Advertisement

The Nucleus pp 205-211 | Cite as

Applications in Nuclear Structure of a Family of Q-Deformed Algebras

  • A. I. Georgieva
  • H. B. Geyer
  • M. I. Ivanov
  • K. D. Sviracheva
Chapter
  • 153 Downloads

Abstract

We show how the introduction of a single parameter, which defines a family of q-deformed algebras, may be exploited to yield a much richer su q (2) like analytical spectrum than in the standard analysis. Generalizations to a q-deformed su q (3) algebra, which retains links to the standard Elliott model, are also briefly discussed.

Keywords

Commutation Relation Tensor Operator Irreducible Tensor Operator Quantum Group Symmetry High Rank Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Biedenharn L C and Lohe M A, 1995Quantum Group Symmetry and q-Tensor Algebras(Singapore: World Scientific)zbMATHCrossRefGoogle Scholar
  2. [2]
    Raychev P, Roussev R and Smirnov Yu F 1990J. Phys. G: Nucl. Part. Phys16 L137ADSCrossRefGoogle Scholar
  3. [3]
    Gupta R K, Cseh J, Ludu A, Greiner W and Scheid W, 1992J. Phys. G: Nucl. Part. Phys18 L73ADSCrossRefGoogle Scholar
  4. [4]
    Bonatsos D, Faessler A, Raychev P P, Roussev R P and Smirnov Yu F, 1992J. Phys. A: Math. Gen25 L267MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    Del Sol Mesa A, Loyola A, Moshinsky M and Velazquez V 1993J. Phys. A: Math Gen 26 1147ADSzbMATHCrossRefGoogle Scholar
  6. [6]
    Gupta R K and Ludu A 1993Phys. RevC48 593ADSGoogle Scholar
  7. [7]
    Van der Jeugt J 1993J. Math. Phys34 1799MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. [8]
    Quesne C 1993Phys. Lett. B298 344;ibid304 81Google Scholar
  9. [9]
    Smirnov Yu F, Tolstoi V and Kharitonov Yu 1991Soy. J. Nucl. Phys53 593MathSciNetGoogle Scholar
  10. [10]
    Georgieva A 1993Tensorial structure of a q-deformed sp(4, R) superalgebra Preprint IC/93/50 ICTP TriesteGoogle Scholar
  11. [11]
    Georgieva A and Dankova Ts 1994J. Phys. A: Math. Gen27 1251MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. [12]
    Castanos O, Chacon E, Moshinsky M and Quesne C 1985J. Math. Phys26 2107MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. [13]
    Goshen S and Lipkin H J 1968On the application of the group Sp(4) or R(5) to nuclear structure in Spectroscopic and Group Theoretical Methods in Physicseds. W A Friedman and H Feshbach (Amsterdam: North-Holland)Google Scholar
  14. [14]
    Georgieva A I, Goleminov J D, Ivanov M I and Geyer H B 1999J. Phys. A: Math. Gen. (inpress)Google Scholar
  15. [15]
    Elliott J P 1958Proc. Roy. SocA245 128–526ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • A. I. Georgieva
    • 1
  • H. B. Geyer
    • 2
  • M. I. Ivanov
    • 1
  • K. D. Sviracheva
    • 1
  1. 1.Institute of Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of Theoretical PhysicsUniversity of StellenboschStellenboschSouth Africa

Personalised recommendations