Advertisement

The Nucleus pp 97-103 | Cite as

Mirror Nuclei and Odd-Odd N = Z Nuclei in the f7/2 Shell

  • M. A. Bentley
  • C. D. O’Leary
  • D. E. Appelbe
  • R. A. Bark
  • D. M. Cullen
  • S. Ertürk
  • A. Maj
  • D. D. Warner
Chapter
  • 154 Downloads

Abstract

The phenomena of mirror-symmetry and cross-conjugate symmetry have been investigated through a study of nuclei near N = Z at the centre of the \({f_{\frac{7}{2}}}\)shell. Two pairs of mirror-nuclei, 25 49 Mn/ 24 49 Cr and 24 47 Cr/ 23 47 V, have been studied up to their band termination states. Coulomb energies have been deduced and are shown to be an extremely sensitive probe of the spatial correlations of valence particles. A comprehensive new level scheme has been determined for the odd-odd N = Z nucleus 23 46 V, and the results yield new information on the T = 1 (and possibly T = 0) np-pairing modes.

Keywords

Rotational Alignment Energy Level Scheme Coulomb Effect Yrast Band Energy Level Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Cameron et al. Phys. Lett. B 235 (1990) 239ADSCrossRefGoogle Scholar
  2. [2]
    J. Cameron et al. Phys. Lett. B 319 (1993) 58ADSCrossRefGoogle Scholar
  3. [3]
    C. D. O’Leary et al. Phys. Rev. Lett. 79 (1997) 4349ADSCrossRefGoogle Scholar
  4. [4]
    M. A. Bentley et al. Phys. Lett. B 437 (1998) 243ADSCrossRefGoogle Scholar
  5. [5]
    G. Martinez-Pinedo, A. P. Zuker, A. Poves and E. Caurier. Phys. Rev. C 55 (1997) 187Google Scholar
  6. [6]
    J. A. Cameron et al. Phys. Rev. C 58 (1998) 808ADSCrossRefGoogle Scholar
  7. [7]
    D. Rudolph et al. Phys. Rev. Lett. 76 (1996) 376ADSCrossRefGoogle Scholar
  8. [8]
    S. M. Vincent et al. Phys. Lett. B 437 (1998) 264ADSCrossRefGoogle Scholar
  9. [9]
    J. Eberth et al. Prog. Part. Nucl. Phys. 28, (1992) 495ADSCrossRefGoogle Scholar
  10. [10]
    T. Kuroyanagi et al Nucl. Instrum. Methods A 316 (1992) 289ADSCrossRefGoogle Scholar
  11. [11]
    S. E. Arnell et al. Nucl. Instrum. Methods A 300, (1991) 303ADSCrossRefGoogle Scholar
  12. [12]
    C. D. O’Leary et al Submitted to Phys. Lett. B (1999)Google Scholar
  13. [13]
    A. Afanasjev and I. Ragnarsson. (private communication)Google Scholar
  14. [14]
    S. E. Larsson Physica Scripta 8 (1973) 17ADSCrossRefGoogle Scholar
  15. [15]
    J. A. Sheikh, D. D. Warner and P. Van Isacker. Phys. Lett. B 443 (1998) 16ADSCrossRefGoogle Scholar
  16. [16]
    P. Bednarczyk et al. Phys. Lett. B 393 (1997) 285ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • M. A. Bentley
    • 1
  • C. D. O’Leary
    • 1
    • 2
  • D. E. Appelbe
    • 2
    • 3
  • R. A. Bark
    • 4
  • D. M. Cullen
    • 2
  • S. Ertürk
    • 2
    • 5
  • A. Maj
    • 6
  • D. D. Warner
    • 7
  1. 1.School of SciencesStaffordshire UniversityStoke-on-TrentUK
  2. 2.Oliver Lodge LaboratoryUniversity of LiverpoolLiverpoolUK
  3. 3.Department of PhysicsMcMaster UniversityHamiltonCanada
  4. 4.Department of Nuclear PhysicsAustralian National UniversityCanberraAustralia
  5. 5.Fen-Edebiyat FakültesiNigde UniversitesiNigdeTurkey
  6. 6.Niewodniczanski Institute of Nuclear PhysicsKrakowPoland
  7. 7.CLRC Daresbury LaboratoryWarringtonUK

Personalised recommendations