Residue analysis of Sumithion

  • Yoshiyuki Takimoto
  • Junshi Miyamoto
Conference paper
Part of the Single Pesticide Volume: Sumithion book series (RECT, volume 60)


Up to date, various residue analytical methods of Sumithion such as colorimetric methods, enzymatic methods, and gas chromatographic (GLC) methods have been developed. Colorimetric determinations are carried out either by reducing Sumithion according to Averell and Norris (1948) or by measuring 3-methyl-4-nitrophenol after hydrolysis under alkaline conditions (Miyamoto et al. 1965 a and b); the limit of determination is usually around 0.05 ppm. Determination of lesser amounts of Sumithion can be conducted utilizing cholinesterase inhibition (Ackerman 1966, Miyamoto et al. 1967, Winterlin et al. 1968, Schutzman and Bartel 1969, Mendoza et al. 1968, Ernst and Schuring 1970, Stijve and Cardinale 1971, Renvall and Akerblom 1971). However, these methods require more or less elaborate cleanup procedures, whereas GLC methods are simple and reliable with limits of detection of 0.01 to 0.001 ppm (Miyamoto et al. 1967, Sato et al. 1968, Bowman and Beroza 1969, Storherr et al. 1970, Miyamoto 1973). Therefore, the GLC methods are discussed in detail in this chapter as the recommended method of residue analysis.


Cleanup Procedure Filter Cake Relative Retention Time Bermuda Grass Organophosphorus Pesticide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackermann, H.: Enzymatischer Nachweis phosphororganischer Insektizide nach dünnschichtchromatographischer Trennung. Nahrung 10, 273 (1966).CrossRefGoogle Scholar
  2. ANONYMOUS: Residue analytical methods for organochlorine and organophosphorus pesticides (in Japanese). An official announcement by the Japanese Ministry of Health and Welfare (1970).Google Scholar
  3. —— 1969 Evaluations of some pesticide residues in food (WHO-FAO) (1970).Google Scholar
  4. Averell, P. R., and M. V. Norris: Estimation of small amount of 0,0-diethyl O, p-nitrophenyl thiophosphate. Anal. Chem. 20, 753 (1948).CrossRefGoogle Scholar
  5. Beckman, H., and D. Garber: Recovery of 65 organophosphorus pesticides from Florisil with a new solvent elution system. J. Assoc. Official Anal. Chemists 52, 286(1969).Google Scholar
  6. Bowman, M. C., and M. Beroza: Determination of Accothion, its oxygen analog and its cresol in corn, grass and milk by gas chromatography. J. Agr. Food Chem. 17,271 (1969).CrossRefGoogle Scholar
  7. Coffin, D. E., and G. Savary: Procedure for extraction and cleanup of plant material prior to determination of organophosphate residues. J. Assoc. Official Anal. Chemists 47, 875 (1964).Google Scholar
  8. Ernst, G. F., and D. Schuring: A modified enzymatic detection method for thinlayer chromatograms of pesticides. J. Chromatog. 49, 325 (1970).CrossRefGoogle Scholar
  9. Fischer, R.: Nachweis und quantitative Bestimmung von Phosphor-Insektiziden in biologischem material. III Arch. Toxicol. 23, 129 (1968).Google Scholar
  10. Friedman, R. W., and G. O. Charlier: Quantitative analysis of low-boiling phenols by capillary column separation of trimethylsiiyl ethers. Anal. Chem. 36, 1880 (1964).CrossRefGoogle Scholar
  11. Franz, J., and J. Kovac: Bestimmung toxischer Rückstände von 0,0-Dimethyl 0-(3-methyl-4-nitrophenyl)-thiophosphat in Milch. Z. anal. Chem. 210, 354 (1965).CrossRefGoogle Scholar
  12. Horler, D. F.: Determination of fenitrothion on stored barley. J. Stored Prod. Res. 1, 287 (1966).CrossRefGoogle Scholar
  13. Hosokawa, J., and J. Miyamoto: Metabolism of 14C-labelled Sumithion, 0,0-dimethyl 0-(3-methyl-4-nitrophenyl) phosphorothioate in applies. Botyu-Kagaku 39, 49 (1974).Google Scholar
  14. Kovac, J., and E. Sohler: Bestimmung von 0,0-Dimethyl-0-(3-methyl-4-nitrophenyl) -thiophosphat-Rückständen in Obst und Gemüse nach vorangegangener Abtrennung der mitextrahierten Farbstoffe durch Dünnschichtchromatographie. Z. anal. Chem. 208, 201 (1965).CrossRefGoogle Scholar
  15. Leuck, D. B., and M. C. Bowman: Persistence of 0,0-dimethyl O-(3-methyl-4-nitrophenyl) phosphorothioate, its analog, and its cresol in corn and grass forage. J. Econ. Entomol. 62, 1282 (1969).Google Scholar
  16. J. C. Johnson, Jr., M. C. Bowman, F. E. Knox, and M. Beroza: Fenitrothion residues in corn silage and their effects on dairy cows. J. Econ. Entomol. 64, 1394 (1971).PubMedGoogle Scholar
  17. Mendoza, C. E., P. J. Wales, H. A. Mcleod, and W. P. Mckinley: Thin-layer chromatographic-enzyme inhibition procedure to screen for organophosphorus pesticides in plant extract without elaborate cleanup. Analyst 93, 173 (1968).PubMedCrossRefGoogle Scholar
  18. Miyamoto, J.: Organophosphorus insecticides and environment (in Japanese). Botyu-Kagaku 36, 135 and 189 (1971).Google Scholar
  19. Metabolism of organophosphorus insecticides in plant. In F. Matsumura, G. M.Google Scholar
  20. Boush, and T. Klisato (eds.): Environmental toxicology of pesticides, p. 307. New York: Academic Press (1972).Google Scholar
  21. Analytical methods for Sumithion. In G. Zweig and J. Sherma (eds.): AnalyticalGoogle Scholar
  22. methods for pesticides and plant growth regulators, Vol. VI. New York: Academic Press (1973).Google Scholar
  23. —— and Y. Sato: Metabolic fate of Sumithion in rice plant applied at the pre-heading stage and its residue in harvested grains. Botyu-Kagaku 35, 45 (1965).Google Scholar
  24. Y. KAWAGUCHI, and Y. Sato: Determination of Sumithion residue in banana grown in Nigeria. Botyu-Kagaku 30, 49 (1965 b).Google Scholar
  25. Y. SATO, and S. Suzuki: Determination of Sumithion residue in cocoa beans grown in Nigeria. Botyu-Kagaku 30, 49 (1965 b).Google Scholar
  26. ——Determination of residual amount of Sumithion and some of its metabolites in fresh milk Botyu-Kagaku 32, 95 (1967).Google Scholar
  27. MöLLHOFF, E.: Gas chromatographic determination of residue of E605 products and Agritox in plants and soil samples. Planzenschutz-Nachrichten Bayer 20, 557 (1967).Google Scholar
  28. ——Beitrag zur Frage der Rückstände und ihrer Bestimmung in Pflanzen nach Anwendung von Präparaten der E605- und Agritox-Reihe. Pflanzenschutz Nachrichten Bayer 21, 331 (1968).Google Scholar
  29. Renvall, S., and M. Akerblom: Determination of organophosphorus pesticide residues in fruits and vegetables on the Swedish market from 1964 to 1968. Residue Reviews 34, 1 (1971).PubMedGoogle Scholar
  30. Sato, Y., J. MIYAMOTO, and S. Suzuki: A device of preparing the specific detector of gaschromatograph highly sensitive to organophosphorus insecticides. Botyu-Kagaku 33,8 (1968).Google Scholar
  31. Schutzmann, R. L., and W. F. Bartel: Indoxyl acetate spray reagent for fluorogenic detection of Cholinesterase inhibitors in environmental samples. J. Assoc. Official Anal. Chemists 52, 151 (1969).Google Scholar
  32. Stijve, T., and E. Cardinale: Esterase inhibition technique for the detection of organophosphorus pesticides on thin layer ehromatograms. Mit. Gebiete Lebensm. Untersuch. Hyg. 62, 25 (1971).Google Scholar
  33. Storherr, R. W., P. OTT, and R. R. Watts: A general method for organophosphorus pesticide residues in non-fatty foods. J. Assoc. Official Anal. Chemists 54, 513 (1971).Google Scholar
  34. Takimoto, Y., and J. Miyamoto: Unpublished observation (1972).Google Scholar
  35. ——Unpublished observation (1973).Google Scholar
  36. Watts, R. R., R. W. Storherr, J. R. Pardue, and T. Osgood: Charcoal column cleanup method for many organophosphoras pesticide residues in crop extracts. J. Assoc. Official Anal. Chemists 52, 522 (1969).Google Scholar
  37. Thier, H. P., and K. G. Bergner: Eine Schnellmethode zum Nachweis wichtiger Schädlingsbekämpfungsmittel in Obst und Gemüse. Deutsche Lebensmittel-Rundschau 62, 399 (1966).Google Scholar
  38. Winterlin, W., G. WALKER, H. Frank: Detection of cholinesterase-inhibiting pesticides following separation on thin-layer chromatograms. J. Agr. Food Chem. 16, 808 (1968).CrossRefGoogle Scholar
  39. Wolfenbarger, D. A., and T. N. Shaver: An infrared spectrophotometric technique for determining residues of several organophosphoras insecticides from cotton foliage. J. Econ. Entomol. 66, 332 (1973).Google Scholar
  40. Yuen, S. H.: Absorptiometry determination of fenitrothion residues in cocoa beans. Analyst 91, 811 (1966).CrossRefGoogle Scholar
  41. Yule, W. N., and J. R. Duffy: The persistence and fate of fenitrothion insecticide in a forest environment. Bull. Environ. Contamin. Toxicol. 8, 10 (1972).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1976

Authors and Affiliations

  • Yoshiyuki Takimoto
  • Junshi Miyamoto

There are no affiliations available

Personalised recommendations