Advertisement

Maass Forms and Galois Representations

  • Don Blasius
  • Dinakar Ramakrishnan
Conference paper
Part of the Mathematical Sciences Research Institute Publications book series (MSRI, volume 16)

Abstract

Let h be the Poincaré upper half-plane {z = x + iy ∈ ℂ|y > 0} endowed with the hyperbolic Laplacian Δ = —y2(∂2/∂x2 + ∂2/∂y2), and, for an integer N ≥ 1, let Г0(N) SL2() be the subgroup of matrices whose lower left entry is divisible by N. Let λ ∈ ℂ, and let ω: ( /N )* → ℂ* be a Dirichlet character.

Keywords

Abelian Variety Cusp Form Trace Formula Automorphic Form Galois Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ani]
    A.N. Andrianov, Dirichlet series with Euler product in the theory of Siegel modular forms of genus 2, Proc. Steklov Inst. Math. 112 (1971), 70–93.MathSciNetGoogle Scholar
  2. [An2]
    A.N. Andrianov, “Quadratic Forms and Hecke Operators,” Grundleheren 286, Springer-Verlag, 1987.Google Scholar
  3. [A]
    J. Arthur, On some problems suggested by the trace formula, in “Lie Groups and Representations II,” Springer Lecture Notes in Math., vol. 1041, 1983, pp. 1–49.Google Scholar
  4. AC] J. Arthur and L. Clozel, Base-change for GLn, Annals of Math. Studies (to appear).Google Scholar
  5. [BCR-1]
    D. Blasius, L. Clozel and D. Ramakrishnan, Algébricité de Vaction des opérateurs de Hecke sur certaines formes de Maass, C. R. Acad. Sci. Paris, Série I 305 (1987), 705–708.MathSciNetGoogle Scholar
  6. [BCR-2]
    D. Blasius, L. Clozel and D. Ramakrishnan, Opérateurs de Hecke et formes de Maass: application de la formule des traces, C. R. Acad. Sci. Paris, Série I 306 (1988), 59–62.MathSciNetGoogle Scholar
  7. BHR] D. Blasius, M. Harris and D. Ramakrishnan, Coherent cohomology, limits of discrete series, and Maass forms of Galois type, in preparation.Google Scholar
  8. [Bl]
    A. Borei, Automorphic L-functions, Proc. Symp. Pure Math., Part 2 33 (1979), 27–61.Google Scholar
  9. [B2]
    A. Borei, Introduction to automorphic forms, Proc. Symp. Pure Math. 9 (1966), 119–210.Google Scholar
  10. [BJ]
    A. Borei and H. Jacquet, Automorphic forms and automorphic representations, Proc. Symp. Pure Math., Part 1 33 (1979), 189–202.Google Scholar
  11. [C]
    W. Casselman, GLn, in “Algebraic Number Fields,” ed. Fröhlich, Academic Press, 1977, pp. 663–704.Google Scholar
  12. [Ch]
    Ching-Li Chai, “Compactification of Siegel Moduli Schemes,” London Math. Soc. Lecture Notes, vol. 107, Cambridge Univ. Press, 1985.Google Scholar
  13. [ChF]
    Ching-Li Chai and G. Faltings, Arithmetic Compactification of Siegel Moduli Spaces and Applications, preprint (1988).Google Scholar
  14. [CR]
    C.W. Curtis and I. Reiner, “Representation Theory of Finite Groups and As-sociative Algebras,” Interscience Publishers, New York, 1962.Google Scholar
  15. [DS]
    P. Deligne and J.-P. Serre, Formes modulaires de poids 1, Ann. Sci. Ec. Norm. Sup., 4e série 7 (1974), 507–530.MathSciNetzbMATHGoogle Scholar
  16. [GJ]
    S. Gelbart and H. Jacquet, A relation between automorphic forms on GL(2) and GL(3), Ann. Sci. Éc. Norm. Sup., 4e série 11 (1978), 471–542.MathSciNetzbMATHGoogle Scholar
  17. [GoJ]
    R. Godement and H. Jacquet, “Zeta Functions of Simple Algebras,” Springer Lecture Notes in Math., vol. 260, 1972.Google Scholar
  18. [J]
    H. Jacquet, “Automorphic forms on GL(2): Part II,” Springer Lecture Notes in Math., vol. 278, 1972.Google Scholar
  19. [JL]
    H. Jacquet and R. P. Langlands, “Automorphic Forms on GL(2),” Springer Lecture Notes in Math., vol. 114, 1970.Google Scholar
  20. JPSS] H. Jacquet, I. Piatetski-Shapiro and J. Shalika, Converse theorem for GSp(4), in preparation.Google Scholar
  21. [JS]
    H. Jacquet and J. Shalika, A non-vanishing theorem for zeta functions o/GLn, Inventiones Math. 38 (1976), 1–16.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [Kl]
    R. Kottwitz, Shimura varieties and twisted orbital integrals, Math. Annalen 269 (1984), 287–300.MathSciNetzbMATHCrossRefGoogle Scholar
  23. K2] R. Kottwitz, article in preparation.Google Scholar
  24. [LL]
    J.-P. Labesse and R. P. Langlands, L-indistinguishability for SL(2), Can. J. Math. XXXI 4 (1979), 726–785.MathSciNetCrossRefGoogle Scholar
  25. [LI]
    R. P. Langlands, Base-change for GL(2), Annals of Math. Studies 96 (1980).Google Scholar
  26. [L2]
    R. P. Langlands, Les débuts d’une formule de traces stable, Publications Mathématiques de l’Université Paris VII 13 (1980).Google Scholar
  27. [L3]
    R. P. Langlands, Problems in the theory of automorphic forms, in “Lectures in Modern Analysis and Applications III,” Springer Lecture Notes in Math., vol. 170, 1970, pp. 19–61.MathSciNetGoogle Scholar
  28. L4] R. P. Langlands, On the classification of irreducible representations of real algebraic groups, (to appear).Google Scholar
  29. [L5]
    R. P. Langlands, Automorphic representations, Shimura varieties, and motives, Proc. Symp. Pure Math., Part 2 33 (1979), 205–246.MathSciNetGoogle Scholar
  30. [Ml]
    H. Maass, Uber eine neue Art von nicht analytischen automorphen Functionen und die bestimmung Dirichletscher Reihen durch Functionalgleichungen, Math. Annalen 121 (1949), 141–183.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [M2]
    H. Maass, Lectures on Modular Functions of One Complex Variable, Tata Lec¬ture Notes 29. Revised edition, Bombay (1983).Google Scholar
  32. [PS-Sou]
    I. Piatetski-Shapiro and D. Soudry, L and e-factors for GSp(4), J. Fac. Sei. Univ. Tokyo, sec. 1A Math. 28, No. 3 (1982), 505–530.MathSciNetGoogle Scholar
  33. R] J. Rogawski, Automorphic Representations of Unitary Groups in three variables.Google Scholar
  34. RZ] H. Reimann and T. Zink, Der Dieudonnémodul einer polarisierten abelschen mannigfaltigkeit vom CM -typ, to appear in Annals of Math..Google Scholar
  35. [Se]
    J.-P. Serre, “Représentations linéaires des groupes finis,” Hermann, deuxième édition, Paris, 1971.Google Scholar
  36. [Sha]
    F. Shahidi, On certain L-functions, American Journal of Math. 103, No. 2 (1980), 297–355.MathSciNetCrossRefGoogle Scholar
  37. [Shal]
    J. Shalika, Multiplicity one theorem for GLn, Annals of Math. (2) 1 (1974), 171–193.MathSciNetCrossRefGoogle Scholar
  38. [Shi]
    G. Shimura, On the Fourier coefficients of modular forms of several variables, Nachr. Akad. Wiss. Göttingen Math-Phys. Kl. II 17 (1975), 261–268.MathSciNetGoogle Scholar
  39. [Sh2]
    G. Shimura, On modular correspondences for Sp(n,Z) and their congruence relations, Proc. Nat. Acad. Sei. USA 49 (1963), 824–828.MathSciNetzbMATHCrossRefGoogle Scholar
  40. [Sou]
    D. Soudry, The CAP representations o/GSp(4, A), J. Reine Angew. Math. 383 (1988), 87–108.MathSciNetzbMATHGoogle Scholar
  41. [T]
    J. Tate, Number theoretic background, Proc. Symp. Pure Math., Part 2 33 (1979), 3–26.MathSciNetGoogle Scholar
  42. [Tu]
    J. Tunnell, Artin’s conjecture for representations of octahedral type, Bulletin AMS 5, No. 2 (1981), 173–175.MathSciNetzbMATHCrossRefGoogle Scholar
  43. [V]
    M.-F. Vigneras, Correspondances entre représentations automorphes de GL(2) sur une extension quadratique de GSp(4) sur Q, conjecture local de Langlands pour GSp(4), Contemp. Math. 53 (1986), 463–527.MathSciNetCrossRefGoogle Scholar
  44. [W]
    A. Weil, “Dirichlet Series and Automorphic Forms,” Springer Lecture Notes in Math., vol. 189, 1971.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Don Blasius
    • 1
    • 2
  • Dinakar Ramakrishnan
    • 1
    • 2
  1. 1.Department of MathematicsBaruch CollegeNew YorkUSA
  2. 2.Centre de Recherches MathématiquesUniversité de MontréalMontréalCanada

Personalised recommendations