Advertisement

Sugars and Proteins: Getting It Together

  • Roslyn M. Bill
  • Leigh Revers
  • Iain B. H. Wilson
Chapter
  • 163 Downloads

Abstract

The discovery of major roles for carbohydrates in biology is far from a recent development. Indeed, our knowledge of the existence of the simple sugars found in natural foodstuffs, such as honey, and their use in the fermenting process is as old as civilised man himself. Moreover, beer- and wine-making is by far the earliest practical exploitation of any biological transformation. However, following the advent of modern science and the triumphant elucidation of the pathways of carbohydrate metabolism during the first half of the twentieth century (and of the defects responsible for many of the associated human disorders, such as galactosaemia, shortly afterwards), sugars were prematurely consigned to the margins of scientific research. By the spring of 1953, amid a flurry of activity, Francis Crick and James Watson had unveiled their proposed structure for DNA,1 heralding an unprecedented sea-change in scientific thinking and providing scientists with a new focus. Unfortunately, in contrast to the ‘life molecule,’ carbohydrates continued to hold little appeal for the vast majority of scientists: after all, their structures and functions were at the time considered well-defined, and their biology, at best, unexciting. As Nathan Sharon, a pioneer in the field of glycoproteins, notably remarked in 1993, carbohydrates were long regarded as ‘second-class citizens’ of the cell.2 This is not to say that researchers failed to appreciate the fundamental importance of carbohydrates in living systems: organisms as diverse as bacteria and humans had been found to metabolise dietary sugars (be they simple sugars such as glucose, sucrose and lactose, or much larger carbohydrates like starch and cellulose) to provide energy, or, in the higher species, to appropriate them for the production of polysaccharides, a class of high molecular-weight carbohydrate polymers.

Keywords

Sialic Acid Enzyme Commission Sugar Chain Protein Glycosylation Baby Hamster Kidney Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Crick FHC. The structure of the hereditary material. Sci Am 1954; 191:54–61.Google Scholar
  2. 2.
    Sharon N, Lis H. Carbohydrates in cell recognition. Sci Am 1993; 268:74–81.Google Scholar
  3. 3.
    Muir H. The nature of the link between protein and carbohydrate of a chondroitin sulphate complex from hyaline cartilage. Biochem J 1958; 69:195–204.PubMedGoogle Scholar
  4. 4.
    Rademacher TW, Parekh RB, Dwek RA. Glycobiology. Annu Rev Biochem 1988; 57:785–838.PubMedGoogle Scholar
  5. 5.
    Montreuil J. Methodologie de la structure et du métabolisme des glycoconjugués (glycoprotéines et glycolipides). Actes du Colloque Internationale du CNRS, Nº 221, Villeneuve d’Ascq, juin 1973. Paris: CNRS, 1973;1:25–29.Google Scholar
  6. 6.
    Morell AG, Irvine RA, Sternlieb I, et al. Physical and chemical studies on caerulo-plasmin. V. Metabolic studies on sialic acid-free ceruloplasmin in vivo. J Biol Chem 1968;243:155–159.PubMedGoogle Scholar
  7. 7.
    Gribben JG, Devereux S, Thomas NSB, et al. Development of antibodies to unprotected glycosylation sites on recombinant human GM-CSF. Lancet 1990; 335:434–437.PubMedGoogle Scholar
  8. 8.
    Karlsson K-A. Microbial recognition of target-cell glycoconjugates. Curr Opin Struct Biol 1995; 5:622–635.PubMedGoogle Scholar
  9. 9.
    Muramatsu T. Carbohydrate signals in metastasis and prognosis of human carcinomas. Glycobiology 1993; 3:294–296.Google Scholar
  10. 10.
    Kannagi R. Carbohydrate-mediated cell adhesion involved in haematogenous metastasis of cancer. Glycoconj J 1997; 14:577–584.PubMedGoogle Scholar
  11. 11.
    McEver RP. Selectin-carbohydrate interactions during inflammation and metastasis. Glycoconj J 1997; 14:585–591.PubMedGoogle Scholar
  12. 12.
    Lee YC. The interface between glycoscience and glycotechnology. Trends Glycosci Glycotechnol 1997; 9:S1–S7.Google Scholar
  13. 13.
    Alavi A, Axford JS, eds. Glycoimmunology. New York: Plenum Press, 1995. (Back N, Cohen IR, Kritchevsky D, et al, eds. Advances in Experimental Medicine and Biology; vol 376).Google Scholar
  14. 14.
    Kobata A. A retrospective and prospective view of glycopathology. Glycoconj J 1998; 15:323–331.PubMedGoogle Scholar
  15. 15.
    Hudson CS. The significance of certain numerical relations in the sugar group. J Am Chem Soc 1909; 31:66–86.Google Scholar
  16. 16.
    Rosanoff MA. On Fischer’s classification of stereo-isomers. J Am Chem Soc 1906; 28:114–121.Google Scholar
  17. 17.
    Koenigs W, Knorr E. Ueber einige Derivate des Traubenzuckers und der Galactose. Chem Ber 1901; 34:957–981.Google Scholar
  18. 18.
    Paulsen H. Advances in selective chemical synthesis of complex oligosaccharides. Angew Chem Int Ed Engl 1982; 21:155–173.Google Scholar
  19. 19.
    Schmidt RR. New methods for the synthesis of glycosides and oligosaccharides—are there alternatives to the Koenigs-Knorr method? Angew Chem Int Ed Engl 1986; 25:212–235.Google Scholar
  20. 20.
    Whitfield DM, Douglas SP. Glycosylation reactions—present status, future directions. Glycoconj J 1996; 13:5–17.PubMedGoogle Scholar
  21. 21.
    Montreuil J. Recent data on the structure of the carbohydrate moiety of glycoproteins. Metabolic and biological implications. Pure Appi Chem 1975; 42:431–477.Google Scholar
  22. 22.
    Kisailus EC, Allen HJ. Nomenclature of monosaccharides, oligosaccharides and glycoconjugates. In: Allen HJ, Kisailus EC, eds. Glycoconjugates: Composition, Structure and Function. New York: Marcel Dekker, 1992:13–32.Google Scholar
  23. 23.
    Vliegenthart JFG, Montreuil J. Primary structure of glycoprotein glycans. In: Montreuil J, Schachter H, Vliegenthart JFG, eds. Glycoproteins. Amsterdam: Elsevier, 1995:13–28. (Neuberger A, van Deenen LLM, eds. New Comprehensive Biochemistry; vol 29a).Google Scholar
  24. 24.
    Joint Recommendations of the Physiological and Biochemical Committees on Protein Nomenclature. J Biol Chem 1908; 4:xlviii–li.Google Scholar
  25. 25.
    Jeanloz RW. The nomenclature of mucopolysaccharides. Arthritis Rheum 1960; 3:233–237.PubMedGoogle Scholar
  26. 26.
    Montreuil J. Primary structure of glycoprotein glycans. Basis for the molecular biology of glycoproteins. Adv Carbohydr Chem Biochem 1980; 37:157–223.PubMedGoogle Scholar
  27. 27.
    Webb EC, ed. Enzyme Nomenclature 1992: Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes. San Diego: Academic Press, Inc., 1992.Google Scholar
  28. 28.
    Kent PW. Some landmarks in carbohydrate biochemistry: 1921–1986. Bull Biochem Soc 1988; 10:4–10.Google Scholar
  29. 29.
    Kent PW. Some landmarks in carbohydrate biochemistry: 1921–1986. Part II. Some biological functions of carbohydrates and their biochemical transformations. Bull Biochem Soc 1988; 11:4–13.Google Scholar
  30. 30.
    Gottschalk A. Historical introduction. In: Gottschalk A, ed. Glycoproteins: Their Composition, Structure and Function. 2nd ed. Amsterdam: Elsevier, 1972:1–23; vol A.Google Scholar
  31. 31.
    Scherer JJ. Ueber den flüssigen Schleimstoff des tierischen Körpers. Ann Chem Pharm 1846;57:196–201.Google Scholar
  32. 32.
    Eichwald E. Beiträge zur Chemie der gewebbildenden Substanzen und ihrer Abkömmlinge. I. Ueber das Mucin, besonders der Weinbergschnecke. Ann Chem Pharm 1865; 134:177–211.Google Scholar
  33. 33.
    Obolenski S. Ueber das Mucin aus der Submaxillardrüse. In: Hoppe-Seyler F, ed. Medizinisch-chemische Untersuchungen. Berlin: A Hirschwald, 1871:590–593; vol 4.Google Scholar
  34. 34.
    Giacosa P. Études sur la composition chimique de l’oeuf et de ses enveloppes chez la grenouille commune. I. Sur l’enveloppe muqueuse de l’oeuf. Hoppe-Seyler’s Z Physiol Chem 1882; 7:40–56.Google Scholar
  35. 35.
    Hammarsten O. Studien über Mucin und mucinähnliche Substanzen. Pflüger’s Arch Physiol 1885; 36:373–456.Google Scholar
  36. 36.
    Hammarsten O. Ueber das Mucin der Submaxillardrüse. I. Darstellung, Zusammensetzung und Eigenschaften des Submaxillarismucins. Hoppe-Seyler’s Z Physiol Chem 1888; 12:163–195.Google Scholar
  37. 37.
    Zanetti CU. Sull’ovimucoide e sopra un nuovo glicoproteide contenuto nel siero di sangue. Ann Chim Farmac 1897; 24:529–534.Google Scholar
  38. 38.
    Müller F. Die Chemie des Mucins und der Mucoide. Sitzungsber Gesell Beförderung Naturwiss Marburg 1898; 6:117–136.Google Scholar
  39. 39.
    Gottschalk A. The Chemistry and Biology of Sialic Acids and Related Substances. Cambridge: Cambridge University Press, 1960.Google Scholar
  40. 40.
    Hoppe-Seyler F. Physiologische Chemie. Berlin: A Hirschwald, 1881:94–95; vol 1.Google Scholar
  41. 41.
    Fischer E. Ueber die Configuration des Traubenzuckers und seiner Isomeren. Chem Ber 1891; 24:1836–1845, 2683–2687.Google Scholar
  42. 42.
    Purdie T, Irvine JC. The alkylation of sugars. J Chem Soc 1903; 1021–1037.Google Scholar
  43. 43.
    Hirst EL. The structure of the normal monosaccharides. Part IV. Glucose. J Chem Soc 1926:350–357.Google Scholar
  44. 44.
    Haworth WN. The Constitution of Sugars. London: E Arnold & Co., 1929.Google Scholar
  45. 45.
    Haworth NW, Lake WHG, Peat S. The configuration of glucosamine (chitosamine). J Chem Soc 1939:271–274.Google Scholar
  46. 46.
    James SP, Smith F, Stacey M, et al. A constitutional synthesis of chondrosamine. Nature 1945; 156:308–309.Google Scholar
  47. 47.
    Levene PA, Mikeska LA, Mori T. On the carbohydrate of thymonucleic acid. J Biol Chem 1929-30; 85:785–787.Google Scholar
  48. 48.
    Schmeideberg O. Ueber die chemische Zusammensetzung des Knorpels. Arch Exp Path Pharmakol 1891; 28:355–404.Google Scholar
  49. 49.
    Levene PA, La Forge FB. On Chondroitin sulphuric acid. J Biol Chem 1913-1915; 15:69–79, 15:155–160; 19:123–130; 20:433–444.Google Scholar
  50. 50.
    Neuberger A. Carbohydrates in proteins. I. The carbohydrate component of crystalline egg albumin. Biochem J 1938; 32:1435–1451.PubMedGoogle Scholar
  51. 51.
    Neuberger A. Early work on the glycoprotein of egg albumin. Trends Biochem Sci 1988; 13:398–399.PubMedGoogle Scholar
  52. 52.
    Blix G. Ueber die Kohlenhydratgruppen des Submaxillarismucins. Hoppe-Seyler’s Z Physiol Chem 1936; 240:43–54.Google Scholar
  53. 53.
    Blix G, Svennerholm L, Werner I. The isolation of chondrosamine from gangliosides and from submaxillary mucin. Acta Chem Scand 1952; 6:358–362.Google Scholar
  54. 54.
    Klenk E. Neuraminsäure, das Spaltprodukt eines neuen Gehirnlipoids. Hoppe-Seyler’s Z Physiol Chem 1941; 268:50–58.Google Scholar
  55. 55.
    Cornforth JW, Firth ME, Gottschalk A. The synthesis of N-acetylneuraminic acid. Biochem J 1958; 68:57–61.PubMedGoogle Scholar
  56. 56.
    Comb DG, Roseman S. Composition and enzymatic synthesis of iV-acetylneuraminic acid (sialic acid). J Am Chem Soc 1958; 80:497–499.Google Scholar
  57. 57.
    Schauer R, Kamerling JP. Chemistry, biochemistry and biology of sialic acids. In: Montreuil J, Vliegenthart JFG, Schachter H, eds. Glycoproteins II. Amsterdam: Elsevier, 1997:241–400. (Neuberger A, van Deenen LLM, eds. New Comprehensive Biochemistry; vol 29b).Google Scholar
  58. 58.
    Gregory JD, Laurent TC, Rodén L. Enzymatic degradation of chondromucoprotein. J Biol Chem 1964; 239:3312–3320.PubMedGoogle Scholar
  59. 59.
    Lindahl U, Rodén L. The chondroitin 4-sulphate-protein linkage. J Biol Chem 1966; 241:2113–2119.PubMedGoogle Scholar
  60. 60.
    Marshall RD, Neuberger A. Carbohydrates in protein. VIII. The isolation of 2-acetamido-1-(1-ß-aspartamido)-1,2-dideoxy-ß-D-glucose from hen’s egg albumin. Biochemistry 1964; 3:1596–1600.PubMedGoogle Scholar
  61. 61.
    Tanaka K, Bertolini M, Pigman W. Serine and threonine glycosidic linkages in bovine submaxillary mucin. Biochem Biophys Res Commun 1964; 16:404–409.PubMedGoogle Scholar
  62. 62.
    Lindahl U, Rodén L. The linkage of heparin to protein. Biochem Biophys Res Commun 1964; 17:254–259.PubMedGoogle Scholar
  63. 63.
    Butler WT, Cunningham LW. Evidence for the linkage of a disaccharide to hydroxy-lysine in tropocollagen. J Biol Chem 1966; 241:3882–3888.PubMedGoogle Scholar
  64. 64.
    Lamport DTA. Hydroxyproline-O-glycosidic linkage of the plant cell wall glycoprotein extensin. Nature 1967; 216:1322–1324.Google Scholar
  65. 65.
    Sentandreu R, Northcote DH. The structure of a glycopeptide isolated from the yeast cell wall. Biochem J 1968; 109:419–432.PubMedGoogle Scholar
  66. 66.
    Lamport DT, Katona L, Roerig S. Galactosylserine in extensin. Biochem J 1973; 133:125–132.PubMedGoogle Scholar
  67. 67.
    Hallgren P, Lundblad A, Svensson S. A new type of carbohydrate-protein linkage in a glycopeptide from normal human urine. J Biol Chem 1975; 250:5312–5314.PubMedGoogle Scholar
  68. 68.
    Torres C-R, Hart GW. Topography and polypeptide distribution of terminal N-acetyl-glucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem 1984; 259:3308–3317.PubMedGoogle Scholar
  69. 69.
    Hase S, Kawabata S, Nishimura H, et al. A new trisaccharide sugar chain linked to a serine residue in bovine blood coagulation factors VII and IX. J Biochem 1988; 104:867–868.PubMedGoogle Scholar
  70. 70.
    Lomako J, Lomako WM, Whelan WJ. A self-glucosylating protein is the primer for rabbit muscle glycogen biosynthesis. FASEB J 1988; 2:3097–3103.PubMedGoogle Scholar
  71. 71.
    Almeida IC, Ferguson MAJ, Schenkman S, et al. Lytic anti α-galactosyl antibodies from patients with chronic Chagas’ disease recognise novel O-linked oligosaccharides on mucin-like glycosylphosphatidylinositol-anchored glycoproteins of Trypanosoma brucei. Biochem J 1994; 304:793–802.PubMedGoogle Scholar
  72. 72.
    Singh DG, Lomako J, Lomako WM, et al. β-Glucosylarginine: A new glucose-protein bond in a self-glucosylating protein from sweet corn. FEBS Lett 1995; 376:61–64.PubMedGoogle Scholar
  73. 73.
    Hirst GK. The agglutination of red cells by allantoic fluid of chick embryos infected with influenza virus. Science 1941; 94:22–23.PubMedGoogle Scholar
  74. 74.
    McClelland L, Hare R. The adsorption of influenza virus by red cells and a new in vitro method of measuring antibodies for influenza virus. Can J Public Health 1941; 32:530–538.Google Scholar
  75. 75.
    Hirst GK. Adsorption of influenza haemagglutinins and virus by red blood cells. J Exp Med 1942; 76:195–209.PubMedGoogle Scholar
  76. 76.
    Burnet FM, Stone JD. The receptor-destroying enzyme of V. cholerae. Aust J Exp Biol Med Sci 1947; 25:227–233.PubMedGoogle Scholar
  77. 77.
    Burnet FM. Mucins and mucoids in relation to influenza virus action. III. Inhibition of virus haemagglutination by glandular mucins. Aust J Exp Biol Med Sci 1948; 26:371–379.PubMedGoogle Scholar
  78. 78.
    Francis T. Dissociation of the haemagglutinating and antibody-measuring capacities of influenza virus. J Exp Med 1947; 85:1–7.PubMedGoogle Scholar
  79. 79.
    McCrae JF. Mucins and mucoids in relation to influenza virus action. II. Isolation and characterization of the serum mucoid inhibitor of heated influenza virus. Aust J Exp Biol Med Sci 1948; 26:355–370.Google Scholar
  80. 80.
    Anderson SG. Mucins and mucoids in relation to influenza virus action. I. Inactivation by RDE and by viruses of the influenza group, of the serum inhibitor of haemagglutination. Aust J Exp Biol Med Sci 1948; 26:347–354.PubMedGoogle Scholar
  81. 81.
    Burnet FM. The initiation of cellular infection by influenza and related viruses. Lancet 1948;254:7–11.Google Scholar
  82. 82.
    Gottschalk A. Neuraminidase: The specific enzyme of influenza virus and Vibrio cholerae. Biochim Biophys Acta 1957; 23:645–646.PubMedGoogle Scholar
  83. 83.
    Gottschalk A. Correlation between composition, structure, shape and function of a salivary mucoprotein. Nature 1960; 186:949–951.PubMedGoogle Scholar
  84. 84.
    Marchesi VT, Tillack TW, Jackson RL, et al. Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane. Proc Natl Acad Sci USA 1972; 69:1445–1449.PubMedGoogle Scholar
  85. 85.
    Springer GF, Nagai Y, Tegtmeyer H. Isolation and properties of human blood-group NN and meconium-Vg antigens. Biochemistry 1966; 5:3254–3272.PubMedGoogle Scholar
  86. 86.
    Markwell M, Paulson J. Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants. Biochemistry 1980; 77:5693–5697.Google Scholar
  87. 87.
    Tavakkol A, Burness ATH. Evidence for a direct role for sialic acid in the attachment of encephalomyocarditis virus to human erythrocytes. Biochemistry 1990; 29:10684–10690.PubMedGoogle Scholar
  88. 88.
    Schultze B, Herrler G. Bovine Coronavirus uses N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. J Gen Virol 1992; 73:901–906.PubMedGoogle Scholar
  89. 89.
    Schultze B, Enjuanes L, Cavanagh D, et al. N-Acetylneuraminic acid plays a critical role for the haemagglutinating activity of avian infectious bronchitis virus and porcine transmissible gastroenteritis virus. Adv Exp Med Biol 1993; 342:305–310.PubMedGoogle Scholar
  90. 90.
    Landsteiner K. Zur Kenntnis der antifermentativen, lytischen und agglutinierenden Wirkungen des Blutserums und der Lymphe. Zentr Bakteriol Parasitenk 1900; 27:357–362.Google Scholar
  91. 91.
    Watkins WM. Biochemistry and genetics of the ABO, Lewis, and P blood group systems. In: Harris H, Hirschhorn K, eds. Advances in Human Genetics. New York: Plenum Press, 1980:1–136, 379–185; vol 10.Google Scholar
  92. 92.
    Greenwell P. Blood group antigens: Molecules seeking a function? Glycoconj J 1997; 14:159–173.PubMedGoogle Scholar
  93. 93.
    Annison EF, Morgan WTJ. Studies in immunochemistry. 10. The isolation and properties of Lewis (Lea) human blood-group substance. Biochem J 1952; 50:460–472.PubMedGoogle Scholar
  94. 94.
    Marr AMS, Donald ASR, Watkins WM, et al. Molecular and genetic aspects of human blood-group Leb specificity. Nature 1967; 215:1345–1349.PubMedGoogle Scholar
  95. 95.
    Mourant AE. A ‘new’ human blood group antigen of frequent occurrence. Nature 1946; 158:237–238.PubMedGoogle Scholar
  96. 96.
    Yamakami K. Discovery of secretion in seminal plasma and saliva. J Immunol 1926; 12:185–189.Google Scholar
  97. 97.
    Putkonen T. Über die gruppenspezifischen Eigenschaften verschiedener Korperflüssigkeiten. Acta Soc Med ‘Duodecim’ Ser A 1930; 14:107–121.Google Scholar
  98. 98.
    Lehrs H. Über gruppenspezifische Eigenschaften des menschlichen Speichels. Z Immunitätsforsch 1930; 66:175–192.Google Scholar
  99. 99.
    Yamamoto F, Clausen H, White T, et al. Molecular genetic basis of the histo-blood group ABO system. Nature 1990; 345:229–233.PubMedGoogle Scholar
  100. 100.
    Watkins WM, Morgan WTJ. Possible genetical pathways for the biosynthesis of blood group mucopolysaccharides. Vox Sang 1959; 4:97–119.PubMedGoogle Scholar
  101. 101.
    Kobata A, Grollman EF, Ginsburg V. An enzymic basis for blood type A in humans. Arch Biochem Biophys 1968; 124:609–612.PubMedGoogle Scholar
  102. 102.
    Kobata A, Grollman EF, Ginsburg V. An enzymatic basis for blood type B in humans. Biochem Biophys Res Commun 1968; 32:272–277.PubMedGoogle Scholar
  103. 103.
    Hearn VM, Smith ZG, Watkins WM. An α-N-acetyl-D-galactosaminyltransferase associated with the human blood-group A character. Biochem J 1968; 109:315–317.PubMedGoogle Scholar
  104. 104.
    Race C, Watkins WM. Properties of an α-D-galactosyltransferase in human tissues obtained in blood-group B donors. Biochem J 1969; 114:86P.PubMedGoogle Scholar
  105. 105.
    Yamamoto F, Hakomori S. Sugar-nucleotide donor specificity of histo-blood group A and B transferases is based on amino acid substitutions. J Biol Chem 1990; 265:19257–19262.PubMedGoogle Scholar
  106. 106.
    Lowe JB. Selectin ligands, leukocyte trafficking, and fucosyltransferase genes. Kidney Int 1997; 51:1418–1426.PubMedGoogle Scholar
  107. 107.
    Rouquier S, Lowe JB, Kelly RJ, et al. Molecular cloning of a human genomic region containing the H blood group α(1,2)fucosyltransferase gene and two H locus-related DNA restriction fragments. Isolation of a candidate for the human Secretor blood group locus. J Biol Chem 1995; 270:4632–4639.PubMedGoogle Scholar
  108. 108.
    Kaneko M, Nishihara S, Shinya N, et al. Wide variety of point mutations in the H gene of Bombay and para-Bombay individuals that inactivate H enzyme. Blood 1997; 90:839–849.PubMedGoogle Scholar
  109. 109.
    Wang B, Koda Y, Soejima M, et al. Two missense mutations of H type α(1,2)fucosyl-transferase gene (FUT1) responsible for para-Bombay phenotype. Vox Sang 1997; 72:31–35 [Correction: Vox Sang 1997;72:147].PubMedGoogle Scholar
  110. 110.
    Koda Y, Soejima M, Johnson PH, et al. Missense mutation of FUT1 and deletion of FUT2 are responsible for Indian Bombay phenotype of ABO blood group system. Biochem Biophys Res Commun 1997; 238:21–25.PubMedGoogle Scholar
  111. 111.
    Nishihara S, Yazawa S, Iwasaki H, et al. α(1,3/1,4)-Fucosyltransferase (FucT-III) gene is inactivated by a single amino acid substitution in Lewis histo-blood type negative individuals. Biochem Biophys Res Commun 1993; 196:624–631.PubMedGoogle Scholar
  112. 112.
    Nishihara S, Narimatsu H, Iwasaki H, et al. Molecular genetic analysis of the human Lewis histo-blood group system. J Biol Chem 1994; 269:29271–29278.PubMedGoogle Scholar
  113. 113.
    Kudo T, Iwasaki H, Nishihara S, et al. Molecular genetic analysis of the human Lewis histo-blood group system. II. Secretor gene inactivation by a novel single missense mutation A385T in Japanese nonsecretor individuals. J Biol Chem 1996; 271:9830–9837.PubMedGoogle Scholar
  114. 114.
    Fukuda M. Possible roles of tumor-associated carbohydrate antigens. Cancer Res 1996; 56:2237–2244.PubMedGoogle Scholar
  115. 115.
    Hakomori S. Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv Cancer Res 1989; 52:257–331.PubMedGoogle Scholar
  116. 116.
    Joziasse DH, Shaper JH, Jabs EW, et al. Characterization of an α1→3-galactosyl-transferase homologue on human chromosome 12 that is organized as a processed pseudogene. J Biol Chem 1991; 266:6991–6998.PubMedGoogle Scholar
  117. 117.
    Shaper NL, Lin S, Joziasse DH, et al. Assignment of two human α-1,3-galactosyl-transferase gene sequences (GGTA1 and GGTA1P) to chromosomes 9q33-q34 and 12q14-q15. Genomics 1992; 12:613–615.PubMedGoogle Scholar
  118. 118.
    Joziasse DH, Shaper JH, van den Eijnden DH, et al. Bovine α1→3-galactosyl-transferase: Isolation and characterization of a cDNA clone. Identification of homologous sequences in human genomic DNA. J Biol Chem 1989; 264:14290–14297.PubMedGoogle Scholar
  119. 119.
    Larsen RD, Rivera-Marrero CA, Ernst LK, et al. Frame-shift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal:ß-D-Gal(1,4)-D-GlcNAc α(1,3)-galactosyltransferase cDNA. J Biol Chem 1990; 265:7055–7061.PubMedGoogle Scholar
  120. 120.
    McKenzie IFC, Osman N, Cohney S, et al. Strategies to overcome the anti-Gala(1–3)-Gal reaction in xenotransplantation. Transplant Proc 1996; 28:537.PubMedGoogle Scholar
  121. 121.
    McKenzie IF, Osman N, Cohney S, et al. Strategies to overcome hyperacute rejection of pig-to-human xenografts. Transplant Proc 1997; 29:973–974.PubMedGoogle Scholar
  122. 122.
    Ashwell G, Morell AG. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol Related Areas Mol Biol 1974; 41:99–128.Google Scholar
  123. 123.
    Gesner BM, Ginsberg V. Effect of glycosidases on the fate of transfused lymphocytes. Proc Natl Acad Sci USA 1964; 52:750–755.PubMedGoogle Scholar
  124. 124.
    Boyd WC, Shapleigh E. Specific precipitating activity of plant agglutinins (lectins). Science 1954; 119:419.PubMedGoogle Scholar
  125. 125.
    Goldstein IJ, Hughes RC, Monsigny M, et al. What should be called a lectin? Nature 1980; 285:66.Google Scholar
  126. 126.
    Barondes SH. Bifunctional properties of lectins: Lectins redefined. Trends Biochem Sci 1988; 13:480–482.PubMedGoogle Scholar
  127. 127.
    Sharon N, Lis H. Lectins as cell recognition molecules. Science 1989; 246:227–234.PubMedGoogle Scholar
  128. 128.
    Drickamer K, Taylor ME. Biology of animal lectins. Annu Rev Cell Biol 1993; 9:237–264.PubMedGoogle Scholar
  129. 129.
    Drickamer K. Molecular structure of animal lectins. In: Fukuda M, Hindsgaul O, eds. Molecular Glycobiology. Oxford: IRL Press/Oxford University Press, 1994:53–87. (Harnes BD, Glover DM, eds. Frontiers in Molecular Biology).Google Scholar
  130. 130.
    Drickamer K. Multiplicity of lectin-carbohydrate interactions. Nature Struct Biol 1995; 2:437–439.PubMedGoogle Scholar
  131. 131.
    Von Figura K, Hasilik A. Lysosomal enzymes and their receptors. Annu Rev Biochem 1986; 55:167–193.Google Scholar
  132. 132.
    Pfeffer SR. Mannose-6-phosphate receptors and their role in targeting proteins to lysosomes. J Membr Biol 1988; 103:7–16.PubMedGoogle Scholar
  133. 133.
    Dahms NM, Lobel P, Kornfeld S. Mannose 6-phosphate receptors and lysosomal enzyme targeting. J Biol Chem 1989; 264:12115–12118.PubMedGoogle Scholar
  134. 134.
    Kornfeld S, Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol 1989; 5:483–525.PubMedGoogle Scholar
  135. 135.
    Kornfeld S. Lysosomal enzyme targeting. Biochem Soc Trans 1990; 18:367–374.PubMedGoogle Scholar
  136. 136.
    Pfeffer SR. Mannose-6-phosphate receptors and their role in protein sorting along the pathway to lysosomes. Cell Biophys 1991; 19:131–140.PubMedGoogle Scholar
  137. 137.
    Lasky LA. Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu Rev Biochem 1995; 64:113–139.PubMedGoogle Scholar
  138. 138.
    McEver RP, Moore KL, Cummings RD. Leukocyte trafficking mediated by selectin-carbohydrate interactions. J Biol Chem 1995; 270:11025–11028.PubMedGoogle Scholar
  139. 139.
    Kansas GS. Selectins and their ligands: Current concepts and controversies. Blood 1996; 88:3259–3287.PubMedGoogle Scholar
  140. 140.
    Barondes SH, Cooper DNW, Gitt MA, et al. Galectins. Structure and function of a large family of animal lectins. J Biol Chem 1994; 269:20807–20810.PubMedGoogle Scholar
  141. 141.
    Barondes SH, Castronovo V, Cooper DNW, et al. Galectins: A family of animal β-galactoside-binding lectins. Cell 1994; 76:597–598.PubMedGoogle Scholar
  142. 142.
    Powell LD, Varki A. I-Type lectins. J Biol Chem 1995; 270:14243–14246.PubMedGoogle Scholar
  143. 143.
    Kelm S, Schauer R, Crocker PR. The sialoadhesins: A family of sialic acid-dependent cellular recognition molecules within the immunoglobulin superfamily. Glycoconj J 1996; 13:913–926.PubMedGoogle Scholar
  144. 144.
    Duguid JP, Smith JW, Dempster G, et al. Non-flagellar filamentous appendages (“fimbriae”) and haemagglutinating activity in Bacterium coli. J Path Bacteriol 1955; 70:335–348.Google Scholar
  145. 145.
    Duguid JP, Gillies RR. Fimbriae and adhesive properties in dysentery bacilli. J Path Bacteriol 1957; 74:397–411.Google Scholar
  146. 146.
    Old DC. Inhibition of the interaction between fimbrial haemagglutinins and erythrocytes by D-mannose and other carbohydrates. J Gen Microbiol 1972; 71:149–157.PubMedGoogle Scholar
  147. 147.
    Duguid JP. The function of bacterial fimbriae. Arch Immunol Therap Exp 1968; 16:173–188.Google Scholar
  148. 148.
    Duguid JP, Clegg S, Wilson MI. The fimbrial and non-fimbrial haemagglutinins of Escherichia coli. J Med Microbiol 1979; 12:213–227.PubMedGoogle Scholar
  149. 149.
    Klemm P. Fimbrial adhesions of Escherichia coli. Rev Infect Dis 1985; 7:321–340.PubMedGoogle Scholar
  150. 150.
    Solter D, Knowles BB. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci USA 1978; 75:5565–5569.PubMedGoogle Scholar
  151. 151.
    Feizi T. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature 1985; 314:53–57.PubMedGoogle Scholar
  152. 152.
    Feizi T. Blood group-related oligosaccharides are ligands in cell-adhesion events. Biochem Soc Trans 1992; 20:274–278.PubMedGoogle Scholar
  153. 153.
    Gooi HC, Feizi T, Kapadia A, et al. Stage-specific embryonic antigen involves α1→3 fucosylated type 2 blood group chains. Nature 1981; 292:156–158.PubMedGoogle Scholar
  154. 154.
    Lloyd KO, Kabat EA, Licerio E. Immunochemical studies on blood groups. 38. Structures and activities of oligosaccharides produced by alkaline degradation of blood-group Lewisa substance. Proposed structure of the carbohydrate chains of human blood-group A, B, H, Lea, and Leb substances. Biochemistry 1968; 7:2976–2990.PubMedGoogle Scholar
  155. 155.
    Marr AM, Donald AS, Morgan WT. Two new oligosaccharides obtained from a Lea-active glycoprotein. Biochem J 1968; 110:789–791.PubMedGoogle Scholar
  156. 156.
    Caputto R, Leloir LF, Cardini CE, et al. Isolation of the coenzyme of the galactose phosphate-glucose phosphate transformation. J Biol Chem 1950; 184:333–350.PubMedGoogle Scholar
  157. 157.
    Leloir LF. The enzymatic transformation of uridine diphosphate glucose into a galactose derivative. Arch Biochem Biophys 1951; 33:186–190.PubMedGoogle Scholar
  158. 158.
    Tabas I, Schlesinger S, Kornfeld S. Processing of high mannose oligosaccharides to form complex type oligosaccharides on the newly synthesized polypeptides of the vesicular stomatitis virus G protein and the IgG heavy chain. J Biol Chem 1978; 253:716–722.PubMedGoogle Scholar
  159. 159.
    Li E, Tabas I, Kornfeld S. The synthesis of complex-type oligosaccharides. I. Structure of the lipid-linked oligosaccharide precursor of the complex-type oligosaccharides of the vesicular stomatitis virus G protein. J Biol Chem 1978; 253:7762–7770.PubMedGoogle Scholar
  160. 160.
    Kornfeld S, Li E, Tabas I. The synthesis of complex-type oligosaccharides. II. Characterization of the processing intermediates in the synthesis of the complex oligosaccharide units of the vesicular stomatitis virus G protein. J Biol Chem 1978; 253:7771–7778.PubMedGoogle Scholar
  161. 161.
    Tabas I, Kornfeld S. The synthesis of complex-type oligosaccharides. III. Identification of an α-D-mannosidase activity involved in a late stage of processing of complex-type oligosaccharides. J Biol Chem 1978; 253:7779–7786.PubMedGoogle Scholar
  162. 162.
    Hemming FW. The role of polyprenol-linked sugars in eukaryotic macromolecular synthesis. Biochem Soc Trans 1977; 5:1682–1687.PubMedGoogle Scholar
  163. 163.
    Hemming FW. Dolichol phosphate, a coenzyme in the glycosylation of animal membrane-bound glycoproteins. Biochem Soc Trans 1977; 5:1223–1231.PubMedGoogle Scholar
  164. 164.
    Hunt LA, Summers DF. Glycosylation of vesicular stomatitis virus glycoprotein in virus-infected HeLa cells. J Virol 1976; 20:646–657.PubMedGoogle Scholar
  165. 165.
    Hunt LA, Etchison JR, Summers DF. Oligosaccharide chains are trimmed during synthesis of the envelope glycoprotein of vesicular stomatitis virus. Proc Natl Acad Sci USA 1978; 75:754–758.PubMedGoogle Scholar
  166. 166.
    Robbins PW, Hubbard SC, Turco SJ, et al. Proposal for a common oligosaccharide intermediate in the synthesis of membrane glycoproteins. Cell 1977; 12:893–900.PubMedGoogle Scholar
  167. 167.
    Turco SJ, Robbins PW. The initial stages of processing of protein-bound oligosaccharides in vitro. J Biol Chem 1979; 254:4560–4567.PubMedGoogle Scholar
  168. 168.
    Hubbard SC, Robbins PW. Synthesis and processing of protein-linked oligosaccharides in vivo. J Biol Chem 1979; 254:4568–4576.PubMedGoogle Scholar
  169. 169.
    Hubbard SC, Robbins PW. Synthesis of the N-linked oligosaccharides of glycoproteins. Assembly of the lipid-linked precursor oligosaccharide and its relation to protein synthesis in vivo. J Biol Chem 1980; 255:11782–11793.PubMedGoogle Scholar
  170. 170.
    Spiro MJ, Spiro RG, Bhoyroo VD. Lipid-saccharide intermediates in glycoprotein biosynthesis. I. Formation of an oligosaccharide-lipid by thyroid slices and evaluation of its role in protein glycosylation. J Biol Chem 1976; 251:6400–6408.PubMedGoogle Scholar
  171. 171.
    Spiro RG, Spiro MJ, Bhoyroo VD. Lipid-saccharide intermediates in glycoprotein biosynthesis. II. Studies on the structure of an oligosaccharide-lipid from thyroid. J Biol Chem 1976; 251:6409–6419.PubMedGoogle Scholar
  172. 172.
    Spiro MJ, Spiro RG, Bhoyroo VD. Lipid-saccharide intermediates in glycoprotein biosynthesis. III. Comparison of oligosaccharide-lipids formed by slices from several tissues. J Biol Chem 1976; 251:6420–6425.PubMedGoogle Scholar
  173. 173.
    Harpaz N, Schachter H. Control of glycoprotein synthesis. IV. Bovine colostrum UDP-N-acetylglucosamine:α-D-mannoside β-2-N-acetylglucosaminyltransferase I. Separation from UDP-N-acetylglucosamine:α-D-mannoside β-2-N-acetylglucosaminyl-transferase II, partial purification and substrate specificity. J Biol Chem 1980; 255:4885–4893.PubMedGoogle Scholar
  174. 174.
    Harpaz N, Schachter H. Control of glycoprotein synthesis. V. Processing of asparagine-linked oligosaccharides by one or more rat liver Golgi α-D-mannosidases dependent on the prior action of UDP-N-acetylglucosamine:α-D-mannoside β-2-N-acetylglucosaminyltransferase I. J Biol Chem 1980; 255:4894–4902.PubMedGoogle Scholar
  175. 175.
    Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 1985; 54:631–664.PubMedGoogle Scholar
  176. 176.
    Behrens NH, Leloir LF. Dolichol monophosphate glucose: An intermediate in glucose transfer in liver. Proc Natl Acad Sci USA 1970; 66:153–159.PubMedGoogle Scholar
  177. 177.
    Parodi AJ, Behrens NH, Leloir LF, et al. The role of polyprenol-bound saccharides as intermediates in glycoprotein synthesis in liver. Proc Natl Acad Sci USA 1972; 69:3268–3272.PubMedGoogle Scholar
  178. 178.
    Behrens NH, Carminarti H, Staneloni RJ, et al. Formation of lipid-bound oligosaccharides containing mannose. Their role in glycoprotein synthesis. Proc Natl Acad Sci USA 1973; 70:3390–3394.PubMedGoogle Scholar
  179. 179.
    Leloir LF. The role of dolichol in protein glycosylation. Adv Exp Med Biol 1977; 83:9–19.PubMedGoogle Scholar
  180. 180.
    Gregory JD, Jeanloz RW, eds. Glycoconjugate Research. Proceedings of the Fourth International Symposium on Glycoconjugates. New York: Academic Press, 1979; vol 1.Google Scholar
  181. 181.
    Gregory JD, Jeanloz RW, eds. Glycoconjugate Research. Proceedings of the Fourth International Symposium on Glycoconjugates. New York: Academic Press, 1979; vol 2.Google Scholar
  182. 182.
    Elbein AD. Glycosylation inhibitors for N-linked glycoproteins. Methods Enzymol 1987; 138:661–709.PubMedGoogle Scholar
  183. 183.
    Elbein AD. Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annu Rev Biochem 1987; 56:497–534.PubMedGoogle Scholar
  184. 184.
    Elbein AD. Glycosidase inhibitors: Inhibitors of N-linked oligosaccharide processing. FASEB J 1991; 5:3055–3063.PubMedGoogle Scholar
  185. 185.
    Kaushal GP, Elbein AD. Glycosidase inhibitors in study of glycoconjugates. Methods Enzymol 1994; 230:316–329.PubMedGoogle Scholar
  186. 186.
    Huffaker TC, Robbins PW. Temperature-sensitive yeast mutants deficient in asparagine-linked glycosylation. J Biol Chem 1982; 257:3203–3210.PubMedGoogle Scholar
  187. 187.
    Huffaker TC, Robbins PW. Yeast mutants deficient in protein glycosylation. Proc Natl Acad Sci USA 1983; 80:7466–7470.PubMedGoogle Scholar
  188. 188.
    Orlean P. Biogenesis of yeast wall and surface components. In: Pringle JR, Broach JR, Jones EW, eds. The Molecular and Cellular Biology of the Yeast Saccharomyces. Cell Cycle and Cell Biology. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1997:229–362.Google Scholar
  189. 189.
    Stanley P, Narasimhan S, Siminovitch L, et al. Chinese hamster ovary cells selected for resistance to the cytotoxicity of phytohemagglutinin are deficient in a UDP-N-acetyl-glucosamine:glycoprotein N-acetylglucosaminyltransferase activity. Proc Natl Acad Sci USA 1975; 72:3323–3327.PubMedGoogle Scholar
  190. 190.
    Stanley P. Glycosylation engineering. Glycobiology 1992; 2:99–107.PubMedGoogle Scholar
  191. 191.
    Stanley P, Ioffe E. Glycosyltransferase mutants: Key to new insights in glycobiology. FASEB J 1995;9:1436–1444.PubMedGoogle Scholar
  192. 192.
    Stanley P, Raju TS, Bhaumik M. CHO cells provide access to novel N-glycans and developmentally regulated glycosyltransferases. Glycobiology 1996; 6:695–699.PubMedGoogle Scholar
  193. 193.
    Tanner W, Lehle L. Protein glycosylation in yeast. Biochim Biophys Acta 1987; 906:81–99.PubMedGoogle Scholar
  194. 194.
    Kukuruzinska MA, Bergh ML, Jackson BJ. Protein glycosylation in yeast. Annu Rev Biochem 1987; 56:915–944.PubMedGoogle Scholar
  195. 195.
    Herscovics A, Orlean P. Glycoprotein biosynthesis in yeast. FASEB J 1993; 7:540–550.PubMedGoogle Scholar
  196. 196.
    Schachter H. Biosynthetic controls that determine the branching and microhetero-geneity of protein-bound oligosaccharides. Adv Exp Med Biol 1986; 205:53–85.PubMedGoogle Scholar
  197. 197.
    Schachter H. The ‘yellow brick road’ to branched complex N-glycans. Glycobiology 1991; 1:453–461.PubMedGoogle Scholar
  198. 198.
    Schachter H. Biosynthesis. 2c. Glycosyltransferases involved in the synthesis of the N-glycan antennae. In: Montreuil J, Vliegenthart JFG, Schachter H, eds. Glycoproteins. Amsterdam: Elsevier, 1995:153–199. (Neuberger A, van Deenen LLM, eds. New Comprehensive Biochemistry; vol 29a).Google Scholar
  199. 199.
    Schachter H. Biosynthesis. 4b. Substrate level controls for N-glycan assembly. In: Montreuil J, Vliegenthart JFG, Schachter H, eds. Glycoproteins. Amsterdam: Elsevier, 1995:281–286. (Neuberger A, van Deenen LLM, eds. New Comprehensive Biochemistry; vol 29a).Google Scholar
  200. 200.
    Takasaki S, Mizuochi T, Kobata A. Hydrazinolysis of asparagine-linked sugar chains to produce free oligosaccharides. Methods Enzymol 1982; 83:263–268.PubMedGoogle Scholar
  201. 201.
    Patel TP, Parekh RB. Release of oligosaccharides from glycoproteins by hydrazinolysis. Methods Enzymol 1994; 230:57–66.PubMedGoogle Scholar
  202. 202.
    Spiro RG. Study of the carbohydrates of glycoproteins. Methods Enzymol 1970; 28:3–43.Google Scholar
  203. 203.
    Tarentino AL, Maley F. Purification and properties of an endo-β-N-acetyl-glucosaminidase from Streptomyces griseus. J Biol Chem 1974; 249:811–817.PubMedGoogle Scholar
  204. 204.
    O’Neill RA. Enzymatic release of oligosaccharides from glycoproteins for chromatographic and electrophoretic analysis. J Chromatography A 1996; 720:201–215.Google Scholar
  205. 205.
    Aub JC, Tieslau C, Lankester A. Reactions of normal and tumour cell surfaces to enzymes. I. Wheat-germ lipase and associated mucopolysaccharides. Proc Natl Acad Sci USA 1963; 50:613–619.PubMedGoogle Scholar
  206. 206.
    Burger MM, Goldberg AR. Identification of a tumour-specific determinant on neoplastic cell surfaces. Proc Natl Acad Sci USA 1967; 57:359–366.PubMedGoogle Scholar
  207. 207.
    Inbar M, Sachs L. Structural difference in sites on the surface membrane of normal and transformed cells. Nature 1969; 223:710–712.PubMedGoogle Scholar
  208. 208.
    Inbar M, Sachs L. Interaction of the carbohydrate-binding protein concanavalin A with normal and transformed cells. Proc Natl Acad Sci USA 1969; 63:1418–1425.PubMedGoogle Scholar
  209. 209.
    Meezan E, Wu HC, Black PH, et al. Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. II. Separation of glycoproteins and glycopeptides by Sephadex chromatography. Biochemistry 1969; 8:2518–2524.PubMedGoogle Scholar
  210. 210.
    Buck CA, Glick MC, Warren L. Glycopeptides from the surface of control and virus-transformed cells. Science 1971; 172:169–171.PubMedGoogle Scholar
  211. 211.
    Warren L, Critchley D, Macpherson I. Surface glycoproteins and glycolipids of chicken embryo cells transformed by a temperature-sensitive mutant of Rous sarcoma virus. Nature 1972; 235:275–278.PubMedGoogle Scholar
  212. 212.
    Yamashita K, Ohkura T, Tachibana Y, et al. Comparative study of the oligosaccharides released from baby hamster kidney cells and their polyoma transformant by hydrazinolysis. J Biol Chem 1984; 259:10834–10840.PubMedGoogle Scholar
  213. 213.
    Pierce M, Arango J. Rous sarcoma virus-transformed baby hamster kidney cells express higher levels of asparagine-linked tri-and tetraantennary glycopeptides containing [GlcNAc-β(1,6)Man-α(1,6)Man] and poly-N-acetyllactosamine sequences than baby hamster kidney cells. J Biol Chem 1986; 261:10772–10777.PubMedGoogle Scholar
  214. 214.
    Kobata A. Structural changes induced in the sugar chains of glycoproteins by malignant transformation of producing cells and their clinical application. Biochimie 1988; 70:1575–1585.PubMedGoogle Scholar
  215. 215.
    Yamashita K, Tachibana Y, Ohkura T, et al. Enzymatic basis for the structural changes of asparagine-linked sugar chains of membrane glycoproteins of baby hamster kidney cells induced by polyoma transformation. J Biol Chem 1985; 260:3963–3969.PubMedGoogle Scholar
  216. 216.
    Hiraizumi S, Takasaki S, Shiroki K, et al. Transfection with fragments of the adenovirus 12 gene induces tumorigenicity-associated alteration of N-linked sugar chains in rat cells. Arch Biochem Biophys 1990; 280:9–19.PubMedGoogle Scholar
  217. 217.
    Dennis JW, Laferté S, Waghorne C, et al. β1–6 Branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 1987; 236:582–585.PubMedGoogle Scholar
  218. 218.
    Dennis JW, Laferté S. Oncodevelopmental expression of-GlcNAcβl-6Manα1–6-Manβ1-branched asparagine-linked oligosaccharides in murine tissues and human breast carcinomas. Cancer Res 1989; 49:945–950.PubMedGoogle Scholar
  219. 219.
    Fernandes B, Sagman U, Auger M, et al. β1–6 Branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia. Cancer Res 1991; 51:718–723.PubMedGoogle Scholar
  220. 220.
    Kang R, Saito H, Ihara Y, et al. Transcriptional regulation of the N-acetylglucosaminyl-transferase V gene in human bile duct carcinoma cells (HuCC-T1) is mediated by Ets-1. J Biol Chem 1996; 271:26706–26712.PubMedGoogle Scholar
  221. 221.
    Buckhaults P, Chen L, Fregien N, et al. Transcriptional regulation of N-acetyl-glucosaminyltransferase V by the src oncogene. J Biol Chem 1997; 272:19575–19581.PubMedGoogle Scholar
  222. 222.
    Pierce M, Buckhaults P, Chen L, et al. Regulation of N-acetylglucosaminyl-transferase V and Asn-linked oligosaccharide β(1,6) branching by a growth factor signaling pathway and effects on cell adhesion and metastatic potential. Glycoconj J 1997; 14:623–630.PubMedGoogle Scholar
  223. 223.
    Parekh RB, Dwek RA, Sutton BJ, et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 1985; 316:452–457.PubMedGoogle Scholar
  224. 224.
    Axford JS. The importance of oligosaccharides to rheumatic disease: A personal perspective. Glycoconj J 1997; 14:863–866.PubMedGoogle Scholar
  225. 225.
    Sadler JE, Beyer TA, Oppenheimer CL, et al. Purification of mammalian glycosyl-transferases. Methods Enzymol 1982; 83:458–514.PubMedGoogle Scholar
  226. 226.
    Nunez HA, Barker R. Enzymatic synthesis and carbon-13 nuclear magnetic resonance conformational studies of disaccharides containing β-d-galactopyranosyl and β-d-[1-13C]galactopyranosyl residues. Biochemistry 1980; 19:489–495.PubMedGoogle Scholar
  227. 227.
    Shaper NL, Shaper JH, Meuth JL, et al. Bovine galactosyltransferase: Identification of a clone by direct immunological screening of a cDNA expression library. Proc Natl Acad Sci USA 1986; 83:1573–1577.PubMedGoogle Scholar
  228. 228.
    Narimatsu H, Sinha S, Brew K, et al. Cloning and sequencing of cDNA of bovine N-acetylglucosamine (β1–4)galactosyltransferase. Proc Natl Acad Sci USA 1986; 83:4720–4724.PubMedGoogle Scholar
  229. 229.
    Appert HE, Rutherford TJ, Tarr GE, et al. Isolation of a cDNA coding for human galactosyltransferase. Biochem Biophys Res Commun 1986; 139:163–168.PubMedGoogle Scholar
  230. 230.
    Narimatsu H. Recent progress in molecular cloning of glycosyltransferase genes of eukaryotes. Microbiol Immunol 1994; 38:489–504.PubMedGoogle Scholar
  231. 231.
    Field MC, Wainwright LJ. Molecular cloning of eukaryotic glycoprotein and glycolipid glycosyltransferases: A survey. Glycobiology 1995; 5:463–472 [Correction: Glycobiology 6:5].PubMedGoogle Scholar
  232. 232.
    Fukuda M, Bierhuizen MFA, Nakayama J. Expression cloning of glycosyltransferases. Glycobiology 1996; 6:683–689.PubMedGoogle Scholar
  233. 233.
    Seed B, Aruffo A. Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselection procedure. Proc Natl Acad Sci USA 1987; 84:3365–3369.PubMedGoogle Scholar
  234. 234.
    Aruffo A, Seed B. Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc Natl Acad Sci USA 1987; 84:8573–8577.PubMedGoogle Scholar
  235. 235.
    Rajan VP, Larsen RD, Ajmera S, et al. A cloned human DNA restriction fragment determines expression of a GDP-L-fucose:β-D-galactoside 2-α-L-fucosyltransferase in transfected cells. Evidence for isolation and transfer of the human H blood group locus. J Biol Chem 1989;264:11158–11167.PubMedGoogle Scholar
  236. 236.
    Ernst LK, Rajan VP, Larsen RD, et al. Stable expression of blood group H determinants and GDP-L-fucose:β-D-galactoside 2-α-L-fucosyltransferase in mouse cells after transfection with human DNA. J Biol Chem 1989; 264:3436–3447.PubMedGoogle Scholar
  237. 237.
    Larsen RD, Rajan VP, Ruff MM, et al. Isolation of a cDNA encoding a murine UDP-galactose:β-D-galactosyl-1,4-N-acetyl-D-glucosaminide α-1,3-galactosyltransferase: Expression cloning by gene transfer. Proc Natl Acad Sci USA 1989; 86:8227–8231.PubMedGoogle Scholar
  238. 238.
    Bierhuizen M, Mattei MG, Fukuda M. Expression of the developmental I antigen by a cloned human cDNA encoding a member of a β-1,6-N-acetylglucosaminyltransferase gene family. Genes Dev 1993; 7:468–478.PubMedGoogle Scholar
  239. 239.
    Bierhuizen M, Fukuda M. Expression cloning of a cDNA encoding UDP-GlcNAc: Galβ1–3-GalNAc-R (GlcNAc to GalNAc) β1–6GlcNAc transferase by gene transfer into CHO cells expressing polyoma large tumor antigen. Proc Natl Acad Sci USA 1992; 89:9326–9330.PubMedGoogle Scholar
  240. 240.
    Nakayama J, Fukuda MN, Fredette B, et al. Expression cloning of a human polysialyl-transferase that forms the polysialylated neural cell adhesion molecule present in embryonic brain. Proc Natl Acad Sci USA 1995; 92:7031–7035.PubMedGoogle Scholar
  241. 241.
    Kobata A. The carbohydrates of glycoproteins. In: Ginsberg V, Robbins PW, eds. Biology of Carbohydrates. 2nd ed. New York: John Wiley & Sons, 1984:87–161; vol 2.Google Scholar
  242. 242.
    Cumming DA. Glycosylation of recombinant protein therapeutics: Control and functional implications. Glycobiology 1991; 1:115–130.PubMedGoogle Scholar
  243. 243.
    Cumming DA. Structural heterogeneity and functional differentiation: A rationale for glycosylation analysis of recombinant therapeutics. Semin Cell Biol 1991; 2:273–279.PubMedGoogle Scholar
  244. 244.
    dimming DA. Physiological relevance of protein glycosylation. Dev Biol Standard 1992; 76:83–94.Google Scholar
  245. 245.
    Yamashita K, Hitoi A, Tateishi N, et al. Organ-specific difference in the sugar chains of γ-glutamyltranspeptidase. Arch Biochem Biophys 1983; 225:993–996.PubMedGoogle Scholar
  246. 246.
    Rudd PM, Woods RJ, Wormald MR, et al. The effects of variable glycosylation on the functional activities of ribonuclease, plasminogen and tissue plasminogen activator. Biochim Biophys Acta 1995; 1248:1–10.PubMedGoogle Scholar
  247. 247.
    Rudd PM, Dwek RA. Glycosylation: Heterogeneity and the 3D structure of proteins. Crit Rev Biochem Mol Biol 1997; 32:1–100.PubMedGoogle Scholar
  248. 248.
    Parekh RB, Dwek RA, Thomas JR, et al. Cell-type-specific and site-specific N-glycosylation of type I and type II human tissue plasminogen activator. Biochemistry 1989; 28:7644–7662.PubMedGoogle Scholar
  249. 249.
    Parekh RB, Dwek RA, Rudd PM, et al. N-Glycosylation and in vitro enzymatic activity of human recombinant tissue plasminogen activator expressed in Chinese hamster ovary cells and a murine cell line. Biochemistry 1989; 28:7670–7679.PubMedGoogle Scholar
  250. 250.
    Friedman E. The future of glycobiology. Bio/Technology 1991; 9:610–611.Google Scholar
  251. 251.
    Rudd PM, Joao HC, Coghill E, et al. Glycoforms modify the dynamic stability and functional activity of an enzyme. Biochemistry 1994; 33:17–22.PubMedGoogle Scholar
  252. 252.
    Baenziger JU, Green ED. Pituitary glycoprotein hormone oligosaccharides. Structure, synthesis and function of the asparagine-linked oligosaccharides on lutropin, follitropin and thyrotropin. Biochim Biophys Acta 1988; 947:287–306.PubMedGoogle Scholar
  253. 253.
    Calvo FO, Ryan RJ. Inhibition of adenylyl cyclase activity in rat corpora luteal tissue by glycopeptides of human chorionic gonadotropin and the α-subunit of human chorionic gonadotropin. Biochemistry 1985; 24:1953–1959.PubMedGoogle Scholar
  254. 254.
    Hart GW, Kreppel LK, Comer FI, et al. O-GlcNAcylation of key nuclear and cytoskeletal proteins: reciprocity with O-phosphorylation and putative roles in protein multimerization. Glycobiology 1996; 6:711–716.PubMedGoogle Scholar
  255. 255.
    Hart GW. Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu Rev Biochem 1997; 66:315–335.PubMedGoogle Scholar
  256. 256.
    Alonso MD, Lomako J, Lomako WM, et al. A new look at the biogenesis of glycogen. FASEB J 1995; 9:1126–1137.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Roslyn M. Bill
    • 1
  • Leigh Revers
    • 2
  • Iain B. H. Wilson
    • 3
  1. 1.The Lundberg LaboratoryUniversity of GöteborgGöteborgSweden
  2. 2.Department of Biochemistry ResearchThe Hospital for Sick ChildrenTorontoCanada
  3. 3.Department of Biochemistry ResearchUniversity of DundeeDundeeScotland

Personalised recommendations