The Nucleus pp 159-168 | Cite as

Collectivity in Medium Mass N≈Z Nuclei: Rotation Induced Octupole Correlations

  • G. de Angelis


Medium and heavy nuclei with N≈Z are of special interest due to the fact that protons and neutrons occupy the same orbitals. This leads to a pronounced reinforcement of shell effects which may in some cases result in shapes not observed hitherto. High spin states of the proton rich nuclei in the mass regions A≈70 and 100 have been studied at the GASP and recently at the EUROBALL γ-ray spectrometers. Of the several nuclei populated in the reactions I will discuss here the high spin states of 105In, 105Sn and 109Te as examples for magnetic rotation and rotation induced octupole collectivity. High spin states in the light Ga nuclei have been investigated in order to search for collective modes based on proton neutron pairing correlations. The absence of the blocking effect for rotational structures in odd-odd N=Z nuclei is proposed as an experimental signature.


Rotational Frequency Positive Parity Quadrupole Deformation Octupole Deformation Negative Parity Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Baldsiefen et al Nucl. Phys.A574 (1994) 521.ADSGoogle Scholar
  2. [2]
    M. Nefgen et al, Nucl. Phys. A595 (1995) 499.ADSGoogle Scholar
  3. [3]
    S. Fraundorf, Nucl. Phys. A557 (1993) 259c.ADSGoogle Scholar
  4. [4]
    D. Bazzacco, Int. Conf on Nuclear Structure at High Angular Momentum, Ottawa, 1992, Vol.2. AECL 10613, p376.Google Scholar
  5. [5]
    E Farnea et al., LNL-INFN(Rep)-095/95, (1994) 189 Nucl. Instr. and Meth. A400 (1997) 87.Google Scholar
  6. [6]
    P. Spolaore et al. Nucl. Instr. and Meth. A359 (1995) 500.ADSGoogle Scholar
  7. [7]
    R Schubart et al, Z. Physik A352 (1995) 373.ADSGoogle Scholar
  8. [8]
    A Gadea et al., Phys. Rev. C55 (1997) Rl.ADSGoogle Scholar
  9. [9]
    D.G. Jenkins et al, Phys. Lett. B428 (1998) 23.ADSGoogle Scholar
  10. [10]
    P.A. Butler and W. Nazarewicz, Rev. Mod. Phys. 68 (1996) 349.ADSCrossRefGoogle Scholar
  11. [11]
    J. Skalski et al., Phys Lett. B238 (1990) 6.ADSGoogle Scholar
  12. [12]
    G.J. Lane et al., Phys. Rev. C57 (1998) R1022.ADSGoogle Scholar
  13. [13]
    E.S. Paul et al., Phys. Rev. C50 (1994) R534.ADSGoogle Scholar
  14. [14]
    S.L. Rugari et al., Phys. Rev. C48 (1993) 2078.ADSGoogle Scholar
  15. [15]
    G. de Angelis et al., 437 (1998) 236.Google Scholar
  16. [16]
    P.A. Butler et al., Nucl. Phys. A533 (1991) 249.ADSGoogle Scholar
  17. [17]
    W. Nazarewicz, G.A. Leander and J. Dudek, Nucl. Phys. A467 (1987) 437.ADSGoogle Scholar
  18. [18]
    W. Nazarewicz et al., Phys. Rev. C45 (1992) 2226.ADSGoogle Scholar
  19. [19]
    W.D. Myers and W.J. Swiatecki, Ann. Phys. (N.Y.), 84 (1969) 395.ADSCrossRefGoogle Scholar
  20. [20]
    W. Satula. R. Wyss and P. Magierski, Nucl. Phys. A578 (1994) 45.ADSGoogle Scholar
  21. [21]
    W. Satula and R. Wyss, B393 (1997) 1.Google Scholar
  22. [22]
    J.A. Sheikh et al, Phys. Rev. Lett. 64 (1990) 376.ADSCrossRefGoogle Scholar
  23. [23]
    G. de Angelis et al., B415 (1997) 217.Google Scholar
  24. [24]
    S. Skoda et al, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • G. de Angelis
    • 1
  1. 1.INFN, Laboratori Nazionali di LegnaroLegnaroItaly

Personalised recommendations