Advertisement

Sugars And Proteins: How They Get It Together

  • Roslyn M. Bill
  • Leigh Revers
  • Iain B. H. Wilson
Chapter
  • 155 Downloads

Abstract

Diversity is a common theme in biology. The propensity for living organisms to evolve, to produce countless successful species which occupy every conceivable niche in the biosphere is mirrored at the molecular level by the myriad of specialised genes and proteins which govern the life of the cell. With this in mind, it is hardly surprising to find that carbohydrates, too, are subject to a wealth of variation within living systems. Indeed, as we have already seen in the preceding chapters, sugars can form more sophisticated, information-rich structures than either nucleic acids or proteins. How then are these species synthesised?

Keywords

Keratan Sulphate Sugar Chain Protein Glycosylation Mannose Residue Bovine Colostrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ichikawa Y. Glycozymes: Tools for oligosaccharide synthesis and targets for drug development. Trends Glycosci Glycotechnol 1997; 9 Suppl:S47–S59.Google Scholar
  2. 2.
    Joziasse DH. Mammalian glycosyltransferases: Genomic organization and protein structure. Glycobiology 1992; 2:271–277.PubMedGoogle Scholar
  3. 3.
    Paulson JC, Colley KJ. Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J Biol Chem 1989; 264:17615–17618.PubMedGoogle Scholar
  4. 4.
    Edbrooke MR, Britten CJ, Kelly VA, et al. The ±(1–3)-fucosyltransferases come of age. Biochem Soc Trans 1997; 25:880–886.PubMedGoogle Scholar
  5. 5.
    Hirschberg CB. Transporters of nucleotide sugars, nucleotide sulfate and ATP in the Golgi apparatus membrane: Where next? Glycobiology 1997; 7:169–171.PubMedGoogle Scholar
  6. 6.
    Greenwell P, Yates AD, Watkins WM. UDP-N-acetyl-D-galactosamine as a donor substrate for the glycosyltransferase encoded by the B gene at the human blood group ABO locus. Carbohydr Res 1986; 149:149–170.PubMedGoogle Scholar
  7. 7.
    Palcic MM, Hindsgaul O. Flexibility in the donor substrate specificity of β1,4-galactosyltransferase: Application in the synthesis of complex carbohydrates. Glycobiology 1991; 1:205–209.PubMedGoogle Scholar
  8. 8.
    Schachter H, Rodén L. The biosynthesis of animal glycoproteins. In: Fishman WH, ed. Metabolic Conjugation and Metabolic Hydrolysis. New York: Academic Press, 1970:1–149; vol 3.Google Scholar
  9. 9.
    Schachter H. Molecular cloning of glycosyltransferase genes. In: Fukuda M, Hindsgaul O, eds. Molecular Glycobiology. Oxford: IRL Press/Oxford University Press, 1994:88–162. (Harnes BD, Glover DM, eds. Frontiers in Molecular Biology).Google Scholar
  10. 10.
    Kukowska-Latallo JF, Larsen RD, Nair RP, et al. A cloned human cDNA determines expression of a mouse stage-specific embryonic antigen and the Lewis blood group α(1,3/1,4)fucosyltransferase. Genes Dev 1990; 4:1288–1303.PubMedGoogle Scholar
  11. 11.
    Munro S. Sequences within and adjacent to the transmembrane segment of α-2,6-sialyl-transferase specify Golgi retention. EMBO J 1991; 10:3577–3588.PubMedGoogle Scholar
  12. 12.
    Wong SH, Low SH, Hong W. The 17-residue transmembrane domain of β-galactoside α2,6-sialyltransferase is sufficient for Golgi retention. J Cell Biol 1992; 117:245–258.PubMedGoogle Scholar
  13. 13.
    Aoki D, Lee N, Yamaguchi N, et al. Golgi retention of a trans-Golgi membrane protein, galactosyltransferase, requires cysteine and histidine residues within the membrane-anchoring domain. Proc Natl Acad Sci USA 1992; 89:4319–4323.PubMedGoogle Scholar
  14. 14.
    Teasdale RD, D’Agostaro G, Gleeson PA. The signal for Golgi retention of bovine β1,4-galactosyltransferase is in the transmembrane domain. J Biol Chem 1992; 267:4084–4096 [Correction: J Biol Chem 1992;267:13113].PubMedGoogle Scholar
  15. 15.
    Tang BL, Wong SH, Low SH, et al. The transmembrane domain of N-acetyl-glucosaminyltransferase I contains a Golgi retention signal. J Biol Chem 1992; 267:10122–10126.PubMedGoogle Scholar
  16. 16.
    Dahdal RY, Colley KJ. Specific sequences in the signal anchor of the β-galactoside α-2,6-sialyltransferase are not essential for Golgi localization. Membrane flanking sequences may specify Golgi retention. J Biol Chem 1993; 268:26310–26319.PubMedGoogle Scholar
  17. 17.
    Nilsson T, Lucocq JM, Mackay D, et al. The membrane spanning domain of β-1,4-galactosyltransferase specifies trans-Golgi localization. EMBO J 1991; 10:3567–3575.PubMedGoogle Scholar
  18. 18.
    Nilsson T, Warren G. Retention and retrieval in the endoplasmic reticulum and the Golgi apparatus. Curr Opin Cell Biol 1994; 6:517–521.PubMedGoogle Scholar
  19. 19.
    Tang BL, Low SH, Wong SH, et al. Cell type differences in Golgi retention signals for transmembrane proteins. Eur J Cell Biol 1995; 66:365–374.PubMedGoogle Scholar
  20. 20.
    Nilsson T, Slusarewicz P, Hoe MH, et al. Kin recognition. A model for the retention of Golgi enzymes. FEBS Lett 1993; 330:1–4.PubMedGoogle Scholar
  21. 21.
    Nilsson T, Hoe MH, Slusarewicz P, et al. Kin recognition between medial-Golgi enzymes in HeLa cells. EMBO J 1994; 13:562–574.PubMedGoogle Scholar
  22. 22.
    Nilsson T, Rabouille C, Hui N, et al. The role of the membrane-spanning domain and stalk region of N-acetylglucosaminyltransferase I in retention, kin recognition and structural maintenance of the Golgi apparatus in HeLa cells. J Cell Sci 1996; 109:1975–1989.PubMedGoogle Scholar
  23. 23.
    Colley KJ. Golgi localization of glycosyltransferases: More questions than answers. Glycobiology 1997; 7:1–13.PubMedGoogle Scholar
  24. 24.
    Nagai K, Ihara Y, Wada Y, et al. N-Glycosylation is requisite for the enzyme activity and Golgi retention of N-acetylglucosaminyltransferase III. Glycobiology 1997; 7:769–776.PubMedGoogle Scholar
  25. 25.
    Schachter H. Biosynthetic controls that determine the branching and microhetero-geneity of protein-bound oligosaccharides. Biochem Cell Biol 1986; 64:163–181.PubMedGoogle Scholar
  26. 26.
    Schachter H. The ‘yellow brick road’ to branched complex N-glycans. Glycobiology 1991; 1:453–461.PubMedGoogle Scholar
  27. 27.
    Pâquet MR, Narasimhan S, Schachter H, et al. Branch specificity of purified rat liver Golgi UDP-galactose:N-acetylglucosamine β-l,4-galactosyltransferase. Preferential transfer of of galactose on the GlcNAc-β1,2-Man-α1,3-branch of a complex biantennary Asn-linked oligosaccharide. J Biol Chem 1984; 259:4716–4721PubMedGoogle Scholar
  28. 28.
    Blanken WM, van Vliet A, van den Eijnden DH. Branch specificity of bovine colostrum and calf thymus UDP-Gal:N-acetylglucosaminide β-1,4-galactosyl-transferase. J Biol Chem 1984; 259:15131–15135.PubMedGoogle Scholar
  29. 29.
    Joziasse DH, Schiphorst WE, van den Eijnden DH, et al. Branch specificity of bovine colostrum CMP-sialic acid:N-acetyllactosaminide α2→6-sialyltransferase. Interaction with biantennary oligosaccharides and glycopeptides of N-glycosylproteins. J Biol Chem 1985; 260:714–719.PubMedGoogle Scholar
  30. 30.
    Joziasse DH, Schiphorst WE, van den Eijnden DH, et al. Branch specificity of bovine colostrum CMP-sialic acid:Galβ1→4GlcNAc-R β2→6-sialyltransferase. Sialylation of bi-, tri-, and tetraantennary oligosaccharides and glycopeptides of the N-acetyl-lactosamine type. J Biol Chem 1987; 262:2025–2033.PubMedGoogle Scholar
  31. 31.
    Paulson JC, Weinstein J, Schauer A. Tissue-specific expression of sialyltransferases. J Biol Chem 1989; 264:10931–10934.PubMedGoogle Scholar
  32. 32.
    O’Hanlon TP, Lau KM, Wang XC, et al. Tissue-specific expression of β-galactoside α-2,6-sialyltransferase. Transcript heterogeneity predicts a divergent polypeptide. J Biol Chem 1989; 264:17389–17394.Google Scholar
  33. 33.
    Brockhausen I, Matta KL, Orr J, et al. Mucin synthesis. UDP-GlcNAc:GalNAc-R β3-N-acetylglucosaminyltransferase and UDP-GlcNAc:GlcNAc β1–3GalNAc-R (GlcNAc to GalNAc) β6-N-acetylglucosaminyltransferase from pig and rat colon mucosa. Biochemistry 1985; 24:1866–1874.PubMedGoogle Scholar
  34. 34.
    Lo NW, Lau JT. Transcription of the β-galactoside α2,6-sialyltransferase gene in B lymphocytes is directed by a separate and distinct promoter. Glycobiology 1996; 6:271–279.PubMedGoogle Scholar
  35. 35.
    Wang X, O’Hanlon TP, Young RF, et al. Rat β-galactoside α2,6-sialyltransferase genomic organization: Alternate promoters direct the synthesis of liver and kidney transcripts. Glycobiology 1990; 1:25–31.PubMedGoogle Scholar
  36. 36.
    Shaper JH, Harduin-Lepers A, Rajput B, et al. Murine β1,4-galactosyltransferase. Analysis of a gene that serves both a housekeeping and a cell specific function. Adv Exp Med Biol 1995; 376:95–104.PubMedGoogle Scholar
  37. 37.
    Rajput B, Shaper NL, Shaper JH. Transcriptional regulation of murine βl,4-galactosyl-transferase in somatic cells. Analysis of a gene that serves both a housekeeping and a mammary gland-specific function. J Biol Chem 1996; 271:5131–5142.PubMedGoogle Scholar
  38. 38.
    Harduin-Lepers A, Shaper JH, Shaper NL. Characterization of two cis-regulatory regions in the murine β1,4-galactosyltransferase gene. Evidence for a negative regulatory element that controls initiation at the proximal site. J Biol Chem 1993; 268:14348–14359.PubMedGoogle Scholar
  39. 39.
    Mollicone R, Candelier JJ, Mennesson B, et al. Five specificity patterns of (1→3)-α-L-fucosyltransferase activity defined by use of synthetic oligosaccharide acceptors. Differential expression of the enzymes during human embryonic development and in adult tissues. Carbohydr Res 1992; 228:265–276.PubMedGoogle Scholar
  40. 40.
    Mollicone R, Gibaud A, Francois A, et al. Acceptor specificity and tissue distribution of three human α-3-fucosyltransferases. Eur J Biochem 1990; 191:169–176.PubMedGoogle Scholar
  41. 41.
    Macher BA, Holmes EH, Swiedler SJ, et al. Human α1–3-fucosyltransferases. Glycobiology 1991; 1:577–584.PubMedGoogle Scholar
  42. 42.
    Gentzsch M, Tanner W. Protein-O-glycosylation in yeast: Protein-specific mannosyl-transferases. Glycobiology 1997; 7:481–486.PubMedGoogle Scholar
  43. 43.
    Clausen H, Bennett EP. A family of UDP-GalNAc:polypeptide N-acetylgalactos-aminyltransferases control the initiation of mucin-type O-linked glycosylation. Glycobiology 1996; 6:635–646.PubMedGoogle Scholar
  44. 44.
    Misago M, Liao YF, Kudo S, et al. Molecular cloning and expression of cDNAs encoding human α-mannosidase II and a previously unrecognized α-mannosidase IIX isozyme. Proc Natl Acad Sci USA 1995; 92:11766–11770.PubMedGoogle Scholar
  45. 45.
    Rademacher TW, Parekh RB, Dwek RA. Glycobiology. Annu Rev Biochem 1988; 57:785–838.PubMedGoogle Scholar
  46. 46.
    Feizi T. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature 1985; 314:53–57.PubMedGoogle Scholar
  47. 47.
    Kobata A. Structural changes induced in the sugar chains of glycoproteins by malignant transformation of producing cells and their clinical application. Biochimie 1988; 70:1575–1585.PubMedGoogle Scholar
  48. 48.
    Hakomori S. Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)-lipid metabolism. Cancer Res 1996; 56:5309–5318.PubMedGoogle Scholar
  49. 49.
    Hakomori S. Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv Cancer Res 1989; 52:257–331.PubMedGoogle Scholar
  50. 50.
    Schachter H. Biosynthesis. 4b. Substrate level controls for N-glycan assembly. In: Montreuil J, Vliegenthart JFG, Schachter H, eds. Glycoproteins. Amsterdam: Elsevier, 1995:281–286. (Neuberger A, van Deenen LLM, eds. New Comprehensive Biochemistry; vol 29a).Google Scholar
  51. 51.
    Hsieh P, Rosner MR, Robbins PW. Selective cleavage by endo-β-N-acetyl-glucosaminidase H at individual glycosylation sites of Sindbis virion envelope glycoproteins. J Biol Chem 1983; 258:2555–2561.PubMedGoogle Scholar
  52. 52.
    Trimble RB, Maley F, Chu FK. Glycoprotein biosynthesis in yeast. Protein conformation affects processing of high mannose oligosaccharides on carboxy-peptidase Y and invertase. J Biol Chem 1983; 258:2562–2567.PubMedGoogle Scholar
  53. 53.
    Carver JP, Cumming DA. Site-directed processing of N-linked oligosaccharides: The role of three-dimensional structure. Pure Appl Chem 1987; 59:1465–1476.Google Scholar
  54. 54.
    Yet MG, Shao MC, Wold F. Effects of the protein matrix on glycan processing in glycoproteins. FASEB J 1988; 2:22–31.PubMedGoogle Scholar
  55. 55.
    Shao MC, Wold F. The effect of the protein matrix proximity on glycan reactivity in a glycoprotein model. Eur J Biochem 1995; 228:79–85.PubMedGoogle Scholar
  56. 56.
    Camphausen RT, Yu H-A, Cumming DA. Biosynthesis. 6. The role of the polypeptide in the biosynthesis of protein-linked oligosaccharides. In: Montreuil J, Schachter H, Vliegenthart JFG, eds. Glycoproteins. Amsterdam: Elsevier, 1995:391–414. (Neuberger A, van Deenen LLM, eds. New Comprehensive Biochemistry; vol 29a).Google Scholar
  57. 57.
    Baenziger JU. Protein-specific glycosyltransferases: How and why they do it! FASEB J 1994; 8:1019–1025.PubMedGoogle Scholar
  58. 58.
    Stanley P. Glycosylation engineering. Glycobiology 1992; 2:99–107.PubMedGoogle Scholar
  59. 59.
    Deutscher SL, Nuwayhid N, Stanley P, et al. Translocation across Golgi vesicle membranes: A CHO glycosylation mutant deficient in CMP-sialic acid transport. Cell 1984; 39:295–299.PubMedGoogle Scholar
  60. 60.
    Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 1985; 54:631–664.PubMedGoogle Scholar
  61. 61.
    Snider MD. Biosynthesis of glycoproteins: Formation of N-linked oligosaccharides. In: Ginsberg V, Robbins PW, eds. Biology of Carbohydrates. 2nd ed. New York: John Wiley & Sons, 1984:163–198; vol 2).Google Scholar
  62. 62.
    Hubbard SC, Ivatt RJ. Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem 1981; 50:555–583.PubMedGoogle Scholar
  63. 63.
    Sadler JE. Biosynthesis of glycoproteins: Formation of O-linked oligosaccharides. In: Ginsberg V, Robbins PW, eds. Biology of Carbohydrates. 2nd ed. New York: John Wiley & Sons, 1984:199–288; vol 2).Google Scholar
  64. 64.
    Brockhausen I. Biosynthesis. 3. Biosynthesis of O-glycans of the N-acetylgalactos-amine-β-Ser/Thr linkage type. In: Montreuil J, Schachter H, Vliegenthart JFG, eds. Glycoproteins. Amsterdam: Elsevier, 1995:201–259. (Neuberger A, van Deenen LLM, eds. New Comprehensive Biochemistry; vol 29a).Google Scholar
  65. 65.
    Pfeffer SR, Rothman JE. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu Rev Biochem 1987; 56:829–852.PubMedGoogle Scholar
  66. 66.
    Harter C, Wieland F. The secretory pathway: Mechanisms of protein sorting and transport. Biochim Biophys Acta 1996; 1286:75–93.PubMedGoogle Scholar
  67. 67.
    Rothman JE, Wieland FT. Protein sorting by transport vesicles. Science 1996; 272:227–234.PubMedGoogle Scholar
  68. 68.
    Hemming FW. Biosynthesis. 2a. The coenzymic role of phosphodolichols. In: Montreuil J, Schachter H, Vliegenthart JFG, eds. Glycoproteins. Amsterdam: Elsevier, 1995:127–152. (Neuberger A, van Deenen LLM, eds. New Comprehensive Biochemistry; vol 29a).Google Scholar
  69. 69.
    Verbert A. Biosynthesis. 2b. From Glc3Man9GlcNAc2-protein to Man5GlcNAc2-protein: Transfer ‘en bloc’ and processing. In: Montreuil J, Vliegenthart JFG, Schachter H, eds. Glycoproteins. Amsterdam: Elsevier, 1995:145–152. (Neuberger A, van Deenen LLM, eds. New Comprehensive Biochemistry; vol 29a).Google Scholar
  70. 70.
    Schachter H. Biosynthesis. 2c. Glycosyltransferases involved in the synthesis of the N-glycan antennae. In: Montreuil J, Vliegenthart JFG, Schachter H, eds. Glycoproteins. Amsterdam: Elsevier, 1995:153–199. (Neuberger A, van Deenen LLM, eds. New Comprehensive Biochemistry; vol 29a).Google Scholar
  71. 71.
    Presper KA, Heath EC. Glycosylated lipid intermediates involved in glycoprotein biosynthesis. In: Boyer PD, Sigman DS, eds. The Enzymes. 3rd ed. New York: Academic Press, 1983:449–488; vol XVI.Google Scholar
  72. 72.
    Kobata A. The carbohydrates of glycoproteins. In: Ginsberg V, Robbins PW, eds. Biology of Carbohydrates. 2nd ed. New York: John Wiley & Sons, 1984:87–161; vol 2.Google Scholar
  73. 73.
    Kobata A. Glycobiology: An expanding research area in carbohydrate chemistry. Acc Chem Res 1993; 26:319–324.Google Scholar
  74. 74.
    Schutzbach JS. The role of the lipid matrix in the biosynthesis of dolichyl-linked oligosaccharides. Glycoconj J 1997; 14:175–182.PubMedGoogle Scholar
  75. 75.
    Lehrman MA. Biosynthesis of N-acetylglucosamine-PP-dolichol, the committed step of asparagine-linked oligosaccharide assembly. Glycobiology 1991; 1:553–562.PubMedGoogle Scholar
  76. 76.
    Kean EL. Studies on the activation by dolichol-P-mannose of the biosynthesis of GlcNAc-PP-dolichol and the topography of the GlcNAc-transferases concerned with the synthesis of GlcNAc-PP-dolichol and (GlcNAc)2-.PP-dolichol: A review. Biochem Cell Biol 1992; 70:413–421.PubMedGoogle Scholar
  77. 77.
    Abeijon C, Hirschberg CB. Topography of initiation of N-glycosylation reactions. J Biol Chem 1990; 265:14691–14695.PubMedGoogle Scholar
  78. 78.
    Menon A. Flippases. Trends Cell Biol 1995; 5:355–360.PubMedGoogle Scholar
  79. 79.
    Hirschberg CB, Snider MD. Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem 1987; 56:63–87.PubMedGoogle Scholar
  80. 80.
    Snider MD, Robbins PW. Transmembrane organization of protein glycosylation. Mature oligosaccharide-lipid is located on the luminal side of microsomes from Chinese hamster ovary cells. J Biol Chem 1982; 257:6796–6801.PubMedGoogle Scholar
  81. 81.
    Snider MD, Rogers OC. Transmembrane movement of oligosaccharide-lipids during glycoprotein synthesis. Cell 1984; 36:753–761.PubMedGoogle Scholar
  82. 82.
    Abeijon C, Hirschberg CB. Topography of glycosylation reactions in the endoplasmic reticulum. Trends Biochem Sci 1992; 17:32–36.PubMedGoogle Scholar
  83. 83.
    Perez M, Hirschberg CB. Topography of glycosylation reactions in the rough endoplasmic reticulum membrane. J Biol Chem 1986; 261:6822–6830.PubMedGoogle Scholar
  84. 84.
    Beck PJ, Orlean P, Albright C, et al. The Saccharomyces cerevisiae DPM1 gene encoding dolichol-phosphate-mannose synthase is able to complement a glycosylation-defective mammalian cell line. Mol Cell Biol 1990; 10:4612–4622.PubMedGoogle Scholar
  85. 85.
    Haselbeck A, Tanner W. Dolichyl phosphate-mediated mannosyl transfer through liposomal membranes. Proc Natl Acad Sci USA 1982; 79:1520–1524.PubMedGoogle Scholar
  86. 86.
    Haselbeck A, Tanner W. Further evidence for dolichyl phosphate-mediated glycosyl translocation through membranes. FEMS Lett 1984; 21:305–308.Google Scholar
  87. 87.
    Déglon N, Krapp A, Bron C, et al. Translocation of the yeast dolichol-phosphate-mannose synthase into microsomal membranes. Biochem Biophys Res Commun 1991; 174:1337–1342.PubMedGoogle Scholar
  88. 88.
    Schutzbach JS, Zimmerman JW. Yeast dolichyl-phosphomannose synthase: Reconstitution of enzyme activity with phospholipids. Biochem Cell Biol 1992; 70:460–465.PubMedGoogle Scholar
  89. 89.
    Rush JS, Waechter CJ. Transmembrane movement of a water-soluble analogue of mannosylphosphoryldolichol is mediated by an endoplasmic reticulum protein. J Cell Biol 1995; 130:529–536.PubMedGoogle Scholar
  90. 90.
    Palade G. Intracellular aspects of the process of protein synthesis. Science 1975; 189:347–358.PubMedGoogle Scholar
  91. 91.
    Silberstein S, Gilmore R. Biochemistry, molecular biology, and genetics of the oligosaccharyltransferase. FASEB J 1996; 10:849–858.PubMedGoogle Scholar
  92. 92.
    Marshall RD. The nature and metabolism of the carbohydrate-peptide linkages of glycoproteins. Biochem Soc Symp 1974; 17–26.Google Scholar
  93. 93.
    Roitsch T, Lehle L. Structural requirements for protein N-glycosylation. Influence of acceptor peptides on cotranslational glycosylation of yeast invertase and site-directed mutagenesis around a sequon sequence. Eur J Biochem 1989; 181:525–529.PubMedGoogle Scholar
  94. 94.
    Bause E. Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J 1983; 209:331–336.PubMedGoogle Scholar
  95. 95.
    Bause E, Legier G. The role of the hydroxy amino-acid in triplet sequence Asn-Xaa-Thr(Ser) for the N-glycosylation step during glycoprotein biosynthesis. Biochem J 1981; 195:639–644.PubMedGoogle Scholar
  96. 96.
    Imperiali B. Protein glycosylation: The Clash of the Titans. Acc Chem Res 1997; 30:452–459.Google Scholar
  97. 97.
    Miletich JP, Broze GJ, Jr. β Protein C is not glycosylated at asparagine 329. The rate of translation may influence the frequency of usage at asparagine-X-cysteine sites. J Biol Chem 1990;265:11397–11404.PubMedGoogle Scholar
  98. 98.
    Kaplan HA, Welply JK, Lennarz WJ. Oligosaccharyl transferase: The central enzyme in the pathway of glycoprotein assembly. Biochim Biophys Acta 1987; 906:161–173.PubMedGoogle Scholar
  99. 99.
    Gavel Y, von Heijne G. Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: Implications for protein engineering. Protein Eng 1990; 3:433–442.PubMedGoogle Scholar
  100. 100.
    Shakin-Eshleman SH, Wunner WH, Spitalnik SL. Efficiency of N-linked core glycosylation at asparagine-319 of rabies virus glycoprotein is altered by deletions C-terminal to the glycosylation sequon. Biochemistry 1993; 32:9465–9472.PubMedGoogle Scholar
  101. 101.
    Sharma CB, Lehle L, Tanner W. N-Glycosylation of yeast proteins. Characterisation of the solubilised oligosaccharyl transferase. Eur J Biochem 1981; 116:101–108.PubMedGoogle Scholar
  102. 102.
    Hoflack B, Cacan R, Verbert A. Dolichol pathway in lymphocytes from rat spleen. Influence of the glucosylation on the cleavage of dolichyl diphosphate oligosaccharides into phosphooligosaccharides. Eur J Biochem 1981; 117:285–290.PubMedGoogle Scholar
  103. 103.
    Helenius A, Trombetta ES, Hebert DN, et al. Calnexin, calrectulin and the folding of glycoproteins. Trends Cell Biol 1997; 7:193–200.Google Scholar
  104. 104.
    Trombetta SE, Gañan SA, Parodi AJ. The UDP-Glc:glycoprotein glucosyltransferase is a soluble protein of the endoplasmic reticulum. Glycobiology 1991; 1:155–161.PubMedGoogle Scholar
  105. 105.
    Trombetta SE, Parodi AJ. Purification to apparent homogeneity and partial characterization of rat liver UDP-glucose:glycoprotein glucosyltransferase. J Biol Chem 1992;267:9236–9240.PubMedGoogle Scholar
  106. 106.
    Sousa M, Parodi AJ. The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. EMBO J 1995; 14:4196–4203.PubMedGoogle Scholar
  107. 107.
    Sollner TH, Rothman JE. Molecular machinery mediating vesicle budding, docking and fusion. Experimentia 1996; 52:1021–1025.Google Scholar
  108. 108.
    Sollner TH, Rothman JE. Molecular machinery mediating vesicle budding, docking and fusion. Cell Struct Function 1996; 21:407–412Google Scholar
  109. 109.
    Rothman JE. The protein machinery of vesicle budding and fusion. Protein Sci 1996; 5:185–194.PubMedGoogle Scholar
  110. 110.
    Moremen KW, Trimble RB, Herscovics A. Glycosidases of the asparagine-linked oligosaccharide processing pathway. Glycobiology 1994; 4:113–125.PubMedGoogle Scholar
  111. 111.
    Daniel PF, Winchester B, Warren CD. Mammalian a-mannosidases—multiple forms but a common purpose? Glycobiology 1994; 4:551–566.PubMedGoogle Scholar
  112. 112.
    Schachter H. Biosynthetic controls that determine the branching and microhetero-geneity of protein-bound oligosaccharides. Adv Exp Med Biol 1986; 205:53–85.PubMedGoogle Scholar
  113. 113.
    Rothman JE. The compartmental organization of the Golgi apparatus. Sci Am 1985; 253:74–89.PubMedGoogle Scholar
  114. 114.
    Dunphy WG, Rothman JE. Compartmental organization of the Golgi stack. Cell 1985; 42:13–21.PubMedGoogle Scholar
  115. 115.
    Rothman JE, Orci L. Movement of proteins through the Golgi stack: A molecular dissection of vesicular transport. FASEB J 1990; 4:1460–1468.PubMedGoogle Scholar
  116. 116.
    Rothman JE, Orci L. Molecular dissection of the secretory pathway. Nature 1992; 355:409–415.PubMedGoogle Scholar
  117. 117.
    Von Figura K, Hasilik A. Lysosomal enzymes and their receptors. Annu Rev Biochem 1986;55:167–193.Google Scholar
  118. 118.
    Pfeffer SR. Mannose 6-phosphate receptors and their role in targeting proteins to lysosomes. J Membrane Biol 1988; 103:7–16.Google Scholar
  119. 119.
    Pfeffer SR. Mannose 6-phosphate receptors and their role in protein sorting along the pathway to lysosomes. Cell Biophys 1991; 19:131–140.PubMedGoogle Scholar
  120. 120.
    Kornfeld S. Lysosomal enzyme targeting. Biochem Soc Trans 1990; 18:367–374.PubMedGoogle Scholar
  121. 121.
    Kornfeld S, Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol 1989; 5:483–525.PubMedGoogle Scholar
  122. 122.
    Dahms NM, Lobel P, Kornfeld S. Mannose 6-phosphate receptors and lysosomal enzyme targeting. J Biol Chem 1989; 264:12115–12118.PubMedGoogle Scholar
  123. 123.
    Reitman ML, Kornfeld S. Lysosomal enzyme targeting. N-Acetylglucosaminyl-phosphotransferase selectively phosphorylates native lysosomal enzymes. J Biol Chem 1981;256:11977–11980.PubMedGoogle Scholar
  124. 124.
    Varici A, Sherman W, Kornfeld S. Demonstration of the enzymatic mechanisms of α-N-acetyl-D-glucosamine-1-phosphodiester N-acetylglucosaminidase (formerly called α-N-acetylglucosaminylphosphodiesterase) and lysosomal α-N-acetylglucosaminidase. Arch Biochem Biophys 1983; 222:145–149.Google Scholar
  125. 125.
    Baranski TJ, Faust PL, Kornfeld S. Generation of a lysosomal enzyme targeting signal in the secretory protein pepsinogen. Cell 1990; 63:281–291.PubMedGoogle Scholar
  126. 126.
    Lubas WA, Spiro RG. Golgi endo-α-D-mannosidase from rat liver, a novel N-linked carbohydrate unit processing enzyme. J Biol Chem 1987; 262:3775–3781.PubMedGoogle Scholar
  127. 127.
    Harpaz N, Schachter H. Control of glycoprotein synthesis. IV. Bovine colostrum UDP-N-acetylglucosamine:α-D-mannoside β-2-N-acetylglucosaminyltransferase I. Separation from UDP-N-acetylglucosamine:α-D-mannoside β-2-N-acetylglucosaminyl-transferase II, partial purification and substrate specificity. J Biol Chem 1980; 255:4885–4893.PubMedGoogle Scholar
  128. 128.
    Brockhausen I, Carver JP, Schachter H. Control of glycoprotein synthesis. The use of oligosaccharide substrates and HPLC to study the sequential pathway for N-acetyl-glucosaminyltransferases I, II, III, IV, V, and VI in the biosynthesis of highly branched N-glycans by hen oviduct membranes. Biochem Cell Biol 1988; 66:1134–1151.PubMedGoogle Scholar
  129. 129.
    Brockhausen I, Narasimhan S, Schachter H. The biosynthesis of highly branched N-glycans: Studies on the sequential pathway and functional role of N-acetyl-glucosaminyltransferases I, II, III, IV, V and VI. Biochimie 1988; 70:1521–1533.PubMedGoogle Scholar
  130. 130.
    Tabas I, Kornfeld S. The synthesis of complex-type oligosaccharides III. Identification of an α-D-mannosidase activity involved in a late stage of processing of complex-type oligosaccharides. J Biol Chem 1978; 253:7779–7786.PubMedGoogle Scholar
  131. 131.
    Narasimhan S. Control of glycoprotein synthesis. VII. UDP-GlcNAc:glycopeptide β4-N-acetylglucosaminyltransferase III, an enzyme in hen oviduct which adds GlcNAc in β1–4 linkage to the β-linked mannose of the trimannosyl core of N-glycosyl oligosaccharides. J Biol Chem 1982; 257:10235–10242.PubMedGoogle Scholar
  132. 132.
    Longmore GD, Schachter H. Control of glycoprotein synthesis. VI. Product identification and substrate specificity studies of the GDP-L-fucose:2-acetamido-2-deoxy-β-D-glucoside (Fuc→Asn-linked GlcNAc) 6-α-L-fucosyltransferase in a Golgi-rich fraction form porcine liver. Carbohydr Res 1982; 100:365–392.PubMedGoogle Scholar
  133. 133.
    Gleeson PA, Schachter H. Control of glycoprotein synthesis. VIII. UDP-GlcNAc:GnGn (GlcNAc to Manα1–3) β4-N-acetylglucosaminyltransferase IV, an enzyme in hen oviduct which adds GlcNAc in β1–4 linkage to the α1–3-linked Man residue of the trimannosyl core of N-glycosyl oligosaccharides to form a triantennary structure. J Biol Chem 1983; 258:6162–6173.PubMedGoogle Scholar
  134. 134.
    Cummings RD, Trowbridge IS, Kornfeld S. A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc: α-D-mannoside β1,6-N-acetylglucosaminyltransferase. J Biol Chem 1982; 257:13421–13427.PubMedGoogle Scholar
  135. 135.
    Brockhausen I, Hull E, Hindsgaul O, et al. Control of glycoprotein synthesis. Detection and characterisation of a novel branching enzyme from hen oviduct, UDP-N-acetyl-glucosamine:GlcNAcβ1–6(GlcNAcβ1–2)Manα-R (GlcNAc to Man) β-4-N-acetyl-glucosaminyltransferase VI. J Biol Chem 1989; 264:11211–11221.PubMedGoogle Scholar
  136. 136.
    Brockhausen I, Möller G, Yang YM, et al. Control of glycoprotein synthesis. Characterisation of (1→4)-N-acetyl-β-D-glucosaminyltransferases acting on the α-D-(1→3)-and α-D-(1→6)-linked arms of N-linked oligosaccharides. Carbohydr Res 1992; 236:281–299.PubMedGoogle Scholar
  137. 137.
    Yates AD, Watkins WM. Enzymes involved in the biosynthesis of glycoconjugates. A UDP-2-acetamido-2-deoxy-D-glucose: β-D-galactopyranosyl-(1→4)-saccharide (1→3)-2-acetamido-2-deoxy-β-D-glucopyranosyltransferase in human serum. Carbohydr Res 1983; 120:251–268.PubMedGoogle Scholar
  138. 138.
    Piller F, Cartron J-P. UDP-GlcNAc:Galβl-4Glc(NAc) β1–3-N-acetylglucosaminyl-transferase. Identification and characterisation in human serum. J Biol Chem 1983; 258:12293–12299.PubMedGoogle Scholar
  139. 139.
    Almeida R, Amado M, David L, et al. A family of human β4-galactosyltransferases. Cloning and expression of two novel UDP-galactose:β-N-acetylglucosamine β1,4-galactosyltransferases, β4Gal-T2 and β4Gal-T3. J Biol Chem 1997; 272:31979–31991.PubMedGoogle Scholar
  140. 140.
    Piller F, Cartron JP, Maranduba A, et al. Biosynthesis of blood group I antigens. Identification of a UDP-GlcNAc:GlcNAcβ1–3Gal(-R) β1–6 (GlcNAc to Gal) N-acetyl-glucosaminyltransferase in hog gastric mucosa. J Biol Chem 1984; 259:13385–13390.PubMedGoogle Scholar
  141. 141.
    Smith PL, Baenziger JU. A pituitary N-acetylgalactosamine transferase that specifically recognizes glycoprotein hormones. Science 1988; 242:930–933.PubMedGoogle Scholar
  142. 142.
    Watkins WM. Biosynthesis. 5. Molecular basis of antigenic specificity in the ABO, H and Lewis blood-group systems. In: Montreuil J, Schachter H, Vliegenthart JFG, eds. Glycoproteins. Amsterdam: Elsevier, 1995:313–390. (Neuberger A, van Deenen LLM, eds. New Comprehensive Biochemistry; vol 29a).Google Scholar
  143. 143.
    Brockhausen I, Kuhns W. Role and metabolism of glycoconjugate sulphation. Trends Glycosci Glycotechnol 1997; 9:379–398.Google Scholar
  144. 144.
    Troy FA, II. Polysialylation: From bacteria to brains. Glycobiology 1992; 2:5–23.PubMedGoogle Scholar
  145. 145.
    Reglero A, Rodriguez-Aparicio LB, Luengo JM. Polysialic acids. Int J Biochem 1993; 25:1517–1527.PubMedGoogle Scholar
  146. 146.
    Rougon G. Structure, metabolism and cell biology of polysialic acids. Eur J Cell Biol 1993;61:197–207.PubMedGoogle Scholar
  147. 147.
    Rutishauser U, Landmesser L. Polysialic acid in the vertebrate nervous system: A promoter of plasticity in cell-cell interactions. Trends Neurosci 1996; 19:422–427.PubMedGoogle Scholar
  148. 148.
    Schachter H, Brockhausen I. The biosynthesis of branched O-glycans. In: Chantier E, Ratcliffe NA, eds. Mucus and Related Topics. Cambridge: The Society for Experimental Biology, 1989:1–26. (Symp Soc Exp Biol; vol 43).Google Scholar
  149. 149.
    Roth J, Wang Y, Eckhardt AE, et al. Subcellular localization of the UDP-N-acetyl-D-galactosamine:poIypeptide N-acetylgalactosaminyltransferase-mediated O-glycosylation reaction in the submaxillary gland. Proc Natl Acad Sci U S A 1994; 91:8935–8939.PubMedGoogle Scholar
  150. 150.
    McGuire EJ, Roseman S. Enzymatic synthesis of the protein-hexosamine linkage in sheep submaxillary mucin. J Biol Chem 1967; 242:3745–3747.PubMedGoogle Scholar
  151. 151.
    Hagen FK, van Wuyckhuyse B, Tabak LA. Purification, cloning, and expression of a bovine UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. J Biol Chem 1993;268:18960–18965.PubMedGoogle Scholar
  152. 152.
    Marth JD. Complexity in O-linked oligosaccharide biosynthesis engendered by multiple polypeptide N-acetylgalactosaminyltransferases. Glycobiology 1996; 6:701–705.PubMedGoogle Scholar
  153. 153.
    Hansen JE, Lund O, Tolstrup N, et al. NetOglyc: Prediction of mucin-type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj J 1998;15:115–130.PubMedGoogle Scholar
  154. 154.
    Brockhausen I, Toki D, Brockhausen J, et al. Specificity of O-glycosylation by bovine colostrum UDP-GalNAc:polypeptide β-N-acetylgalactosaminyltransferase using synthetic glycopeptide substrates. Glycoconj J 1996; 13:849–856.PubMedGoogle Scholar
  155. 155.
    Springer G. T and Tn, general carcinoma antigens. Science 1984; 224:1198–1206.PubMedGoogle Scholar
  156. 156.
    Chai WG, Hounsell EF, Cashmore GC, et al. Neutral oligosaccharides of bovine submaxillary mucin. A combined mass spectrometry and 1H-NMR study. Eur J Biochem 1992; 203:257–268.PubMedGoogle Scholar
  157. 157.
    Schachter H, McGuire EJ, Roseman S. Sialic acids. 13. A uridine diphosphate D-galactose: Mucin galactosyltransferase from porcine submaxillary gland. J Biol Chem 1971;246:5321–5328.PubMedGoogle Scholar
  158. 158.
    Brockhausen I, Matta KL, Orr J, et al. Mucin synthesis. VI. UDP-GlcNAc:GalNAc-R β3-N-acetylglucosaminyltransferase and UDP-GlcNAc:GlcNAcβ1–3GalNAc-R (GlcNAc to GalNAc) β6-N-acetylglucosaminyltransferase from pig and rat colon mucosa. Biochemistry 1985; 24:1866–1874.PubMedGoogle Scholar
  159. 159.
    Williams D, Schachter H. Mucin synthesis. I. Detection in canine submaxillary glands of an N-acetylglucosaminyltransferase which acts on mucin substrates. J Biol Chem 1980;255:11247–11252.PubMedGoogle Scholar
  160. 160.
    Schachter H, Brockhausen I. The biosynthesis of serine(threonine)-N-acetylgalactos-amine-linked carbohydrate moieties. In: Allen HJ, Kisailus EC, eds. Glycoconjugates: Composition, Structure and Function. New York: Marcel Dekker, 1992:263–332.Google Scholar
  161. 161.
    Brockhausen I, Williams D, Matta KL, et al. Mucin synthesis. III. UDP-GlcNAc: Galβ1–3(GlcNAcβ1–6)GalNAc-R (GlcNAc to Gal) β3-N-acetylglucosaminyl-transferase, an enzyme in porcine gastric mucosa involved in the elongation of mucin-type oligosaccharides. Can J Biochem Cell Biol 1983; 61:1322–1333.PubMedGoogle Scholar
  162. 162.
    Torres C-R, Hart GW. Topography and polypeptide distribution of terminal N-acetyl-glucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem 1984; 259:3308–3317.PubMedGoogle Scholar
  163. 163.
    Hart GW, Holt GD, Haltiwanger RS. Nuclear and cytoplasmic glycosylation: Novel saccharide linkages in unexpected places. Trends Biochem Sci 1988; 13:380–384.PubMedGoogle Scholar
  164. 164.
    Hart GW, Greis KD, Dong LY, et al. O-Linked N-acetylglucosamine: The “yin-yang” of Ser/Thr phosphorylation? Nuclear and cytoplasmic glycosylation. Adv Exp Med Biol 1995;376:115–123.PubMedGoogle Scholar
  165. 165.
    Hart GW. Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu Rev Biochem 1997; 66:315–335.PubMedGoogle Scholar
  166. 166.
    Hart GW, Haltiwanger RS, Holt GD, et al. Glycosylation in the nucleus and cytoplasm. Annu Rev Biochem 1989; 58:841–874.PubMedGoogle Scholar
  167. 167.
    Haltiwanger RS, Kelly WG, Roquemore EP, et al. Glycosylation of nuclear and cytoplasmic proteins is ubiquitous and dynamic. Biochem Soc Trans 1992; 20:264–269.PubMedGoogle Scholar
  168. 168.
    Hart GW, Kreppel LK, Comer FI, et al. O-GlcNAcylation of key nuclear and cytoskeletal proteins: Reciprocity with O-phosphorylation and putative roles in protein multimerization. Glycobiology 1996; 6:711–716.PubMedGoogle Scholar
  169. 169.
    Spiro RG. Studies on the renal glomerular basement membrane. Nature of the carbohydrate units and their attachment to the peptide portion. J Biol Chem 1967; 242:1923–1932.PubMedGoogle Scholar
  170. 170.
    Spiro RG. The structure of the disaccharide unit of the renal glomerular basement membrane. J Biol Chem 1967; 242:4813–4823.PubMedGoogle Scholar
  171. 171.
    Spiro RG. Basement membranes and collagens. In: Gottschalk A, ed. Glycoproteins: Their Composition, Structure and Function. 2nd ed. Amsterdam: Elsevier, 1972:964–999; vol B.Google Scholar
  172. 172.
    Butler WT, Cunningham LW. Evidence for the linkage of a disaccharide to hydroxy-lysine in tropocollagen. J Biol Chem 1966; 241:3882–3888.PubMedGoogle Scholar
  173. 173.
    Spiro MJ, Spiro RG. Studies on the biosynthesis of the hydroxylsine-linked disaccharide unit of basement membranes and collagens. II. Kidney galactosyl-transferase. J Biol Chem 1971; 246:4910–4918.PubMedGoogle Scholar
  174. 174.
    Kivirikko KI, Myllyla R. Posttranslational enzymes in the biosynthesis of collagen: Intracellular enzymes. Methods Enzymol 1982; 82:245–304.PubMedGoogle Scholar
  175. 175.
    Spiro MJ, Spiro RG. Studies on the biosynthesis of the hydroxylsine-linked disaccharide unit of basement membranes and collagens. I. Kidney glucosyltransferase. J Biol Chem 1971; 246:4899–4909.PubMedGoogle Scholar
  176. 176.
    Blumenkrantz N, Assad R, Peterkofsky B. Characterization of collagen hydroxylysyl glycosyltransferases as mainly intramembranous microsomal enzymes. J Biol Chem 1984;259:854–859.PubMedGoogle Scholar
  177. 177.
    Harwood R, Grant ME, Jackson DS. Studies on the glycosylation of hydroxylysine residues during collagen biosynthesis and the subcellular localization of collagen galactosyltransferase and collagen glucosyltransferase in tendon and cartilage cells. Biochem J 1975; 152:291–302.PubMedGoogle Scholar
  178. 178.
    Bortolato M, Azzar G, Farjanel J, et al. Evidence of partial localization in Golgi apparatus of UDP-glucose collagen glucosyltransferase from chick embryo liver. Int J Biochem 1990; 22:1039–1046.PubMedGoogle Scholar
  179. 179.
    Sternberg M, Spiro RG. Studies on the catabolism of the hydroxylysine-linked disaccharide units of basement membranes and collagens: Isolation and characterization of anew rat-kidney α-glucosidase of high specificity. Renal Physiol 1980; 3:1–3.PubMedGoogle Scholar
  180. 180.
    Sternberg M, Spiro RG. Studies on the catabolism of the hydroxylysine-linked disaccharide units of basement membranes and collagens. Isolation and characterization of a rat kidney α-glucosidase of high specificity. J Biol Chem 1979; 254:10329–10336.PubMedGoogle Scholar
  181. 181.
    Harris RJ, Spellman MW. O-Linked fucose and other post-translational modifications unique to EGF modules. Glycobiology 1993; 3:219–224.PubMedGoogle Scholar
  182. 182.
    Nishimura H, Takao T, Hase S, et al. Human factor IX has a tetrasaccharide O-glycosidically linked to serine 61 through the fucose residue. J Biol Chem 1992; 267:17520–17525.PubMedGoogle Scholar
  183. 183.
    Harris RJ, van Halbeek H, Glushka J, et al. Identification and structural analysis of the tetrasaccharide NeuAca(2→6)Galβ(1→4)GlcNAcβ(1→3)Fucal→O-linked to serine 61 of human factor IX. Biochemistry 1993; 32:6539–6547.PubMedGoogle Scholar
  184. 184.
    Nishimura H, Kawabata S, Kisiel W, et al. Identification of a disaccharide (Xyl-Glc) and a trisaccharide (Xyl2-Glc) O-glycosidically linked to a serine residue in the first epidermal growth factor-like domain of human factors VII and IX and protein Z and bovine protein Z. J Biol Chem 1989; 264:20320–20325.PubMedGoogle Scholar
  185. 185.
    Wang Y, Lee GF, Kelley RF, et al. Identification of a GDP-L-fucose:polypeptide fucosyltransferase and enzymatic addition of O-linked fucose to EGF domains. Glycobiology 1996; 6:837–842.PubMedGoogle Scholar
  186. 186.
    Wang Y, Wu K, Harris R, et al. Purification and molecular cloning of a GDP-fucose:polypeptide fucosyltransferase specific for EGF domain glycosylation. Glycobiology 1997; 7:1033 (Abstract 75).Google Scholar
  187. 187.
    Omichi K, Aoki K, Minamida S, et al. Presence of UDP-D-xylose:β-D-glucoside α-1,3-D-xylosyltransferase involved in the biosynthesis of the Xyla1-3Glcβ-Ser structure of glycoproteins in the human hepatoma cell line HepG2. Eur J Biochem 1997;245:143–146.PubMedGoogle Scholar
  188. 188.
    Minamida S, Aoki K, Natsuka S, et al. Detection of UDP-D-xylose:α-D-xyloside α1→3-xylosyltransferase activity in human hepatoma cell line HepG2. J Biochem 1996; 120:1002–1006.PubMedGoogle Scholar
  189. 189.
    Herscovics A, Orlean P. Glycoprotein biosynthesis in yeast. FASEB J 1993; 7:540–550.PubMedGoogle Scholar
  190. 190.
    Tanner W, Lehle L. Protein glycosylation in yeast. Biochim Biophys Acta 1987; 906:81–99.PubMedGoogle Scholar
  191. 191.
    Kukuruzinska MA, Bergh ML, Jackson BJ. Protein glycosylation in yeast. Annu Rev Biochem 1987; 56:915–944.PubMedGoogle Scholar
  192. 192.
    Orlean P. Biogenesis of yeast wall and surface components. In: Pringle JR, Broach JR, Jones EW, eds. The Molecular and Cellular Biology of the Yeast Saccharomyces. Cell Cycle and Cell Biology. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1997:229–362.Google Scholar
  193. 193.
    Jackson BJ, Warren CD, Bugge B, et al. Synthesis of lipid-linked oligosaccharides in Saccharomyces cerevisiae: Man2GlcNAc2 and Man1GlcNAc2 are transferred from dolichol to protein in vivo. Arch Biochem Biophys 1989; 272:203–209.PubMedGoogle Scholar
  194. 194.
    Couto JR, Huffaker TC, Robbins PW. Cloning and expression in Escherichia coli of a yeast mannosyltransferase gene from the asparagine-linked glycosylation pathway. J Biol Chem 1984; 259:378–382.PubMedGoogle Scholar
  195. 195.
    Jackson BJ, Kukuruzinska MA, Robbins P. Biosynthesis of asparagine-linked oligosaccharides in Saccharomyces cerevisiae: The alg2 mutation. Glycobiology 1993; 3:357–364.PubMedGoogle Scholar
  196. 196.
    Chapman A, Li E, Kornfeld S. The biosynthesis of the major lipid-linked oligosaccharide of Chinese hamster ovary cells occurs by the ordered addition of mannose residues. J Biol Chem 1979; 254:10243–10249.PubMedGoogle Scholar
  197. 197.
    Romero PA, Sleno B, Herscovics A. Glycoprotein biosynthesis in Saccharomyces cerevisiae. Partial purification of the α-1,6-mannosyltransferase that initiates outer chain synthesis. Glycobiology 1994; 4:135–140.PubMedGoogle Scholar
  198. 198.
    Lewis MS, Ballou CE. Separation and characterization of two α1,2-mannosyl-transferase activities from Saccharomyces cerevisiae. J Biol Chem 1991; 266:8255–8261.PubMedGoogle Scholar
  199. 199.
    Ballou CE. Isolation, characterisation and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol 1990; 185:440–470.PubMedGoogle Scholar
  200. 200.
    Häusler A, Ballou L, Ballou CE, et al. Yeast glycoprotein biosynthesis: MNT1 encodes an α-1,2-mannosyltransferase involved in O-glycosylation. Proc Natl Acad Sci USA 1992; 89:6846–6850.PubMedGoogle Scholar
  201. 201.
    Yip CL, Welch SK, Klebl F, et al. Cloning and analysis of the Saccharomyces cerevisiae MNN9 and MNN1 genes required for complex glycosylation of secreted proteins. Proc Natl Acad Sci USA 1994; 91:2723–2727.PubMedGoogle Scholar
  202. 202.
    Altmann F. More than silk and honey—or, can insect cells serve in the production of therapeutic glycoproteins? Glycoconj J 1997; 14:643–646.PubMedGoogle Scholar
  203. 203.
    März L, Altmann F, Staudacher E, et al. Protein glycosylation in insects. In: Montreuil J, Schachter H, Vliegenthart JFG, eds. Glycoproteins. Amsterdam: Elsevier, 1995:543–563. (Neuberger A, van Deenen LLM, eds. New Comprehensive Biochemistry; vol 29a).Google Scholar
  204. 204.
    Altmann F. N-Glycosylation in insects revisited. Trends Glycosci Glycotechnol 1996; 8:101–114.Google Scholar
  205. 205.
    Butters TD, Hughes RC, Vischer P. Steps in the biosynthesis of mosquito cell membrane glycoproteins and the effects of tunicamycin. Biochim Biophys Acta 1981; 640:672–686.PubMedGoogle Scholar
  206. 206.
    Kubelka V, Altmann F, Kornfeld G, et al. Structures of the N-linked oligosaccharides of the membrane glycoproteins from three Lepidopteran cell lines (Sf-21, IZD-Mb-0503, Bm-N). Arch Biochem Biophys 1994; 308:148–157.PubMedGoogle Scholar
  207. 207.
    Kubelka V, Altmann F, Marz L. The asparagine-linked carbohydrate of honeybee venom hyaluronidase. Glycoconj J 1995; 12:77–83.PubMedGoogle Scholar
  208. 208.
    Altmann F, Kornfeld G, Dalik T, et al. Processing of asparagine-linked oligosaccharides in insect cells. jV-Acetylglucosaminyltransferase I and II activities in cultured Lepidopteran cells. Glycobiology 1993; 3:619–625.PubMedGoogle Scholar
  209. 209.
    Staudacher E, Altmann F, Glössi J, et al. GDP-fucose:β-N-acetylglucosamine (Fuc to (Fucccl↑6GlcNAc)-Asn-peptide) α1→3-fucosyltransferase activity in honeybee (Apis mellifica) venom glands. The difucosylation of asparagine-bound N-acetylglucosamine. Eur J Biochem 1991; 199:745–751.PubMedGoogle Scholar
  210. 210.
    Altmann F, Schwihla H, Staudacher E, et al. Insect cells contain an unusual, membrane-bound β-N-acetylglucosaminidase probably involved in the processing of protein N-glycans. J Biol Chem 1995; 270:17344–17349.PubMedGoogle Scholar
  211. 211.
    Van Die I, van Tetering A, Bakker H, et al. Glycosylation in Lepidopteran insect cells: Identification of a β1→4-N-acetylgalactosaminyltransferase involved in the synthesis of complex-type oligosaccharide chains. Glycobiology 1996; 6:157–164.PubMedGoogle Scholar
  212. 212.
    Aeed PA, Elhammer AP. Glycosylation of recombinant prorenin in insect cells: The insect cell line Sf9 does not express the mannose 6-phosphate recognition signal. Biochemistry 1994; 33:8793–8797.PubMedGoogle Scholar
  213. 213.
    Grabenhorst E, Hofer B, Nimtz M, et al. Biosynthesis and secretion of human interleukin 2 glycoprotein variants from baculovirus-infected Sf21 cells. Characterization of polypeptides and posttranslational modifications. Eur J Biochem 1993;215:189–197.PubMedGoogle Scholar
  214. 214.
    Wathen MW, Aeed PA, Elhammer AP. Characterization of oligosaccharide structures on a chimaeric respiratory syncytial virus protein expressed in insect cell line Sf9. Biochemistry 1991; 30:2863–2868.PubMedGoogle Scholar
  215. 215.
    Chen WY, Shen QX, Bahl OP. Carbohydrate variant of the recombinant β-subunit of human choriogonadotropin expressed in baculovirus expression system. J Biol Chem 1991; 266:4081–4087 [Correction: J Biol Chem 1991;266:12114].PubMedGoogle Scholar
  216. 216.
    Thomsen DR, Post LE, Elhammer AP. Structure of O-glycosidically linked oligosaccharides synthesized by the insect cell line Sf9. J Cell Biochem 1990; 43:67–79.PubMedGoogle Scholar
  217. 217.
    Kelly WG, Hart GW. Glycosylation of chromosomal proteins: Localization of O-linked N-acetylglucosamine in Drosophila chromatin. Cell 1989; 57:243–251 [Correction: Cell 1989;58:following 419].PubMedGoogle Scholar
  218. 218.
    Driouich A, Faye L, Staehelin LA. The plant Golgi apparatus: A factory for complex polysaccharides and glycoproteins. Trends Biochem Sci 1993; 18:210–214.PubMedGoogle Scholar
  219. 219.
    Faye L, Johnson KD, Chrispeels MJ. Oligosaccharide side chains of glycoproteins that remain in the high-mannose form are not accessible to glycosidases. Plant Physiol 1986;81:206–211.PubMedGoogle Scholar
  220. 220.
    Johnson KD, Chrispeels MJ. Substrate specificities of N-acetylglucosaminyl-, fucosyl-, and xylosyltransferases that modify glycoproteins in the Golgi apparatus of bean cotyledons. Plant Physiol 1987; 84:1301–1308.PubMedGoogle Scholar
  221. 221.
    Tezuka K, Hayashi M, Ishihara H, et al. Studies on synthetic pathway of xylose-containing N-linked oligosaccharides deduced from substrate specificities of the processing enzymes in sycamore cells (Acer pseudoplatanus L.). Eur J Biochem 1992; 203:401–413.PubMedGoogle Scholar
  222. 222.
    Kimura Y, Hase S, Kobayashi Y, et al. Possible pathway for the processing of sugar chains containing xylose in plant glycoproteins deduced on structural analyses of sugar chains from Ricinus communis lectins. J Biochem (Tokyo) 1987; 101:1051–1054.Google Scholar
  223. 223.
    Zeng Y, Bannon G, Thomas VH, et al. Purification and specificity of β1,2-xylosyl-transferase, an enzyme that contributes to the allergenicity of some plant proteins. J Biol Chem 1997; 272:31340–31347.PubMedGoogle Scholar
  224. 224.
    Klis FM. O-Glycosylation in plants. In: Montreuil J, Schachter H, Vliegenthart JFG, eds. Glycoproteins. Amsterdam: Elsevier, 1995:511–520. (Neuberger A, van Deenen LLM, eds. New Comprehensive Biochemistry; vol 29a).Google Scholar
  225. 225.
    Allen AK, Desai NN, Neuberger A, et al. Properties of potato lectin and the nature of its glycoprotein linkages. Biochem J 1978; 171:665–674.PubMedGoogle Scholar
  226. 226.
    Ashford D, Desai NN, Allen AK, et al. Structural studies of the carbohydrate moieties of lectins from potato (Solanum tuberosum) tubers and thorn-apple (Datura stramonium) seeds. Biochem J 1982; 201:199–208.PubMedGoogle Scholar
  227. 227.
    O’Neill MA, Selvendran RR. Glycoproteins from the cell wall of Phaseolus coccineus. Biochem J 1980; 187:53–63.Google Scholar
  228. 228.
    Moore PJ, Swords KM, Lynch MA, et al. Spatial organization of the assembly pathways of glycoproteins and complex polysaccharides in the Golgi apparatus of plants. J Cell Biol 1991; 112:589–602.PubMedGoogle Scholar
  229. 229.
    Kieliszewski MJ, O’Neill M, Leykam J, et al. Tandem mass spectrometry and structural elucidation of glycopeptides from a hydroxyproline-rich plant cell wall glycoprotein indicate that contiguous hydroxyproline residues are the major sites of hydroxyproline O-arabinosylation. J Biol Chem 1995; 270:2541–2549.PubMedGoogle Scholar
  230. 230.
    Rodgers MW, Bolwell GP. Partial purification of Golgi-bound arabinosyltransferase and two isoforms of xylosyltransferase from French bean (Phaseolus vulgaris L.). Biochem J 1992; 288:817–822.PubMedGoogle Scholar
  231. 231.
    Udenfriend S, Kodukula K. How glycosylphosphatidylinositol-anchored membrane proteins are made. Annu Rev Biochem 1995; 64:563–591.PubMedGoogle Scholar
  232. 232.
    Stevens VL. Biosynthesis of glycosylphosphatidylinositol membrane anchors. Biochem J 1995; 310:361–370.PubMedGoogle Scholar
  233. 233.
    Englund PT. The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu Rev Biochem 1993; 62:121–138.PubMedGoogle Scholar
  234. 234.
    Takeda J, Kinoshita T. GPI-anchor biosynthesis. Trends Biochem Sci 1995; 20:367–371.PubMedGoogle Scholar
  235. 235.
    Yeh ET, Kamitani T, Chang HM. Biosynthesis and processing of the glycosylphosphatidylinositol anchor in mammalian cells. Semin Immunol 1994; 6:73–80.PubMedGoogle Scholar
  236. 236.
    Kinoshita T, Ohishi K, Takeda J. GPI-anchor synthesis in mammalian cells: Genes, their products, and a deficiency. J Biochem (Tokyo) 1997; 122:251–257.Google Scholar
  237. 237.
    McConville MJ, Ferguson MA. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J 1993; 294:305–324.PubMedGoogle Scholar
  238. 238.
    Ferguson MA, Brimacombe JS, Cottaz S, et al. Glycosylphosphatidylinositol molecules of the parasite and the host. Parasitology 1994; 108 Suppl:S45–54.PubMedGoogle Scholar
  239. 239.
    Mensa-Wilmot K, LeBowitz JH, Chang KP, et al. A glycosylphosphatidylinositol (GPI)-negative phenotype produced in Leishmania major by GPI phospholipase C from Trypanosoma brucei: Topography of two GPI pathways. J Cell Biol 1994; 124:935–947.PubMedGoogle Scholar
  240. 240.
    Lindahl U, Höök, M. Glycosaminoglycans and their binding to biological macro-molecules. Annu Rev Biochem; 47:385–417.Google Scholar
  241. 241.
    Lidholt K. Biosynthesis of glycosaminoglycans in mammalian cells and in bacteria. Biochem Soc Trans 1997; 25:866–870.PubMedGoogle Scholar
  242. 242.
    Kjellén L, Lindahl U. Proteoglycans: Structures and interactions. Annu Rev Biochem 1991; 60:443–475. [Correction: Annu Rev Biochem 1992; 61:following viii]PubMedGoogle Scholar
  243. 243.
    Lechner J, Wieland F. Structure and biosynthesis of prokaryotic glycoproteins. Annu Rev Biochem 1989; 58:173–194.PubMedGoogle Scholar
  244. 244.
    Messner P. Chemical composition and biosynthesis of S-layers. In: Sleytr UB, Messner P, Pum D, et al, eds. Crystalline Bacterial Cell Surface Proteins. Austin: RG Landes Co., 1996:35–76.Google Scholar
  245. 245.
    Messner P. Bacterial glycoproteins. Glycoconj J 1997; 14:3–12.PubMedGoogle Scholar
  246. 246.
    Messner P, Sleytr UB. Bacterial surface layer glycoproteins. Glycobiology 1991; 1:545–551.PubMedGoogle Scholar
  247. 247.
    Mescher MF, Strominger JL. Purification and characterization of a prokaryotic glucoprotein from the cell envelope of Halobacterium salinarium. J Biol Chem 1976; 251:2005–2014.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Roslyn M. Bill
    • 1
  • Leigh Revers
    • 2
  • Iain B. H. Wilson
    • 3
  1. 1.The Lundberg LaboratoryUniversity of GöteborgGöteborgSweden
  2. 2.Department of Biochemistry ResearchThe Hospital for Sick ChildrenTorontoCanada
  3. 3.Department of Biochemistry ResearchUniversity of DundeeDundeeScotland

Personalised recommendations