Studies on the Regulation of the Biosynthesis of Myocardial Adenine Nucleotides

  • H.-G. Zimmer
  • E. Gerlach
Part of the Advances in Experimental Medicine and Biology book series


Stimulation of cardiac ß-adrenergic receptors with isoproterenol results in a considerable enhancement of the biosynthesis of adenine nucleotides (AN) in the rat heart in vivo (17). AN biosynthesis proves also to be increased when the isoproterenol-induced diminution of the concentration of myocardial AN is prevented (19). Thus, release of feedback inhibition of 5-phosphoribosyl-1-pyrophosphate-amidotransferase (EC cannot be exclusively responsible for the acceleration of AN synthesis observed under these conditions (8,16). An alternative mechanism seems to be operative which affects de novo synthesis of AN through the available pool of 5-phosphoribosyl-1-pyrophosphate (PRPP) (9).


Pentose Phosphate Pathway Pentose Phosphate Normal Heart Adenine Nucleotide Ehrlich Ascites Tumor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Abrams, R.: Some factors influencing nucleic acid purine renewal in the rat. Arch. Biochem. Biophys. 33., 436–447, 1951.PubMedCrossRefGoogle Scholar
  2. 2).
    Brown, B.L., Albano, J.D.M., Ekins, R.P., Sgherzi, A.M. and Tampion, W.: A simple and sensitive saturation assay method for the measurement of adenosine 3′:5′-cyclic monophosphate. Biochem. J. 121, 561–562, 1971.PubMedGoogle Scholar
  3. 3).
    Butcher, R.W. and Sutherland, E.W.: Adenosine 3′:5′-phosphate in biological materials. I. Purification and properties of cyclic 31:5!-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′:5′-phosphate in human urine. J. Biol. Chem. 237, 1244–1250, 1962.PubMedGoogle Scholar
  4. 4).
    Gerlach, E., Deuticke, B., Dreisbach, R.H. and Rosarius, C.W.: Zum Verhalten von Nucleotiden und ihren dephosphorylierten Abbauprodukten in der Niere bei Ischamie und kurzzeitiger postischamischer Wiederdurchblutung. Pflligers Arch. 278, 296–315, 1963.CrossRefGoogle Scholar
  5. 5).
    Gilman, A.G.: A protein binding assay for adenosine 3′:5′-cyclic monophosphate. Proc. Nat. Acad. Sci. 67, 305–312, 1970.Google Scholar
  6. 6).
    Goldthwait, D.A. and Bendich, A.: Effects of a folic acid antagonist on nucleic acid metabolism. J. Biol. Chem. 196, 841–852, 1952.PubMedGoogle Scholar
  7. 7).
    Fleckenstein, A.: Specific inhibitors and promoters of Ca++ action. In “Calcium and the Heartö, edited by Harris and Opie. pp 135–188, Academic Press, London and New York 1971.Google Scholar
  8. 8).
    Henderson, J.F. and Khoo, M.K.Y.: On the mechanism of feedback inhibition of purine biosynthesis de novo in Ehrlich ascites tumor cells in vitro. J. Biol. Chem. 240, 3104–3109, 1965.PubMedGoogle Scholar
  9. 9).
    Henderson, J.F. and Khoo, M.K.Y.: Availability of 5-phosphoribosyl-1-pyrophosphate for ribonucleotide synthesis in Ehrlich ascites tumor cells in vitro. J. Biol. Chem. 240, 2358–2362, 1965.PubMedGoogle Scholar
  10. 10).
    Kukovetz, W.R. and Poch, G.: The action of imidazole on the effects of methyl-xanthines and catecholamines on cardiac contraction and phosphorylase activity. J. Pharmacol. Exp. Ther. 156, 514–521, 1967.Google Scholar
  11. 11).
    Marko, P., Gerlach, E., Zimmer, H.-G., Pechan, I., Cremer, T. and Trendelenburg, Chr.: Interrelationship between salvage pathway and synthesis de novo of adenine nucleotides in kidney slices. Hoppe Seyler’s Z. Physiol. Chem. 350, 1669–1674, 1969.PubMedCrossRefGoogle Scholar
  12. 12).
    Mayer, S.E., Williams, B.J. and Smith, J.M.: Adrenergic mechanisms in cardiac glycogen metabolism. Ann. New York Acad. Sci. 139, 686–702, 1966/67.CrossRefGoogle Scholar
  13. 13).
    Robison, G.A., Butcher, R.W., Oye, I., Morgan, H.E. and Sutherland, E.W.: The effect of epinephrine on adenosine 3′:5′-phosphate levels in the isolated perfused rat heart. Mol. Pharmacol. 1, 168–177, 1965.PubMedGoogle Scholar
  14. 14).
    Sato, K.: Stimulation of pentose cycle in the eccrine sweat gland by adrenergic drugs. Am. J. Physiol. 224, 1149–1154, 1973.PubMedGoogle Scholar
  15. 15).
    Williamson, J.R. and Jamieson, D.: Dissociation of the inotropic from the glycogenolytic effect of epinephrine in the isolated rat heart. Nature 206, 364–367, 1965.PubMedCrossRefGoogle Scholar
  16. 16).
    Wyngaarden, J.B. and Ashton, D.M.: The regulation of activity of phosphoribosylpyrophosphate amidotransferase by purine ribonucleotides: A potential feedback control of purine biosynthesis. J. Biol. Chem. 234, 1492–1496, 1959.PubMedGoogle Scholar
  17. 17).
    Zimmer, H.-G., Steinkopff, G. and Gerlach, E.: Veranderungen der myokardialen Adenin-Nucleotid-Synthese durch Isoproterenol und Propranolol. Verb. Dtsch. Ges. Kreislaufforschg. 39, 183–188, 1973.CrossRefGoogle Scholar
  18. 18).
    Zimmer, H.-G., Trendelenburg, Chr., Kammermeier, H. and Gerlach, E.: De novo synthesis of adenine nucleotides in the rat: Acceleration during recovery from oxygen deficiency. Circulation Res. 32, 635–642, 1973.PubMedCrossRefGoogle Scholar
  19. 19).
    Zimmer, H.-G. and Gerlach, E.: Effect of B-adrenergic stimulation on myocardial adenine nucleotide metabolism. Circulation Res. 35, 536–543, 1974.PubMedCrossRefGoogle Scholar
  20. 20).
    Zimmer, H.-G., Steinkopff, G. and Gerlach, E.: Studien über die Regulation der de novo-Synthese von Adenin-Nucleotiden im Herzen. Verb. Dtsch. Ges. Kreislaufforschg. 40, 348–352, 1974.CrossRefGoogle Scholar
  21. 21).
    Zimmer, H.-G., Bünger, R. and Gerlach, E.: Influence of calcium, isoproterenol and compound D 600 on contractility, 3′:5′-cyclic AMP and glucose-phosphates of the myocardium. Pflligers Arch. 359, R9, 1975.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • H.-G. Zimmer
    • 1
  • E. Gerlach
    • 1
  1. 1.Physiologisches InstitutUniversität MünchenMünchen 2Germany

Personalised recommendations