Advertisement

The Chemical Composition and Structure of Wool

  • H. Lindley
Chapter

Abstract

The first two amino acids to be isolated from protein hydrolysates were glycine and leucine, both by Braconnot and both in 1820.(1) Of these two, leucine was isolated from wool, which can thus lay claim to a long history in protein chemistry. Other early investigators attempted to use the techniques of elementary analysis to derive an empirical formula for wool, but it was speedily recognized that the molecule was far too complex to be handled in this way. With the establishment in 1901 by Fischer of the polypeptide theory of protein structure, it was realized that the first step in the elucidation of the chemical structure of proteins was the determination of the relative amounts of the differing amino acids in a hydrolysate of the protein, and interest in elementary analysis became restricted to nitrogen and sulfur estimations, which permitted estimates of the total recovery of amino acids and sulfur-containing amino acids to be made.

Keywords

Disulfide Bond Amino Acid Analysis Coiled Coil Wool Fiber Peracetic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Braconnot, Ann. Chim. Phys. 13, 113 (1820).Google Scholar
  2. 2.
    E. Abderhalden and A. Voitinovici, Hoppe-Seylers Z. Physiol Chem. 52, 348 (1907).Google Scholar
  3. 3.
    J. Barritt and A. T. King, J. Textile Inst. 20, T151 (1929).Google Scholar
  4. 4.
    H. R. Marston, The Chemical Composition of Wool, Bulletin 38, Council of Scientific and Industrial Research of Australia (1928).Google Scholar
  5. 5.
    W. T. Astbury, Fundamentals of Fibre Structure, p. 135, Oxford University Press, London (1933).Google Scholar
  6. 6.
    R. Brill, Ann. Chem. 434, 204 (1923).Google Scholar
  7. 7.
    K. H. Meyer and H. Mark, Chem. Ber. 61, 1932 (1928).Google Scholar
  8. 8.
    W. T. Astbury and H. J. Woods, Nature (Lond.) 126, 913 (1930).Google Scholar
  9. 9.
    W. T. Astbury and H. J. Woods, Phil. Trans. Roy. Soc. (Lond.) A232, 333 (1933).Google Scholar
  10. 10.
    J. B. Speakman and M. C. Hirst, Trans. Faraday Soc. 29, 148 (1933).Google Scholar
  11. 11.
    W. T. Astbury, Fundamentals of Fibre Structure, p. 166, Oxford University Press, London (1933).Google Scholar
  12. 12.
    D. M. Wrinch, Cold Spring Harbor Symp. Quant. Biol. 6, 122 (1938).Google Scholar
  13. 13.
    M. Bergmann and C. Niemann, J. Biol. Chem. 115, 77 (1936).Google Scholar
  14. 14.
    A. J. P. Martin and R. L. M. Synge, Biochem. J. 35, 91 (1941).PubMedGoogle Scholar
  15. 15.
    R. Consden, A. H. Gordon, and A. J. P. Martin, Biochem. J. 38, 224 (1944).PubMedGoogle Scholar
  16. 16.
    R. Consden, A. H. Gordon, and A. J. P. Martin, Biochem. J. 44, 548 (1949).Google Scholar
  17. 17.
    R. Consden, A. H. Gordon, and A. J. P. Martin, Biochem. J. 42, 443 (1948).Google Scholar
  18. 18.
    R. Consden, A. H. Gordon, and A. J. P. Martin, Biochem. J. 40, 3 (1946).Google Scholar
  19. 19.
    G. Toennies and R. P. Homiller, J. Colloid Sci. 64, 3054 (1942).Google Scholar
  20. 20.
    F. Sanger, Nature (Lond.) 160, 295 (1947).Google Scholar
  21. 21.
    F. Sanger, Biochem. J. 44, 126 (1949).Google Scholar
  22. 22.
    E. O. P. Thompson and I. J. O’Donnell, Aust. J. Biol. Sci. 12, 282 (1959).Google Scholar
  23. 23.
    M. C. Corfield, A. Robson, and B. Skinner, Biochem. J. 68, 348 (1958).PubMedGoogle Scholar
  24. 24.
    J. M. Gillespie, I. J. O’Donnell, E. O. P. Thompson, and E. F. Woods, J. Textile Inst. 51, T703 (1960).Google Scholar
  25. 25.
    P. Alexander and C. Earland, Nature (Lond.) 166, 396 (1950).Google Scholar
  26. 26.
    P. Alexander, D. Carter, C. Earland, and O. E. Ford, Biochem. J. 48, 636 (1951).Google Scholar
  27. 27.
    I. J. O’Donnell and E. O. P. Thompson, Aust. J. Biol. Sci. 14, 461 (1961).Google Scholar
  28. 28.
    I. J. O’Donnell and E. O. P. Thompson, Aust. J. Biol. Sci. 15, 740 (1962).Google Scholar
  29. 29.
    E. O. P. Thompson and I. J. O’Donnell, Aust. J. Biol. Sci. 15, 552 (1962)Google Scholar
  30. 30.
    M. C. Corfield, Biochem. J. 84, 602 (1962).PubMedGoogle Scholar
  31. 31.
    M. C. Corfield, Biochem. J. 86, 125 (1963).PubMedGoogle Scholar
  32. 32.
    T. Haylett, F. J. Joubert, L. S. Swart, and D. F. Louw, Textile Res. J. 33, 639 (1963).Google Scholar
  33. 33.
    M. Fell, N. H. La France, and K. Ziegler, J. Textile Inst. 51, T797 (1960).Google Scholar
  34. 34.
    M. Fell, Kolloidzeitschrift 220, 107 (1967).Google Scholar
  35. 35.
    M. C. Corfield, J. C. Fletcher, and A. Robson, Biochem. J. 102, 801 (1967).PubMedGoogle Scholar
  36. 36.
    M. C. Corfield and J. C. Fletcher, Biochem. J. 115, 323 (1969).PubMedGoogle Scholar
  37. 37.
    M. C. Corfield, J. C. Fletcher, and A. Robson, in: Symposium on Fibrous Proteins, Australia, 1967 (W. G. Crewther, ed.), p. 289, Butterworth & Co. (Australia) Ltd., Sydney (1968).Google Scholar
  38. 38.
    D. R. Goddard and L. Michaelis, J. Biol. Chem. 106, 605 (1934).Google Scholar
  39. 39.
    D. R. Goddard and L. Michaelis, J. Biol. Chem. 112, 361 (1935).Google Scholar
  40. 40.
    J. A. MacLaren, D. J. Kilpatrick, and A. Kirkpatrick, Aust. J. Biol. Sci. 21, 805 (1968).Google Scholar
  41. 41.
    A. Kirkpatrick and J. A. MacLaren, Proc. Aust. Biochem. Soc. 2, 77 (1969).Google Scholar
  42. 42.
    A. Schoberl, Angew. Chem. 60, 7 (1948).Google Scholar
  43. 43.
    F. H. White, Fed. Proc. 18, 350 (1959).Google Scholar
  44. 44.
    Discussion E. O. P. Thompson, I. J. O’Donnell, and A. Robson, in: Symposium on Fibrous Proteins, Australia, 1967 (W. G. Crewther, ed.), p. 310, Butterworth & Co. (Australia) Ltd., Sydney (1968).Google Scholar
  45. 45.
    H. Lindley, J. M. Gillespie, and R. J. Rowlands, J. Textile Inst. 61, 157 (1970).Google Scholar
  46. 46.
    E. O. P. Thompson and I. J. O’Donnell, Aust. J. Biol. Sci. 15, 757 (1962).Google Scholar
  47. 47.
    B. S. Harrap and J. M. Gillespie, Aust. J. Biol. Sci. 16, 542 (1963).Google Scholar
  48. 48.
    J. M. Gillespie, Aust. J. Biol. Sci. 15, 572 (1962).Google Scholar
  49. 49.
    J. M. Gillespie, Aust. J. Biol. Sci. 16, 241 (1963).Google Scholar
  50. 50.
    E. O. P. Thompson and I. J. O’Donnell, Aust. J. Biol. Sci. 17, 277 (1964).Google Scholar
  51. 51.
    B. J. Davis, Ann. N. Y. Acad. Sci. 121, 405 (1964).Google Scholar
  52. 52.
    R. Frater, Aust. J. Biol. Sci. 21, 815 (1968).PubMedGoogle Scholar
  53. 53.
    R. Frater, J. Chromatog. 50, 469 (1970).Google Scholar
  54. 54.
    E. O. P. Thompson and I. J. O’Donnell, Aust. J. Biol. Sci. 18, 1207 (1965).Google Scholar
  55. 55.
    R. Frater, Aust. J. Biol. Sci. 19, 699 (1966).Google Scholar
  56. 56.
    I. J. O’Donnell and E. O. P. Thompson, Aust. J. Biol. Sci. 21, 385 (1968).Google Scholar
  57. 57.
    E. Gross and B. Witkop, J. Amer. Chem. Soc. 83, 1510 (1961).Google Scholar
  58. 58.
    E. O. P. Thompson and I. J. O’Donnell, Aust. J. Biol. Sci. 20, 1001 (1967).Google Scholar
  59. 59.
    I. J. O’Donnell, Aust. J. Biol. Sci. 22, 471 (1969).Google Scholar
  60. 60.
    R. Hosken, B. A. Moss, I. J. O’Donnell, and E. O. P. Thompson, Aust. J. Biol. Sci. 21, 593 (1968).Google Scholar
  61. 61.
    W. G. Crewther and L. M. Dowling, Appl. Polymer Symp. 18, 353 (1971).Google Scholar
  62. 62.
    P. D. Jeffrey, J. Textile Inst. 63, 91 (1972).Google Scholar
  63. 63.
    W. G. Crewther and B. S. Harrap, Nature (Lond.) 207, 295 (1965).Google Scholar
  64. 64.
    D. Hogg, L. M. Dowling, and W. G. Crewther, Proc. Aust. Biochem. Soc. 4, 16 (1971).Google Scholar
  65. 65.
    W. G. Crewther, L. M. Dowling, K. H. Gough, A. S. Inglis, and N. M. McKern, Proc. Aust. Biochem. Soc. 6, 4 (1973).Google Scholar
  66. 66.
    L. M. Dowling and W. G. Crewther, Proc. Aust. Biochem. Soc. 5, 3 (1972).Google Scholar
  67. 67.
    J. M. Gillespie, Aust. J. Biol. Sci. 16, 259 (1963).Google Scholar
  68. 68.
    F. J. Joubert and M. A. C. Burns, J. South African Chem. Inst. 20, 161 (1967).Google Scholar
  69. 69.
    F. J. Joubert, P. J. de Jager, and L. S. Swart, Symposium on Fibrous Proteins, Australia, 1967 (W. G. Crewther, ed.), p. 343, Butterworth & Co. (Australia) Ltd., Sydney (1968).Google Scholar
  70. 70.
    R. L. Darskus, J. M. Gillespie, and H. Lindley, J. Aust. Biol. Sci. 22, 1197 (1969).Google Scholar
  71. 71.
    R. L. Darskus and J. M. Gillespie, Proc. Aust. Biochem. Soc. 2, 77 (1969).Google Scholar
  72. 72.
    L. S. Swart, T. Haylett, and F. J. Joubert, Textile Res. J. 39, 912 (1969).Google Scholar
  73. 73.
    T. Haylett and L. S. Swart, Textile Res. J. 39, 917 (1969).Google Scholar
  74. 74.
    T. Haylett, L. S. Swart, and D. Parris, Biochem. J. 123, 191 (1971).PubMedGoogle Scholar
  75. 75.
    L. S. Swart and T. Haylett, Biochem. J. 123, 201 (1971).PubMedGoogle Scholar
  76. 76.
    J. M. Gillespie and B. S. Harrap, Aust. J. Biol. Sci. 16, 252 (1963).Google Scholar
  77. 77.
    H. Lindley and T. C. Elleman, Biochem. J. 128, 859 (1972).PubMedGoogle Scholar
  78. 78.
    T. C. Elleman, Biochem. J. 128, 1229 (1972).PubMedGoogle Scholar
  79. 79.
    T. C. Elleman and T. A. Dopheide, J. Biol. Chem. 247, 3900 (1972).PubMedGoogle Scholar
  80. 80.
    T. C. Elleman, Biochem. J. 130, 833 (1972).PubMedGoogle Scholar
  81. 81.
    L. S. Swart and T. Haylett, Biochem. J. 133, 641 (1973).PubMedGoogle Scholar
  82. 82.
    L. S. Swart, Nature New Biol. 243, 27 (1973).PubMedGoogle Scholar
  83. 83.
    T. C. Elleman, H. Lindley, and R. J. Rowlands, Nature (Lond.) 246, 530 (1973).Google Scholar
  84. 84.
    J. M. Gillespie, T. Haylett, and H. Lindley, Biochem. J. 110, 193 (1968).PubMedGoogle Scholar
  85. 85.
    H. Lindley, A. Broad, A. P. Damoglou, R. L. Darskus, T. C. Elleman, J. M. Gillespie, and C. H. Moore, Appl. Polymer. Symp. 18, 21 (1971).Google Scholar
  86. 86.
    P. J. Reis and P. G. Schinckel, Aust. J. Biol. Sci. 16, 218 (1963).Google Scholar
  87. 87.
    P. J. Reis and P. G. Schinckel, Aust. J. Biol. Sci. 17, 532 (1964).Google Scholar
  88. 88.
    J. M. Gillespie, P. J. Reis, and P. G. Schinckel, Aust. J. Biol. Sci. 17, 548 (1964).Google Scholar
  89. 89.
    J. M. Gillespie, A. Broad, and P. J. Reis, Biochem. J. 112, 41 (1969).PubMedGoogle Scholar
  90. 90.
    J. M. Gillespie and A. Broad, Aust. J. Biol. Sci. 25, 139 (1972).Google Scholar
  91. 91.
    D. M. Simmonds and I. G. Stell, Proc. Intern. Wool Textile Res. Conf., Australia C, 75 (1955).Google Scholar
  92. 92.
    H. Zahn and M. Biela, Textil-Praxis 23, 103 (1968).Google Scholar
  93. 93.
    I. J. O’Donnell and E. O. P. Thompson, Aust. J. Biol. Sci. 15, 740 (1962).Google Scholar
  94. 94.
    H. Zahn and M. Muller, Z. Ges. Textil Ind. 65, 263 (1964).Google Scholar
  95. 95.
    W. G. Crewther, J. M. Gillespie, B. S. Harrap, I. J. O’Donnell, and E. O. P. Thompson, Proc. 3rd Intern. Wool Textile Res. Conf., Paris 1, 475 (1965).Google Scholar
  96. 96.
    R. A. de Deurwaerder, M. G. Dobb, and B. J. Sweetman, Nature (Lond.) 203, 48 (1964).Google Scholar
  97. 97.
    J. H. Bradbury, G. V. Chapman, and N. L. R. King, Proc. 3rd Intern. Wool Textile Res. Conf, Paris 1, 359 (1965).Google Scholar
  98. 98.
    J. M. Gillespie, Comp. Biochem. Physiol. 41B, 723 (1972).Google Scholar
  99. 99.
    J. M. Gillespie and R. L. Darskus, Aust. J. Biol. Sci. 24, 1189 (1971).PubMedGoogle Scholar
  100. 100.
    M. J. Frenkel, J. M. Gillespie, and P. J. Reis, Aust. J. Biol. Sci. 27, 31 (1974).PubMedGoogle Scholar
  101. 101.
    J. M. Gillespie, J. Chromatog. 72, 319 (1972).Google Scholar
  102. 102.
    M. J. Frenkel, J. M. Gillespie, and E. F. Woods, European J. Biochem. 34, 112 (1973).Google Scholar
  103. 103.
    T. A. A. Dopheide, European J. Biochem. 34, 120 (1973).Google Scholar
  104. 104.
    J. E. Haber and D. E. Koshland, Jr., J. Mol Biol. 50, 617 (1970).PubMedGoogle Scholar
  105. 105.
    S. R. Trotman, E. R. Trotman, and R. W. Sutton, J. Soc. Chem. Ind. (Lond.) 44, 1115 (1925).Google Scholar
  106. 106.
    W. B. Geiger, J. Res. Natl. Bur. Std. 32, 127 (1944).Google Scholar
  107. 107.
    J. H. Bradbury, G. V. Chapman, and N. L. R. King, Symposium on Fibrous Proteins, Australia, 1967 (W. G. Crewther, ed.), p. 368, Butterworth & Co. (Australia) Ltd., Sydney (1968).Google Scholar
  108. 108.
    A. Parisot and J. Derminot, Appl. Polymer Symp. 18, 45 (1971).Google Scholar
  109. 109.
    G. E. Rogers, Biochim. Biophys. Acta 29, 33 (1958).PubMedGoogle Scholar
  110. 110.
    A. K. Allen, H. Lindley, and G. E. Rogers, Proc. 6th Intern. Congr. Biochem., New York 5B, 20 (1964).Google Scholar
  111. 111.
    H. W. J. Harding and G. E. Rogers, Proc. Aust. Biochem. Soc. 3, 56 (1970).Google Scholar
  112. 112.
    P. M. Steinert, H. W. J. Harding, and G. E. Rogers, Biochim. Biophys. Acta (Lond.) 175, 1 (1969).Google Scholar
  113. 113.
    W. J. Ellis, Nature (Lond.) 162, 957 (1948).Google Scholar
  114. 114.
    G. E. Rogers, The Epidermis (W. Montagna, ed.), p. 179, Academic Press, New York (1964).Google Scholar
  115. 115.
    E. O. P. Thompson and I. J. O’Donnell, Aust. J. Biol. Sci. 17, 277 (1964).Google Scholar
  116. 116.
    R. Frater, Aust. J. Biol. Sci. 19, 699 (1966).Google Scholar
  117. 117.
    A. M. Downes, K. A. Ferguson, J. M. Gillespie, and B. S. Harrap, Aust. J. Biol. Sci. 19, 319 (1966).Google Scholar
  118. 118.
    M. L. Ryder, Proc. Roy. Soc. Edinburgh B67, 65 (1958).Google Scholar
  119. 119.
    A. M. Downes, L. F. Sharry, and G. E. Rogers, Nature (Lond.) 199, 1059 (1963).Google Scholar
  120. 120.
    F. J. Joubert, P. J. de Jager, and T. Haylett, Die Skaap en sy Vag (J. C. Swart, ed.), p. 235, Nasionale Boekhandel Ltd., Cape Town (1968).Google Scholar
  121. 121.
    W. Moffit and J. T. Yang, Proc. Natl. Acad. Sci. 42, 596 (1956).Google Scholar
  122. 122.
    B. S. Harrap, Aust. J. Biol. Sci. 16, 231 (1963).Google Scholar
  123. 123.
    P. Urnes and P. Doty, Advan. Protein Chem. 16, 401 (1961).Google Scholar
  124. 124.
    R. D. B. Fraser, B. S. Harrap, R. Ledger, T. P. MacRae, F. H. C. Stewart, and E. Suzuki, Symposium on Fibrous Proteins, Australia, 1967 (W. G. Crewther, ed.), p. 57, Butterworth & Co. (Australia) Ltd., Sydney (1968).Google Scholar
  125. 125.
    W. G. Crewther, M. G. Dobb, L. M. Dowling, and B. S. Harrap, Symposium on Fibrous Proteins, Australia, 1967 (W. G. Crewther, ed.), p. 329, Butterworth & Co. (Australia) Ltd., Sydney (1968).Google Scholar
  126. 126.
    W. G. Crewther and B. S. Harrap, J. Biol. Chem. 242, 4310 (1967).PubMedGoogle Scholar
  127. 127.
    L. Pauling, R. B. Corey, and H. R. Branson, Proc. Natl. Acad. Sci. 37, 205 (1951).PubMedGoogle Scholar
  128. 128.
    I. MacArthur, Nature (Lond.), 152, 38 (1943).Google Scholar
  129. 129.
    M. F. Perutz, Nature (Lond.) 167, 1053 (1951).Google Scholar
  130. 130.
    W. Cochran, F. H. C. Crick, and V. Vand, Acta Crystallog. 5, 581 (1952).Google Scholar
  131. 131.
    F. H. C. Crick, Nature (Lond.) 170, 882 (1952).Google Scholar
  132. 132.
    F. H. C. Crick, Acta Crystallog. 6, 689 (1953).Google Scholar
  133. 133.
    L. Pauling and R. B. Corey, Nature (Lond.) 171, 59 (1953).Google Scholar
  134. 134.
    C. Cohen and K. C. Holmes, J. Mol. Biol. 6, 423 (1963).PubMedGoogle Scholar
  135. 135.
    A. Elliott and B. R. Malcolm, Proc. Roy. Soc. (Lond.) A249, 31 (1959).Google Scholar
  136. 136.
    H. Lindley, Proc. Intern. Wool Textile Res. Conf., Australia B, 193 (1955).Google Scholar
  137. 137.
    R. D. B. Fraser and T. P. MacRae, Nature (Lond.) 189, 572 (1961).Google Scholar
  138. 138.
    R. D. B. Fraser and T. P. MacRae, J. Mol. Biol. 3, 640 (1961).PubMedGoogle Scholar
  139. 139.
    H. P. Lundgren and W. H. Ward, Arch. Biochem. Biophys., Suppl. 1, 78 (1962).Google Scholar
  140. 140.
    R. D. B. Fraser, T. P. MacRae, and A. Miller, J. Mol. Biol. 14, 432 (1965).PubMedGoogle Scholar
  141. 141.
    M. Spei, G. Heidemann, and H. Zahn, Naturwissenschaften 55, 346 (1968).PubMedGoogle Scholar
  142. 142.
    R. D. B. Fraser and T. P. MacRae, Nature (Lond.) 179, 732 (1957).Google Scholar
  143. 143.
    R. D. B. Fraser and T. P. MacRae, J. Mol. Biol. 3, 640 (1961).PubMedGoogle Scholar
  144. 144.
    J. Sikorski and H. J. Woods, J. Textile Inst. 51, T506 (1960).Google Scholar
  145. 145.
    W. S. Simpson and H. J. Woods, Nature (Lond.) 185, 157 (1960).Google Scholar
  146. 146.
    G. Heidemann and H. Halboth, Nature (Lond.) 213, 71 (1967).Google Scholar
  147. 147.
    M. Spei, G. Heidemann, and H. Halboth, Nature (Lond.) 217, 247 (1968).Google Scholar
  148. 148.
    R. D. B. Fraser and T. P. MacRae, Polymer 14, 61 (1973).Google Scholar
  149. 149.
    R. D. B. Fraser and T. P. MacRae, Biochim. Biophys. Acta 29, 229 (1958).PubMedGoogle Scholar
  150. 150.
    G. E. Rogers, Brit. J. Appl. Phys. 8, 1 (1957).Google Scholar
  151. 151.
    M. S. C. Birbeck and E. H. Mercer, J. Biophys. Biochem. Cytol. 3, 203 (1957).PubMedGoogle Scholar
  152. 152.
    C. J. Bailey, C. N. Tyson, and H. J. Woods, Proc. 3rd Intern. Wool Textile Res. Conf., Paris 1, 105 (1965).Google Scholar
  153. 153.
    R. D. B. Fraser, T. P. MacRae, and D. A. D. Parry, Symposium on Fibrous Proteins, Australia, 1967 (W. G. Crewther, ed.), p. 279, Butterworth & Co. (Australia) Ltd., Sydney (1968).Google Scholar
  154. 154.
    R. D. B. Fraser, T. P. MacRae, and G. R. Millward, J. Textile Inst. 60, 343 (1969).Google Scholar
  155. 155.
    M. G. Dobb and J. Sikorski, J. Textile Inst. 60, 497 (1969).Google Scholar
  156. 156.
    E. G. Bendit, J. Textile Inst. 51, T524 (1960).Google Scholar
  157. 157.
    R. D. B. Fraser, T. P. MacRae, D. A. D. Parry, and E. Suzuki, Polymer 10, 810 (1969).Google Scholar
  158. 158.
    L. Pauling and R. B. Corey, Proc. Natl. Acad. Sci. 37, 729 (1951).PubMedGoogle Scholar
  159. 159.
    A. Skertchly and H. J. Woods, J. Textile Inst. 51, T517 (1960).Google Scholar
  160. 160.
    D. A. D. Parry and E. Suzuki, Biopolymers 7, 189 (1969).Google Scholar
  161. 161.
    D. A. D. Parry and E. Suzuki, Biopolymers 7, 199 (1969).Google Scholar
  162. 162.
    E. G. Bendit, Textile Res. J. 38, 15 (1968).Google Scholar
  163. 163.
    R. D. B. Fraser, J. M. Gillespie, and T. P. MacRae, Comp. Biochem. Physiol. 44B, 943 (1973).Google Scholar
  164. 164.
    P. H. Lindenmeyer, J. Chem. Phys. 46, 1902 (1967).Google Scholar
  165. 165.
    R. D. B. Fraser, T. P. MacRae, and A. Miller, Nature (Lond.) 203, 1231 (1964).Google Scholar
  166. 166.
    R. D. B. Fraser, T. P. MacRae, and A. Miller, J. Mol. Biol. 14, 432 (1965).PubMedGoogle Scholar
  167. 167.
    G. Gee, J. Polymer Sci. 2, 451 (1947).Google Scholar
  168. 168.
    H. Lindley and T. Haylett, J. Mol. Biol. 30, 63 (1967).PubMedGoogle Scholar
  169. 169.
    R. W. Burley, Proc. Intern. Wool Textile Res. Conf., Australia D, 88 (1955).Google Scholar
  170. 170.
    J. M. Gillespie and A. S. Inglis, Comp. Biochem. Physiol. 15, 175 (1965).PubMedGoogle Scholar
  171. 171.
    J. M. Gillespie, J. Polymer Sci. 20, 201 (1967).Google Scholar
  172. 172.
    H. Lindley and T. Haylett, Biochem. J. 108, 701 (1968).PubMedGoogle Scholar
  173. 173.
    H. Lindley and R. W. Cranston, Biochem. J. 139, 515 (1974).PubMedGoogle Scholar
  174. 174.
    M. G. Dobb, R. D. B. Fraser, and T. P. MacRae, Proc. 3rd Intern. Wool Textile Res. Conf., Paris 1, 95 (1965).Google Scholar
  175. 175.
    H. Lindley and H. Phillips, Biochem. J. 39, 17 (1945).PubMedGoogle Scholar
  176. 176.
    H. Lindley, Textile Res. J. 27, 690 (1957).Google Scholar
  177. 177.
    V. Weber and P. Hartter, Hoppe-Seylers Z. Physiol. Chem. 355, 189 (1974).PubMedGoogle Scholar
  178. 178.
    R. F. Goldberger, C. J. Epstein, and C. B. Anfinsen, J. Biol. Chem. 238, 628 (1963).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • H. Lindley
    • 1
  1. 1.Division of Protein ChemistryCSIROParkville (Melbourne)Australia

Personalised recommendations