Advertisement

Behavioral Toxicity of Radioprotective Bioactive Lipids

  • M. R. Landauer
  • H. D. Davis
  • T. L. WaldenJr.
Chapter
Part of the Developments in Oncology book series (DION, volume 67)

Abstract

The ideal radioprotective agent for use in radiotherapy and civil defense should provide effective protection with minimal behavioral disruption. The bioactive lipids are among the compounds that have demonstrated radioprotective efficacy in cellular assays or animal survival studies. Members of this group that have been determined to be radioprotective include prostaglandins, leukotrienes, and platelet-activating factor (PAF). While protective agents have been identified in both the cyclooxygenase and lipoxygenase pathways, as well as for the phospholipid derived PAF, not all bioactive lipids provide radioprotection (1). The most promising radioprotective compounds include the synthetic methylated derivative of the naturally occurring prostaglandin E2, 16,16-dimethyl prostaglandin E2 (DiPGE2), leukotriene C4 (LTC4), and PAF. In our laboratory, they are maximally effective for enhancing animal survival when administered 5–10 minutes before irradiation, and provide dose reduction factors (DRF) ranging from 1.45 to 1.9 (2–4). The radioprotective mechanisms of the bioactive lipids have not been clearly elucidated, but they are believed to act through different receptor systems. Mechanisms ranging from alterations of biological mediators, such as cyclic AMP, to hypoxia and cardiovascular effects have been postulated (5,6).

Keywords

Locomotor Activity Vehicle Control Group Bioactive Lipid Civil Defense Walter Reed Army Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Walden, T.L, Jr. J. Radiat. Res., 29: 255–260, 1988.PubMedCrossRefGoogle Scholar
  2. 2.
    Walden, T.L., Jr., Patchen, M. and Snyder, S.L., Radiat. Res., 109: 440–448, 1987.PubMedCrossRefGoogle Scholar
  3. 3.
    Walden, T.L., Jr. Ann. NY Acad. Sci. 524: 431–433, 1988.CrossRefGoogle Scholar
  4. 4.
    Hughes, H.N., Walden, T.L., Jr. and Steel, L.K. Abstracts of the 37th Annual Meeting of the Radiation Research Society, p. 186, 1989.Google Scholar
  5. 5.
    Halushka, P.V., Mais, D.E., Mayeux, P.R. and Morinelli, T.A., Ann. Rev. Pharmacol. Toxicol., 10: 213–239, 1989.Google Scholar
  6. 6.
    Weiss, J.F., Kumar, K.S., Walden, T.L., Jr., Neta, R., Landauer, M.R. and Clark, E.P. Int. J. Radiat. Biol., 57:709–722, 1990PubMedCrossRefGoogle Scholar
  7. 7.
    Hanson, W.R. and Thomas, C. Radiat. Res. 96:393–398,1983.PubMedCrossRefGoogle Scholar
  8. 8.
    Hanson, W.R. and Ainsworth, E.J. Radiat. Res. 103: 196–203, 1985.PubMedCrossRefGoogle Scholar
  9. 9.
    Hanson, W.R. In: Prostaglandin and Lipid Metabolism in Radiation Injury, (Eds. T.L. Walden, Jr. and H.N. Hughes), Plenum Press, New York, 1987, pp. 233–243.CrossRefGoogle Scholar
  10. 10.
    Steel, L.K. and Catravas, G.N. In: Eicosanoids and Radiation, (Ed. P. Polgar), Kluwer Academic Publishers, Boston, 1988, pp. 79–87.CrossRefGoogle Scholar
  11. 11.
    Steel, L.K., Walden, T.L., Jr., Hughes, H.N., and Jackson, W.E., III. Radiat. Res. 115: 605–608, 1988.PubMedCrossRefGoogle Scholar
  12. 12.
    Walden, T.L, Jr., Patchen, M.L. and MacVittie, T.J. Radiat. Res. 113: 388–395, 1988.PubMedCrossRefGoogle Scholar
  13. 13.
    Walden, T.L., Jr. Abstracts of the 37th Annual Meeting of the Radiation Research Society, p. 185, 1989.Google Scholar
  14. 14.
    Davidson, D.E., Grenan, M.M. and Sweeney, T.R. In: Radiation Sensitizers: Their Use in the Clinical Management of Cancer, (Ed. L.W. Brady), Masson, New York, 1980, pp. 309–320.Google Scholar
  15. 15.
    Hanson, W.R. Radiat. Res., 111:361–373, 1987.PubMedCrossRefGoogle Scholar
  16. 16.
    Landauer, M.R., Walden, T.L., Jr. and Davis, H.D. In: Frontiers in Radiation Biology, (Ed. E. Riklis), VCH Publishers, Weinheim, West Germany, in press.Google Scholar
  17. 17.
    World Health Organization, Environmental Health Criteria, Principles and Methods for the Assessment of Neurotoxicity Associated with Exposure to Chemicals. World Health Organization, Geneva, 1986.Google Scholar
  18. 18.
    Landauer, M.R., Walden, T.L., Jr., Davis, H.D. and Dominitz, J.A. In: Prostaglandin and Lipid Metabolism in Radiation Injury, (Eds. T.L. Walden, Jr. and H.N. Hughes), Plenum Press, New York, 1987, pp. 245–251.CrossRefGoogle Scholar
  19. 19.
    Landauer, M.R., Davis, H.D., Dominitz, J.A. and Weiss, J.F. Pharmacol. Biochem. Behav. 27: 573–576.1987.PubMedCrossRefGoogle Scholar
  20. 20.
    Landauer, M.R., Davis, H.D., Dominitz, J.A. and Weiss, J.F. Pharmacol. Ther., 39: 97–100, 1988.PubMedCrossRefGoogle Scholar
  21. 21.
    Landauer, M.R., Davis, H.D., Dominitz, J.A. and Weiss, J.F. Toxicology 49: 315–323, 1988.PubMedCrossRefGoogle Scholar
  22. 22.
    Chiu, E.K.Y. and Richardson, J.S. Gen. Pharmacol. 16:163–175, 1985.PubMedCrossRefGoogle Scholar
  23. 23.
    Brus, R., Krzeminski, T., Juraszczyk, Z., Kurcok, A., Felinska, W. and Kozik, W. Biomed. Biochim. Acta45: 1153–1158, 1986.PubMedGoogle Scholar
  24. 24.
    Landauer, M.R., Walden, T.L. Jr., Davis, H.D., Cranford, M.E. and Farzaneh, N.K. Abstracts of the 37th Annual Meeting of the Radiation Research Society, p. 185, 1989.Google Scholar
  25. 25.
    Moncada, S., Flower, R.J. and Vane, J.R. In: The Pharmacological Basis of Therapeutics, (Eds. A. Goodman Gilman, L.S. Goodman, T.W. Rall and F. Murad), Macmillan: New York, 1985, pp. 660–673.Google Scholar
  26. 26.
    Myers, A., Tores Durate, A. P. and Ramwell, P. Adv. Prostaglandin Thromboxane Leukotriene Res. 17: 833–837, 1987.Google Scholar
  27. 27.
    Kligerman, M.M., Turrisi, AT., Urtasun, R.C., Norfleet, A.L., Phillips, T.L., Barkley, T. and Rubin, T. Int. J. Radiat. Oncol. Biol. Phys. 14: 1119–1122, 1988.PubMedCrossRefGoogle Scholar
  28. 28.
    Bito, L.Z., Davson, H., and Hollingsworth, J.R. J. Physiol. 253: 273–285, 1976.Google Scholar
  29. 29.
    Spector, R. and Goetzl, E.J. Biochem. Pharmacol. 35: 2849–2853, 1986.PubMedCrossRefGoogle Scholar
  30. 30.
    Utley, J.F., Marlowe, C. and Wadell, J.W. Radiat. Res. 68: 284–291,1976.PubMedCrossRefGoogle Scholar
  31. 31.
    Kumar, R., Harvey, S.A.K., Kester, M., Hanahan, D.J. and Olson, M.S. Biochim. Biophys. Acta 963: 375–383, 1988.PubMedCrossRefGoogle Scholar
  32. 32.
    Murphy, S. and Pearce, B. Prostaglandins Leukotrienes Essential Fatty Acids 31:165–170, 1988.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • M. R. Landauer
    • 1
  • H. D. Davis
    • 1
  • T. L. WaldenJr.
    • 2
  1. 1.Departments of Behavioral SciencesArmed Forces Radiobiology Research InstituteBethesdaUSA
  2. 2.Radiation BiochemistryArmed Forces Radiobiology Research InstituteBethesdaUSA

Personalised recommendations