The Nucleus pp 143-149 | Cite as

The Development and Applications of Scintillator-Photodiode Detectors

  • N. M. Clarke


The advantages of scintillation detectors using photodiodes are compared with those using photomultipliers, and a brief history is presented of their development in the 1960s. These devices have proved valuable in the study of clustering in nuclei via breakup reactions, where the excitation energy in the nucleus can be reconstructed with better resolution than that of the scintillation detector. Combinations of gas filled ion chambers, silicon position sensitive detectors and scintillator-photodiode detectors have been constructed and used recently to observe 6He clustering in states of 12Be.


Scintillation Detector Breakup Reaction Radioactive Nuclear Beam Excitation Energy Spectrum Mylar Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S.C. Curran and W.R. Baker, U.S. Atomic Energy Comm. Rep. M.D.D.C.1296 (1944)Google Scholar
  2. [2]
    R. L. Heath, R. Hofstadter and E. B. Hughes, Nucl. Instr. Meth. 162(1979) 431; F. D. Brooks, Ibid, 162 (1979) 477Google Scholar
  3. [3]
    A. J. Tuzzolino, E. L. Hubbard, M. A. Perkins, C. Y. Fan, J. Applied Phys. 33, 1 (1962) 148ADSCrossRefGoogle Scholar
  4. [4]
    C. Y. Fan, Rev. Sci. Instr. 35, 2 (1964) 158ADSCrossRefGoogle Scholar
  5. [5]
    G. M. Comstock, C. Y. Fan, J. A. Simpson, Astrophys. Journal. 146,1 (1966) 51ADSCrossRefGoogle Scholar
  6. [6]
    N. G. Blamires, Nucl. Instr. Meth. 24 (1963)Google Scholar
  7. [7]
    J. E. Bateman, Nucl. Instr. Meth. 67 (1969) 93, Ibid 71 (1969) 256, 261, 269Google Scholar
  8. [8]
    J. E. Bateman and F. E. Ozsan, Nucl. Instr. Meth. 108 (1973) 403CrossRefGoogle Scholar
  9. [9]
    G. Keil, Nucl. Instr. Meth. 66(1968) 167Google Scholar
  10. [10]
    B. R. Fulton and W. D. M. Rae, J.Phys. G: Nucl. Part. Phys. 16 (1990) 333ADSCrossRefGoogle Scholar
  11. [11]
    M. Freer, Nucl. Instr. Meth. Phys. Res. A383 (1996) 463ADSCrossRefGoogle Scholar
  12. [12]
    J. B. Birks, The theory and practice of scintillation counting (Macmillan, New York 1964)Google Scholar
  13. [13]
    D. Horn et al., Nucl. Instr. Meth. Phys. Res. A320 (1992) 273ADSGoogle Scholar
  14. [14]
    A.S. Fomichev et al., Nucl. Instr. Meth. Phys. Res. A344(1994) 378ADSGoogle Scholar
  15. [15]
    K. L. Jones, University of Surrey, private communicationGoogle Scholar
  16. [16]
    M. Shawcross, University of Surrey, private communicationGoogle Scholar
  17. [17]
    R.L. Cowin et al., Nucl. Instr. Meth. A423 (1999) 75ADSGoogle Scholar
  18. [18]
    R.L. Cowin and D L Watson, Nucl. Instr. Meth. A399 (1997) 365ADSGoogle Scholar
  19. [19]
    M Freer et al. Phys. Rev. Lett. 82 (1999) 1383ADSCrossRefGoogle Scholar
  20. [20]
    G. Bizard et al., Proc. Int. Conf. New Nucl. Phys. Techn., Ierapetra, Crete 1991, World Scientific p177Google Scholar
  21. [21]
    E Aker at. al., Nucl. Instr. Meth. Phys. Res. A321(1992)69ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • N. M. Clarke
    • 1
  1. 1.School of Physics and AstronomyUniversity of BirminghamUK

Personalised recommendations