Galois Groups of Poincaré-Type over Algebraic Number Fields

  • Kay Wingberg
Conference paper
Part of the Mathematical Sciences Research Institute Publications book series (MSRI, volume 16)


The purpose of this note is to report on the appearance of Poincaré groups in algebraic number theory.


Galois Group Algebraic Closure Profinite Group Absolute Galois Group Poincare Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Demuskin, The group of a maximal p-extension of a local field, Izv. Akad. Nauk SSSR, Ser. Mat. 25 (1961), 329–346.MathSciNetzbMATHGoogle Scholar
  2. 2.
    V. Diekert, Uber die absolute Galoisgruppe dyadischer Zahlkörper, J. Reine Angew. Math. 350 (1984), 152–172.MathSciNetzbMATHGoogle Scholar
  3. 3.
    D. Dummit and J. Labute, On a new characterization of Demuskin groups, Invent. Math. 73 (1983), 413–418.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    A. Grothendieck, SGA 1, Springer Lecture Notes in Math. 224 (1971).Google Scholar
  5. 5.
    K. Iwasawa, On Galois groups of local fields, Trans. Amer. Math. Soc. 80 (1955), 448–469.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    A. V. Jakovlev, The Galois group of the algebraic closure of a local field, Math. USSR Izv. 2 (1968), 1231–1269.CrossRefGoogle Scholar
  7. 7.
    A. V. Jakovlev, Remarks on my paper “The Galois group of the algebraic closure of a local field”, Math. USSR Izv. 12 (1978), 205–206.CrossRefGoogle Scholar
  8. 8.
    U. Jannsen, Uber Galoisgruppen lokaler Körper, Invent. Math. 70 (1982), 53–69.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    U. Jannsen and K. Wingberg, Die Struktur der absoluten Galoisgruppe p-adischer Zahlkörper, Invent. Math. 70 (1982), 71–98.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    H. Koch, The absolute Galois group of a p-clos ed extension of a local field, Soviet Math. Dokl. 19 (1978), 10 - 13.zbMATHGoogle Scholar
  11. 11.
    J. P. Labute, Classification of Demuskin groups, Canad. J. Math. 19 (1967), 106–132.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    J. S. Milne, “Étale Cohomology,” Princeton, 1980.Google Scholar
  13. 13.
    J.-P. Serre, Structure de certains pro-p-groupes, Séminaire Bourbaki, No. 252 15 (1962–63).Google Scholar
  14. 14.
    J.-P. Serre, Cohomologie Galoisienne, Springer Lecture Notes in Math. 5 (1973).Google Scholar
  15. 15.
    K. Wingberg, Der Eindentigkeitssatz für Demuskinformationen, Invent. Math. 70 (1982), 99–113.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    K. Wingberg, Ein Analogon zur Fundamentalgruppe einer Riemann’sehen Fläche Zahlkörperfall, Invent. Math. 77 (1984), 557–584.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    K. Wingberg, Positiv-zerlegte p-Erweiterungen algebraischer Zahlkörper, J. Reine Angew. Math. 357 (1985), 193–204.MathSciNetzbMATHGoogle Scholar
  18. 18.
    K. Wingberg, On Poincaré groups, J. London Math. Soc. 33 (1986), 271–278.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Kay Wingberg
    • 1
  1. 1.Mathematisches InstitutUniversität Erlangen-NürnbergErlangenFederal Republic of Germany

Personalised recommendations