Advertisement

Pattern of Purine-Nucleotide Metabolism in Hepatopancreas of Helix Pomatia (Gastropoda)

  • M. M. Jeżewska
  • J. Barankiewicz
Chapter
  • 90 Downloads
Part of the Advances in Experimental Medicine and Biology book series

Abstract

In 1970 Campbell and Bishop, describing the nitrogen metabolism in Moluscs, had written: “Terrestrial snails might thus serve as useful systems for investigating the specific derangements present in persons exhibiting the Lesch-Nyhan Syndrome” (1). For several years we have been concerned with the purine-nucleotide metabolism in land snail Helix pomatia (Pulmonata). This gastropod has been found to be purinotelic (11). During winter sleep, H. pomatia accumulates uric acid, which accounts for 75 % of the total purine content in the nephridium at the end of hibernation. During its active life, the nephridial excreta contain uric acid, xanthine and guanine, accounting for 34 – 49, 34 – 55 and 11 – 16 %, respectively of the total amount of purines excreted (12). An enzymic system allowing under normal, physiological conditions such diversity of the end-products of the nitrogen metabolism looked very promising. On the basis of investigations of the enzymes participating in the purine-nucleotide metabolism in the hepatopancreas, which is an organ homologous to the liver of Vertebrates, the scheme presented in Fig. 1. is suggested.

Keywords

Uric Acid Adenosine Kinase Terrestrial Snail Adenine Phosphoribosyltransferase Adenine Nucleotide Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Campbell, J. W., Bishop, S. H. (1970) in “Comparative Biochemistry of Nitrogen Metabolism”, vol. I, pp. 103–206, ed. J. W. Campbell, Academic Press, London and New York.Google Scholar
  2. 2.
    Barankiewicz J. (1973) Catabolism of IMP to uric acid in Helix pomatia (Gastropoda), Doctor’s Dissertation (in Polish). Inst. Biochem. Biophys., Polish Academy of Sciences, pp. 1–75.Google Scholar
  3. 3.
    Barankiewicz, J. and Jeżewska, M. M. (1972). Bull. Acad. Pol. Scio Ser. sci. biol., 20, 1–4.Google Scholar
  4. 4.
    Barankiewicz, J. and Jeżewska, M. M. (1973). Comp. Biochem. Physiol. 46B, 177–186.Google Scholar
  5. 5.
    Barankiewicz, J. and Jeżewska, M. M. (1975). Comp. Biochem. Physiol., 52B, 239–244.Google Scholar
  6. 6.
    Barankiewicz, J. and Jeżewska, M. M. (1976). Comp. Biochem. Physiol., 54B, 239–242.Google Scholar
  7. 7.
    Jeżewska, M. M. (1969). Acta Biochim. Polon. 16, 313–320.PubMedGoogle Scholar
  8. 8.
    Jeżewska, M. M. (1973). Eur. J. Biochem. 36, 385–390.PubMedCrossRefGoogle Scholar
  9. 9.
    Jeżewska, M. M. and Barankiewicz, J. (1974). Abstracts 9th PEBS Meeting, s2e16, Budapest, Hungary.Google Scholar
  10. 10.
    Jeżewska, M. M. and Barankiewicz, J. (1976). Bull. Acad. Polon. Sci., Ser. sci. biol., in press.Google Scholar
  11. 11.
    Jeżewska, M. M., Gorzkowski, B. and Heller, J. (1963). Acta Biochim. Polon. 10, 55–65.PubMedGoogle Scholar
  12. 12.
    Jeżewska, M. M., Gorzkowski, B. and Heller, J. (1963). Acta Biochim. Polon. 10, 309–314.PubMedGoogle Scholar
  13. 13.
    Jeżewska, M. M., Gorzkowski, B. and Heller, J. (1964). Acta Biochim. Polon., 11, 135–138.Google Scholar
  14. 14.
    Lowenstein, J. M. (1972). Physiol. Rev., 52, 382–414.Google Scholar
  15. 15.
    Porembska, Z., Gorzkowski, B. and Jeżewska, M. M. (1964). Acta Biochim. Polon., 13, 107–111.Google Scholar
  16. 16.
    Zimmerman, T. P., Gersten, N. B., Ross, A. F. and Miech, R. P. (1971). Can. J. Biochem., 49, 1050–1054.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • M. M. Jeżewska
    • 1
  • J. Barankiewicz
    • 1
  1. 1.Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland

Personalised recommendations