20 (1964).Google Scholar
  15. 15.
    F. Lucas and K. M. Rudall, in: Comprehensive Biochemistry (M. Florkin and H. Stotz, eds.), Vol. 26B, Chap. VII, Elsevier Publishing Company, Amsterdam (1968).Google Scholar
  16. 16.
    F. O. Howitt, Bibliography of the Technical Literature on Silk, The Hutchinson Publishing Group Ltd., London (1946).Google Scholar
  17. 17.
    J. Kirimura, Protein Chemistry, Vol. 5, Kyonitsu Shuppan, Tokyo (1957).Google Scholar
  18. 18.
    D. J. Lloyd and P. B. Bidder, Trans. Faraday Soc. 31, 864 (1935).CrossRefGoogle Scholar
  19. 19.
    M. C. Corfield, F. O. Howitt, and A. Robson, Nature (Lond.) 174, 603 (1954).CrossRefGoogle Scholar
  20. 20.
    M. S. Dunn, M. N. Camien, L. S. Rockland, S. Shanckman, and S. C. Goldberg, J. Biol. Chem. 155, 591 (1944).Google Scholar
  21. 21.
    D. Coleman and F. O. Howitt, Symposium on Fibrous Proteins, Society of Dyers and Colourists, p. 144, Bradford, England (1946); D. Coleman and F. O. Howitt, Proc. Roy. Soc. (Lond.) 109A, 145 (1947).Google Scholar
  22. 22.
    E. Waldschmidt-Leitz and O. Zeiss, Z. Physiol. Chem. 300, 49 (1955).CrossRefGoogle Scholar
  23. 23.
    R. Signer and R. Strässle, Helv. Chim. Acta 30, 155 (1947).PubMedCrossRefGoogle Scholar
  24. 24.
    F. H. Holmes and D. I. Smith, Nature (Lond.) 169, 193 (1952).CrossRefGoogle Scholar
  25. 25.
    E. H. Mercer, Textile Res. J. 24, 135 (1954).CrossRefGoogle Scholar
  26. 26.
    B. Drucker and S. G. Smith, Nature (Lond.) 65, 196 (1950).CrossRefGoogle Scholar
  27. 27.
    R. Signer and R. Glanzmann, Makromol. Chem. 5, 257 (1951).Google Scholar
  28. 28.
    K. Narita, J. Chem. Soc. (Japan) 75, 1005 (1954).Google Scholar
  29. 29.
    G. Braunitzer and D. Wolff, Z. Naturforsch. 106, 404 (1955).Google Scholar
  30. 30.
    H. Zahn and A. Würz, Biochem. Z. 322, 327 (1952).PubMedGoogle Scholar
  31. 31.
    J. T. B. Shaw and S. G. Smith, J. Textile Inst. 45, 934T (1954).Google Scholar
  32. 32.
    E. Abderhalden and A. Bahm, Z. Physiol. Chem. 215, 246 (1933); 219, 72 (1933).Google Scholar
  33. 33.
    M. Levy and E. Slobodian, Cold Spring Harbor Symp. Quant. Biol. 14, 113 (1949); M. Levy and E. Slobodian, J. Biol. Chem. 199, 563 (1952).Google Scholar
  34. 34.
    H. G. Ioffe, Biokhimiya 19, 495 (1954).Google Scholar
  35. 35.
    E. Slobodian and M. Levy, Fed. Proc. 11, 288 (1952).Google Scholar
  36. 36.
    L. M. Kay and W. A. Schroeder, J. Amer. Chem. Soc. 76, 3564 (1957).CrossRefGoogle Scholar
  37. 37.
    F. Lucas, J. T. B. Shaw, and S. G. Smith, Biochem. J. 66, 468 (1957).PubMedGoogle Scholar
  38. 38.
    J. O. Warwicker, Acta Cryst. 7, 565 (1954).CrossRefGoogle Scholar
  39. 39.
    H. Zahn and E. Schnabel, Ann. Chem. 604, 62 (1957).Google Scholar
  40. 40.
    E. Schnabel, Ann. Chem. 615, 165 (1968).Google Scholar
  41. 41.
    E. Schnabel and H. Zahn, Ann. Chem. 614, 141 (1958).Google Scholar
  42. 42.
    E. Schnabel, Ann. Chem. 615, 173 (1958).Google Scholar
  43. 43.
    F. H. C. Stewart, Aust. J. Chem. 19, 489 (1966).CrossRefGoogle Scholar
  44. 44.
    R. D. Fraser, T. P. MacRae, and F. H. C. Stewart, J. Mol. Biol. 19, 580 (1966).PubMedCrossRefGoogle Scholar
  45. 45.
    H. Zahn, W. Schade, and K. Ziegler, Biochem. J. 104, 1019 (1967).PubMedGoogle Scholar
  46. 46.
    F. Lucas, J. T. B. Shaw, and S. G. Smith, Biochem. J. 83, 164 (1962).PubMedGoogle Scholar
  47. 47.
    K. Ziegler and H. Spoor, Biochim. Biophys. Acta 33, 138 (1959).PubMedCrossRefGoogle Scholar
  48. 48.
    K. Ziegler and N. H. LaFrance, Z. Physiol. Chem. 322, 21 (1960).CrossRefGoogle Scholar
  49. 49.
    F. Lucas, unpublished work reported in Comprehensive Biochemistry (M. Florkin and E. H. Stotz, eds.), Vol. 26b, Chap. VII, Elsevier Publishing Company, Amsterdam (1968).Google Scholar
  50. 50.
    H. Zuber, Kolloid-Z. 179, 100 (1961).CrossRefGoogle Scholar
  51. 51.
    J. J. Cebra, J. Immunol. 86, 197 (1961).PubMedGoogle Scholar
  52. 52.
    J. T. B. Shaw, Biochem. J. 93, 45 (1964).PubMedGoogle Scholar
  53. 53.
    R. S. Asquith, M. S. Otterburn, and W. J. Sinclair, Angew. Chem. Intern. Ed. 13, 514 (1974).CrossRefGoogle Scholar
  54. 54.
    W. A. Schroeder and L. M. Kay, J. Amer. Chem. Soc. 77, 3908 (1955).CrossRefGoogle Scholar
  55. 55.
    H. Zuber, K. Ziegler, and H. Zahn, Z. Naturforsch. 12b, 734 (1957).Google Scholar
  56. 56.
    C. Earland and D. J. Raven, Nature (Lond.) 192, 1185 (1961).CrossRefGoogle Scholar
  57. 57.
    C. Earland and S. P. Robins, Experientia 25, 905 (1969).PubMedCrossRefGoogle Scholar
  58. 58.
    C. Earland and S. P. Robins, Intern. J. Peptide Protein Res. 5, 327 (1973).CrossRefGoogle Scholar
  59. 59.
    A. Robson, J. M. Woodhouse, and Z. H. Zaidi, Intern. J. Protein Res. 2, 181 (1970).CrossRefGoogle Scholar
  60. 60.
    W. Schade, I. Liensenfeld, and K. Ziegler, Kolloid-Z. 242, 1161 (1970).CrossRefGoogle Scholar
  61. 61.
    J. O. Warwicker, J. Mol. Biol. 2, 350 (1960).PubMedCrossRefGoogle Scholar
  62. 62.
    F. Lucas and K. M. Rudall, in: Symposium on Fibrous Proteins, Australia, 1967 (W. G. Crewther, ed.), Butterworth & Co. (Australia) Ltd., Sydney (1968).Google Scholar
  63. 63.
    R. S. Asquith, M. S. Otterburn, J. H. Buchanan, M. Cole, J. C. Fletcher, and K. L. Gardner, Biochim. Biophys. Acta 221, 342 (1970).PubMedGoogle Scholar
  64. 64.
    R. S. Asquith, M. S. Otterburn, and K. L. Gardner, Experientia 27, 1388 (1971).CrossRefGoogle Scholar
  65. 65.
    D. J. Raven, C. Earland, and M. Little, Biochim. Biophys. Acta 251, 96 (1971).PubMedGoogle Scholar
  66. 66.
    T. Weis-Fogh, J. Exptl. Biol. 37, 889 (1960).Google Scholar
  67. 67.
    S. O. Andersen, Biochim. Biophys. Acta 93, 213 (1964).PubMedGoogle Scholar
  68. 68.
    F. Lucas, Nature (Lond.) 210, 952 (1966).CrossRefGoogle Scholar
  69. 69.
    C. J. Huber, in: Matthews’ Textile Fibers (H. R. Mauersberger, ed.), 5th ed., John Wiley & Sons, Inc., New York (1947).Google Scholar
  70. 70.
    M. S. Otterburn and W. J. Sinclair, J. Sci. Food Agr. 24, 929 (1973).CrossRefGoogle Scholar
  71. 71.
    A. S. Tweedie, Can. J. Res. 16, 134 (1938).CrossRefGoogle Scholar
  72. 72.
    M. V. Korchagin, Zh. Prikl. Khim. 25, 212 (1952).Google Scholar
  73. 73.
    B. H. Nicolet and L. A. Shinn, J. Biol. Chem. 140, 685 (1941).Google Scholar
  74. 74.
    K. L. Gardner, Ph.D. thesis, University of Leeds (1973).Google Scholar
  75. 75.
    M. Bergmann, E. Brand, and F. Weinmann, Z. Physiol. Chem. 131, 1 (1923).CrossRefGoogle Scholar
  76. 76.
    K. Iwai and T. Ando, Methods Enzymol. 11, 263 (1967).CrossRefGoogle Scholar
  77. 77.
    D. F. Elliott, Biochem. J. 50, 542 (1952).PubMedGoogle Scholar
  78. 78.
    K. Narita, J. Amer. Chem. Soc. 81, 1751 (1959).CrossRefGoogle Scholar
  79. 79.
    S. Sakakibara, H. H. Shin, and G. F. Hess, J. Amer. Chem. Soc. 84, 4921 (1962).CrossRefGoogle Scholar
  80. 80.
    E. Mercer, Aust. J. Sci. Res. 5, 365 (1952).Google Scholar
  81. 81.
    J. B. Speakman and C. S. Whewell, J. Soc. Dyers Colourists 52, 380 (1936).CrossRefGoogle Scholar
  82. 82.
    M. J. Horn, D. B. Jones, and S. J. Rignel, J. Biol. Chem. 138, 141 (1938).Google Scholar
  83. 83.
    M. C. Corfield, C. Wood, A. Robson, M. J. Williams, and J. M. Woodhouse, Biochem. J. 103, 15c (1967).PubMedGoogle Scholar
  84. 84.
    R. S. Asquith, A. K. Booth, and D. J. Skinner, Biochim. Biophys. Acta 181, 164 (1969).PubMedGoogle Scholar
  85. 85.
    R. S. Asquith and J. J. Garcia-Dominguez, J. Soc. Dyers Colourists 84, 155 (1968).CrossRefGoogle Scholar
  86. 86.
    R. S. Asquith and P. Carthew, Biochim. Biophys. Acta 278, 346 (1972).Google Scholar
  87. 87.
    Z. Bohak, J. Biol. Chem. 239, 2878 (1964).PubMedGoogle Scholar
  88. 88.
    K. Ziegler, J. Biol. Chem. 239, PC2713 (1964).Google Scholar
  89. 89.
    K. Ziegler, Proc. 3rd Intern. Wool Textile Res. Conf., Paris 2, 312 (1965).Google Scholar
  90. 90.
    P. Mellet and D. F. Louw, Chem. Commun. 17, 396 (1965).Google Scholar
  91. 91.
    A. Robson and Z. H. Zaidi, J. Textile Inst. Trans. 58, 267 (1967).CrossRefGoogle Scholar
  92. 92.
    K. Ziegler, Nature (Lond.) 214, 404 (1967).CrossRefGoogle Scholar
  93. 93.
    P. Alexander, D. Carter, and C. Earland, Biochem. J. 47, 251 (1950).PubMedGoogle Scholar
  94. 94.
    M. Nakanishi and K. Kobayashi, J. Soc. Textile Cellulose Ind. Japan 10, 128, 131 (1954).Google Scholar
  95. 95.
    D. B. Das and J. B. Speakman, J. Soc. Dyers Colourists 66, 583 (1950).CrossRefGoogle Scholar
  96. 96.
    C. Schrile and J. Meybeck, Compt. Rend. 232, 732 (1951).Google Scholar
  97. 97.
    D. A. Sitch and S. G. Smith, J. Textile Inst. Trans. 48, 341 (1957).CrossRefGoogle Scholar
  98. 98.
    S. Akune, Bull. Fac. Agr. Kagoshima Univ. 2, 91, 97 (1953).Google Scholar
  99. 99.
    S. Akune and K. Koga, Bull. Fac. Agr. Kagoshima Univ. 2, 103 (1953).Google Scholar
  100. 100.
    F. O. Howitt, Textile Res. J. 25, 242 (1955).CrossRefGoogle Scholar
  101. 101.
    R. S. Asquith, I. Bridgeman, and A. J. Smith, Proc. 3rd Intern. Wool Textile Res. Conf., Paris 2, 385 (1965).Google Scholar
  102. 102.
    C. Earland and J. G. P. Stell, Biochim. Biophys. Acta 23, 97 (1957).PubMedCrossRefGoogle Scholar
  103. 103.
    C. Earland, J. G. P. Stell, and A. Wiseman, J. Textile Inst. Trans. 51, 817 (1960).CrossRefGoogle Scholar
  104. 104.
    C. Earland and J. G. P. Stell, Polymer 7, 549 (1966).CrossRefGoogle Scholar
  105. 105.
    D. French and J. T. Edsall, Adorn. Protein Chem. 2, 277 (1945).CrossRefGoogle Scholar
  106. 106.
    H. Fraenkel-Conrat and H. S. Olcott, J. Amer. Chem. Soc. 68, 34 (1946).CrossRefGoogle Scholar
  107. 107.
    K. J. Carpenter, Biochem. J. 77, 604 (1960).PubMedGoogle Scholar
  108. 108.
    K. J. Carpenter and V. H. Booth, Nutritional Abstr. Rev. 43, 424 (1973).Google Scholar
  109. 109.
    R. S. Asquith, D. K. Chan, and M. S. Otterburn, J. Chromatog. 43, 382 (1969).CrossRefGoogle Scholar
  110. 110.
    H. Zahn and H. Zuber, Textil-Rundschau 9, 119 (1954).Google Scholar
  111. 111.
    H. Zuber, Dissertation, University of Heidelburg (1953).Google Scholar
  112. 112.
    R. Machon, J. Fléchet, and E. Hugo, Brit. Pat. 1, 278, 707 (1971).Google Scholar
  113. 113.
    C. C. Wilcock and J. L. Ashworth, Whittakers-Dyeing with Coal-Tar Dyestuffs, 6th ed., Baillière, Tindall and Cox, London (1964).Google Scholar
  114. 114.
    C. H. Giles, A Laboratory Course in Dyeing, Society of Dyers and Colourists, Bradford, England (1971).Google Scholar
  115. 115.
    A. N. Filippov and Z. A. Nabatnikova, Sb. Nauchn.-Issled. Rabot Khim. i Khim. Tekhnol. Vysokomolekul. Soedin., Tashkentsktekstil’n Inst. 1, 299 (1964).Google Scholar
  116. 116.
    H. R. Chipalkatti, C. H. Giles, and D. G. M. Vallance, J. Chem. Soc. 4375 (1954).Google Scholar
  117. 117.
    P. G. H. Bakker and A. Johnson, J. Soc. Dyers Colourists 89, 203 (1973).Google Scholar
  118. 118.
    C. H. Giles, J. Soc. Dyers Colourists 60, 312 (1944).Google Scholar
  119. 119.
    J. T. Marsh, An Introduction to Textile Finishing, Chapman & Hall Ltd., London (1957).Google Scholar
  120. 120.
    P. Murase and H. Shiozaki, Bull. Textile Res. Inst. Japan 79, 17 (1966).Google Scholar
  121. 121.
    H. Shiozaki and Y. Tanaka, Bull. Res. Inst. Polymers Textiles Japan 94, 15 (1971).Google Scholar
  122. 122.
    H. Shiozaki and Y. Tanaka, Bull. Res. Inst. Polymers Textiles Japan 99, 27 (1972).Google Scholar
  123. 123.
    Miles Laboratories, U.S. Pat. 3, 479, 128 (1965).Google Scholar
  124. 124.
    Asaki Chemical Co. Ltd., Brit. Pat. 1, 069, 946 (1967).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • M. S. Otterburn
    • 1
  1. 1.Department of Industrial ChemistryThe Queen’s UniversityBelfastNorthern Ireland

Personalised recommendations