Advertisement

Oxypurine and 6-Thiopurine Nucleoside Triphosphate Formation in Human Erythrocytes

  • Donald J. Nelson
  • Christoper Buggé
  • Harvey C. Krasny
Chapter
  • 91 Downloads
Part of the Advances in Experimental Medicine and Biology book series

Abstract

Human erythrocytes are known to form a variety of purine nucleoside triphosphates from the bases and nucleosides, through the action of nucleoside kinases, phosphoribosyltransferases and nucleotide kinases. In addition to ATP and GTP, a very low concentration (6μM) of inosine triphosphate (ITP) was identified in fresh erythrocytes by Vanderheiden (1). More recently, after a 4 hour incubation of stored RBC’s with inosine, Zachara reported that a large amount of ITP was formed (2). A specific ITP pyrophosphohydrolase (3) probably contributes to the low steady state levels of ITP in circulating cells. Inosine has been suggested as a purine source in blood preservation studies (4) and can augment adenine nucleotide pools in studies with ischemic kidneys (5).

Keywords

High Performance Liquid Chromatography Nucleoside Triphosphate High Performance Liquid Chromatography Chromatogram High Performance Liquid Chromatography Profile Adenine Nucleotide Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B, S, Vanderheiden, Proc. Xth Congress Internal, Soc. Blood Transfusion, Stockholm, 1964, 544 (1964).Google Scholar
  2. 2.
    B. Zachara, J. Biochem. 76., 891 (1974).PubMedGoogle Scholar
  3. 3.
    B. S. Vanderheiden, J. Cell. Physiol. 86, 167 (1974).CrossRefGoogle Scholar
  4. 4.
    D. Rubinstein and E. Warrendorf, Can. J. Biochem. 53, 671 (1975).PubMedCrossRefGoogle Scholar
  5. 5.
    A. R. Fernando, J. R. Griffiths, E. P. N. O’Donoghue, J. P. Ward, D. M. G. Armstrong, W. F. Hendry, D. Perrett, and J. E. A. Wickham, The Lancet, p. 555 (1976).Google Scholar
  6. 6.
    T. P. Zimmerman, L. C. Chu, C. J. L. Buggé, D. J. Nelson, R. L. Miller and G. B. Elion, Biochem. Pharmacol. 23, 2737 (1974).PubMedCrossRefGoogle Scholar
  7. 7.
    T. P. Zimmerman and L. C. Chu, Biochem. Pharmacol. 23, 2473 (1974).PubMedCrossRefGoogle Scholar
  8. 8.
    R. E. Parks and P. R. Brown, Biochemistry 12, 3294 (1973).PubMedCrossRefGoogle Scholar
  9. 9.
    P. R. Brown and R. E. Parks, Jr., Anal. Chem. 45, 948 (1973).CrossRefGoogle Scholar
  10. 10.
    C. Bishop, J. Biol. Chem. 235, 3228 (1960).Google Scholar
  11. 11.
    B. A. Lowy, M. K. Williams and I. M. London, J. Biol. Chem. 237, 1622 (1962).PubMedGoogle Scholar
  12. 12.
    D. J. Nelson, C. J. L. Buggé, H. C. Krasny and T. P. Zimmerman, J. Chromatog. 77, 181 (1973).CrossRefGoogle Scholar
  13. 13.
    C. N. Remy, J. Biol. Chem. 238, 1078 (1963).PubMedGoogle Scholar
  14. 14.
    G. B. Elion, S. Callahan, R. W. Rundles and G. B. Hitchings, Cancer Research 23, 1207 (1963).PubMedGoogle Scholar
  15. 15.
    L. L. Bennett and P. W. Allen, Cancer Research 31, 152 (1971).PubMedGoogle Scholar
  16. 16.
    D. J. Nelson, C. J. L. Buggé, H. C. Krasny and G. B. Elion, Biochem Pharmacology 22, 2003 (1973).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Donald J. Nelson
    • 1
  • Christoper Buggé
    • 1
  • Harvey C. Krasny
    • 1
  1. 1.Wellcome Research LaboratoriesResearch Triangle ParkUSA

Personalised recommendations