Advertisement

Reasoning Agents in Dynamic Domains

  • Chitta Baral
  • Michael Gelfond
Chapter
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 597)

Abstract

The paper discusses an architecture for intelligent agents based on the use of A-Prolog — a language of logic programs under the answer set semantics. A-Prolog is used to represent the agent’s knowledge about the domain and to formulate the agent’s reasoning tasks. We outline how these tasks can be reduced to answering questions about properties of simple logic programs and demonstrate the methodology of constructing these programs.

Keywords

Intelligent agents logic programming and nonmonotonic reasoning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baral, C. (1995). Reasoning about Actions: Non-deterministic effects, Constraints and Qualification. In Mellish, C., editor, Proc. of IJCAI 95, pages 2017-2023. Morgan Kaufmann.Google Scholar
  2. Baral, C. and Gelfond, M. (1994). Logic programming and knowledge representation. Journal of Logic Programming, 19, 20:73–148.MathSciNetCrossRefGoogle Scholar
  3. Baral, C., Gelfond, M., and Provetti, A. (1995). Representing Actions I: Laws, Observations and Hypothesis. In Proc. of AAAI 95 Spring Symposium on Extending Theories of Action: Formal theory and practical applications.Google Scholar
  4. Baral, C., Gelfond, M., and Provetti, A. (1997). Representing Actions: Laws, Observations and Hypothesis. Journal of Logic Programming, 31(1–3):201–243.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Baral, C. and Son, T. (1998). Relating theories of actions and reactive control. Electronic transactions on Artificial Intelligence, 2(3–4).Google Scholar
  6. Chen, W., Swift, T., and Warren, D. (1995). Efficient top-down computation of queries under the well-founded semantics. Journal of Logic Programming, 24(3):161–201.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Cholewiński, P., Marek, W., and Truszczyński, M. (1996). Default reasoning system DeRes. In Aiello, L., Doyle, J., and Shapiro, S., editors, Proc. of KR 96, pages 518–528. Morgan Kaufmann.Google Scholar
  8. Clark, K. (1978). Negation as failure. In Gallaire, H. and Minker, J., editors, Logic and Data Bases, pages 293-322. Plenum Press, New York.CrossRefGoogle Scholar
  9. Cui, B., Swift, T., and Warren, D. (1999). A case study in using preference logic grammars for knowledge representation. In Gelfond, M., Leone, N., and Pfeifer, G., editors, Proc. of LPNMR 99, pages 206–220. Springer.Google Scholar
  10. Dantsin, E., Eiter, T., Gottlob, G., and Voronkov, A. (1997). Complexity and expressive power of logic programming. In Proc. of 12th annual IEEE conference on Computational Complexity, pages 82–101.Google Scholar
  11. De Giacomo, G., Lesperance, Y., and Levesque, H. (1997). Reasoning about concurrent execution, prioritized interrupts, and exogenous actions in the situation calculus. In IJCAI 97, pages 1221–1226. Morgan Kaufmann.Google Scholar
  12. DeGiacomo, G., Reiter, R., and Soutchanski, M. (1998). Execution monitoring of high-level robot programs. In Cohn, A., Schubert, L., and Shapiro, S., editors, Proc. of KR 98, pages 453–464. Morgan Kaufmann.Google Scholar
  13. Denecker, M. and De Schreye, D. (1998). SLDNFA: an abductive procedure for normal abductive logic programs. Journal of Logic Programming, 34(2):111–167.MathSciNetzbMATHCrossRefGoogle Scholar
  14. Erdem, E., Lifschitz, V., and Wong, M. (2000). Wire routing and satisfiability planning. In Proc. CL-2000 (to appear).Google Scholar
  15. Faber, W., Leone, N., and Pfeifer, G. (1999). Pushing goal derivation in DLP computations. In Gelfond, M., Leone, N., and Pfeifer, G., editors, Proc. of LPNMR 99, pages 177–191. Springer.Google Scholar
  16. Gelfond, M. and Lifschitz, V. (1988). The stable model semantics for logic programming. In Kowalski, R. and Bowen, K., editors, Logic Programming: Proc. of the Fifth Int’l Conf. and Symp., pages 1070–1080. MIT Press.Google Scholar
  17. Gelfond, M. and Lifschitz, V. (1991). Classical negation in logic programs and disjunctive databases. New Generation Computing, 9:365–387.CrossRefGoogle Scholar
  18. Gelfond, M. and Lifschitz, V. (1992). Representing actions in extended logic programs. In Apt, K., editor, Joint International Conference and Symposium on Logic Programming., pages 559–573. MIT Press.Google Scholar
  19. Guinchiglia, E. and Lifschitz, V. (1998). An action language based on causal explanation: Preliminary report. In Proc. AAAI-98, pages 623–630. MIT Press.Google Scholar
  20. Kakas, A., Kowalski, R., and Toni, F. (1998). The role of abduction in logic programming. In Gabbay, D., Hogger, C., and Robinson, J., editors, Handbook of Logic in Artificial Intelligence and Logic Programming, volume 5, pages 235–324. Oxford University Press.Google Scholar
  21. Kautz, H. and Selman, B. (1992). Planning as satisfiability. In Proc. of EC AI-92, pages 359–363.Google Scholar
  22. Kowalski, R. (1995). Using metalogic to reconcile reactive with rational agents. In Apt, K. and Turini, F., editors, Meta-logics and logic programming, pages 227–242. MIT Press.Google Scholar
  23. Kowalski, R. and Sadri, F. (1999). From logic programming towards multi-agent systems. Annals of Mathematics and Artificial Intelligence, 25:391–419.MathSciNetzbMATHCrossRefGoogle Scholar
  24. Levesque, H., Reiter, R., Lesperance, Y., Lin, F., and Scherl, R. (1997). GOLOG: A logic programming language for dynamic domains. Journal of Logic Programming, 31(l–3):59–84.MathSciNetzbMATHCrossRefGoogle Scholar
  25. Lifschitz, V. (1996). Foundations of declarative logic programming. In Brewka, G., editor, Principles of Knowledge Representation, pages 69–128. CSLI Publications.Google Scholar
  26. Lifschitz, V. (1997). Two components of an action language. Annals of Math and AI, 21(2–4):305–320.MathSciNetzbMATHGoogle Scholar
  27. Lin, F. (2000). From causal theories to successor state axioms and STRIPS like systems. In Proc. of AAAI 2000 (to appear).Google Scholar
  28. Lin, F. (95). Embracing causality in specifying the indirect effects of actions. In Mellish, C., editor, Proc. of IJCAI 95, pages 1985–1993. Morgan Kaufmann.Google Scholar
  29. Marek, W. and Truszczyński, M. (1989). Stable semantics for logic programs and default reasoning. In Lusk, E. and Overbeek, R., editors, Proc. of the North American Conf. on Logic Programming, pages 243–257. MIT Press.Google Scholar
  30. Marek, W. and Truszczyński, M. (1993). Nonmonotonic Logic: Context dependent reasoning. Springer.Google Scholar
  31. Marek, W. and Truszczyński, M. (1999). Stable models and an alternative logic programming paradigm. In Apt, K., Marek, V., Trucszczynski, M., and Warren, D., editors, The Logic Programming Paradigm: a 25-Year perspective, pages 375–398. Springer.Google Scholar
  32. McCain, N. and Turner, H. (95). A causal theory of ramifications and qualifications. In Mellish, C, editor, Proc. of IJCAI 95, pages 1978–1984. Morgan Kaufmann.Google Scholar
  33. McCain, N. and Turner, H. (98). Satisfiability planning with causal theories. In Cohn, A., Schubert, L., and Shapiro, S., editors, Proc. of KR 98, pages 212–223. Morgan Kaufmann.Google Scholar
  34. McCarthy, J. (1980). Circumscription—a form of non-monotonic reasoning. Artificial Intelligence, 13(1, 2):27–39, 171–172.MathSciNetzbMATHCrossRefGoogle Scholar
  35. McCarthy, J. and Hayes, P. (1969). Some philosophical problems from the standpoint of artificial intelligence. In Meltzer, B. and Michie, D., editors, Machine Intelligence, volume 4, pages 463–502. Edinburgh University Press, Edinburgh.Google Scholar
  36. Moore, R. (1985). Semantical considerations on nonmonotonic logic. Artificial Intelligence, 25(l):75–94.MathSciNetzbMATHCrossRefGoogle Scholar
  37. Niemela, I. (1999). Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence, 25(3–4):241–271.MathSciNetCrossRefGoogle Scholar
  38. Niemela, I. and Simons, P. (1997). Smodels — an implementation of the stable model and well-founded semantics for normal logic programs. In Dix, J., Furbach, U., and Nerode, A., editors, Proc. 4th international conference on Logic programming and non-monotonic reasoning, pages 420–429. Springer.Google Scholar
  39. Pinto, J. (1999). Compiling Ramification Constraints into Effect Axioms. Computational Intelligence, 15(3):280–307.MathSciNetCrossRefGoogle Scholar
  40. Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 13(1,2):81–132.MathSciNetzbMATHCrossRefGoogle Scholar
  41. Reiter, R. (1995). On specifying database updates. Journal of Logic Programming, 25:25–91.CrossRefGoogle Scholar
  42. Saccà, D. and Zaniolo, C. (1997). Deterministic and non-deterministic stable models. Journal of Logic and Computation, 7(5):555–579.MathSciNetzbMATHCrossRefGoogle Scholar
  43. Sandewall, E. (1998). Special issue. Electronic Transactions on Artificial Intelligence, 2(3–4):159-330. http://www.ep.liu.se/ej/etai/.MathSciNetGoogle Scholar
  44. Shanahan, M. (1997). Solving the frame problem: A mathematical investigation of the commonsense law of inertia. MIT press.Google Scholar
  45. Soininen, T. and Niemela, I. (1999). Developing a declarative rule language for applications in product configuration. In Gupta, G., editor, Proc. of Practical Aspects of Declarative Languages’99, volume 1551, pages 305–319. Springer.Google Scholar
  46. Van Gelder, A., Ross, K., and Schlipf, J. (1991). The well-founded semantics for general logic programs. Journal of ACM, 38(3):620–650.zbMATHGoogle Scholar
  47. Wang, H. and Zaniolo, C. (2000). Nonmonotonic Reasoning in LDL++. In Minker, J., editor, This volume. Kluwer.Google Scholar
  48. Watson, R. (1999a). Action languages and domain modeling. PhD thesis, University of Texas at EL Paso.Google Scholar
  49. Watson, R. (1999b). An application of action theory to the space shuttle. In Gupta, G., editor, Proc. of Practical Aspects of Declarative Languages’99, volume 1551, pages 290–304. Springer.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Chitta Baral
    • 1
  • Michael Gelfond
    • 2
  1. 1.Department of Computer Sc. and Engg.Arizona State UniversityTempeUSA
  2. 2.Department of Computer Sc.Texas Tech UniversityLubbockUSA

Personalised recommendations