And What About O-Linked Sugars?

  • Roslyn M. Bill
  • Leigh Revers
  • Iain B. H. Wilson


To many glycobiologists, O-linked oligosaccharides are proverbial ‘Cinderellas,’ uninvited to the glycosylation ball. This tendency to side-line O-linked sugars is most likely to have arisen because these structures are less easily classified than their N-linked ‘ugly sisters:’ indeed, their presence is often difficult to predict, there being no readily-identifiable peptide consensus sequence as is the case for N-linkages. Moreover, while eukaryotic glycoproteins can only be elaborated with three types of N-linked oligosaccharide (complex, hybrid or oligomannose), containing the signature core Man(β1–4)GlcNAc(β1–4)GlcNAc(β1-N)Asn, this situation is not paralleled in the world of O-linkages. In fact, the number of structurally-diverse classes of O-linked oligosaccharides continues to grow and it is likely that many unexpected linkages await discovery. As we have already seen in Chapter 2, and as we discuss below, these O-linked oligosaccharides can have important structural and functional effects on their protein partners, and for this reason alone, they should not be discounted.


Heparan Sulphate Chondroitin Sulphate Threonine Residue Keratan Sulphate Bovine Colostrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kjellén L, Lindahl U. Proteoglycans: Structures and interactions. Annu Rev Biochem 1991;60:443–475.PubMedGoogle Scholar
  2. 2.
    De Vries A, van den Neede J, Feeney RE. Primary structure of freezing point-depressing protein. J Biol Chem 1971; 246:305–308.Google Scholar
  3. 3.
    Butters TD, Hughes RC. Isolation and characterisation of mosquito cell membrane glycoproteins. Biochim Biophys Acta 1981; 640:655–671.PubMedGoogle Scholar
  4. 4.
    Strecker G, Wieruszeski J-M, Fontaine M-D, et al. Structure of the major neutral oligosaccharide-alditols released from egg jelly coats of Axolotl maculatum. Characterisation of the carbohydrate sequence GalNAc(β1–4)[Fuc(αl-3)]GlcNAc-(β1–3/6). Glycobiology 1994; 4:605–609.PubMedGoogle Scholar
  5. 5.
    Khoo K-H, Sarda S, Xu X, et al. A unique-3GalNAcβ1-4GlcNAcβ1-3Galαl-motif constitutes the repeating unit of the complex O-glycans derived from the cercarial glycocalyx of Schistosoma mansoni. J Biol Chem 1995; 270:17114–17123.PubMedGoogle Scholar
  6. 6.
    Shogren R, Gerken TA, Jentoft N. Role of glycosylation on the conformation and chain dimensions of O-linked glycoproteins: Light-scattering studies of ovine submaxillary mucin. Biochemistry 1989; 28:5525–5536.PubMedGoogle Scholar
  7. 7.
    Brockhausen I, Kuhns W. Glycoproteins and Human Disease. Austin: RG Landes Co., 1997.Google Scholar
  8. 8.
    Broudy VC, Tait JF, Powell JS. Recombinant human erythropoietin: Purification and analysis of carbohydrate linkage. Arch Biochem Biophys 1988; 265:329–336.PubMedGoogle Scholar
  9. 9.
    Robb RJ, Kutney RM, Panico M, et al. Amino acid sequence and post-translational modification of human interleukin 2. Proc Natl Acad Sci USA 1984; 81:6486–6490.PubMedGoogle Scholar
  10. 10.
    Maemura K, Fukuda M. Poly-N-acetyllactosaminyl O-glycans attached to leukosialin. The presence of sialyl Lex structures in O-glycans. J Biol Chem 1992; 267:24379–24386.PubMedGoogle Scholar
  11. 11.
    Kent PW. Exploration of glycoprotein structures: Sequences and consequences. Pestic Sci 1994; 41:209–228.Google Scholar
  12. 12.
    Gerken TA, Owens CL, Pasumarthy M. Determination of the site-specific O-glycosylation pattern of the porcine submaxillary mucin tandem repeat glycopeptide. Model proposed for the polypeptide:GalNAc transferase peptide binding site. J Biol Chem 1997; 272:9709–9719.PubMedGoogle Scholar
  13. 13.
    Barasch J, al-Awqati Q. Defective acidification of the biosynthetic pathway in cystic fibrosis. J Cell Sci 1993; Suppl. 17:229–233.Google Scholar
  14. 14.
    Veerman ECI, Bank CMC, Namavar F, et al. Sulphated glycans on oral mucin as receptors for Helicobacter pylori. Glycobiology 1997; 7:737–743.PubMedGoogle Scholar
  15. 15.
    Wilson IBH, Gavel Y, von Heijne G. Amino acid distributions around O-linked glycosylation sites. Biochem J 1991; 275:529–534.PubMedGoogle Scholar
  16. 16.
    Elhammer ÅP, Poorman RA, Brown E, et al. The specificity of UDP-GalNAc:poly-peptide N-acetylgalactosaminyltransferase as inferred from a database of in vivo substrates and from the in vitro glycosylation of proteins and peptides. J Biol Chem 1993;268:10029–10038.PubMedGoogle Scholar
  17. 17.
    Hansen JE, Lund O, Engelbrecht J, et al. Prediction of O-glycosylation of mammalian proteins: Specificity patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyl-transferase. Biochem J 1995; 308:801–813.PubMedGoogle Scholar
  18. 18.
    Hansen JE, Lund O, Rapacki K, et al. O-GLYCBASE version 2.0: A revised database of O-glycosylated proteins. Nucleic Acids Res 1997; 25:278–282.PubMedGoogle Scholar
  19. 19.
    Hansen JE, Lund O, Tolstrup N, et al. NetOGlyc: Prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj J 1998;15:115–130.PubMedGoogle Scholar
  20. 20.
    Clausen H, Bennett EP. A family of UDP-GalNAc:polypeptide N-acetyl-galactosaminyltransferases control the initiation of mucin-type O-linked glycosylation. Glycobiology 1996; 6:635–646.PubMedGoogle Scholar
  21. 21.
    Marth JD. Complexity in O-linked oligosaccharide biosynthesis engendered by multiple polypeptide N-acetylgalactosaminyltransferases. Glycobiology 1996; 6:701–705.PubMedGoogle Scholar
  22. 22.
    Nehrke K, Hagen FK, Ten Hagen KG, et al. Regulation of O-glycosylation. Glycoconj J 1997; 14:S8 (Abstract 14).Google Scholar
  23. 23.
    Gentzsch M, Tanner W. Protein-O-glycosylation in yeast: Protein specific mannosyl-transferases. Glycobiology 1997; 7:481–486.PubMedGoogle Scholar
  24. 24.
    Roth J. Cytochemical localization of terminal N-acetyl-D-galactosamine residues in cellular compartments of intestinal goblet cells: Implications for the topology of O-glycosylation. J Cell Biol 1984; 98:399–406.PubMedGoogle Scholar
  25. 25.
    Roth J, Wang Y, Eckhardt AE, et al. Subcellular localization of the UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-mediated O-glycosylation reaction in the submaxillary gland. Proc Natl Acad Sci USA 1994; 91:8935–8939.PubMedGoogle Scholar
  26. 26.
    Piller V, Piller F, Fukuda M. Biosynthesis of truncated O-glycans in the T cell line Jurkat. Localization of O-glycan initiation. J Biol Chem 1990; 265:9264–9271.PubMedGoogle Scholar
  27. 27.
    Krijnse-Locker J, Ericsson M, Rottierm PJM, and Griffiths G. Characterisation of the budding compartment of mouse hepatitis virus: Evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J Cell Biol 1994; 124:55–70.PubMedGoogle Scholar
  28. 28.
    Crommie D, Rosen SD. Biosynthesis of GlyCAM-1, a mucin-like ligand for L-selectin. J Biol Chem 1995; 270:22614–22624.PubMedGoogle Scholar
  29. 29.
    Nehrke K, Tabak LA. Biosynthesis of a low-molecular-mass rat submandibular gland mucin glycoprotein in COS7 cells. Biochem J 1997; 323:497–502.PubMedGoogle Scholar
  30. 30.
    McGuire EJ, Roseman S. Enzymatic synthesis of the protein-hexosamine linkage in sheep submaxillary mucin. J Biol Chem 1967; 242:3745–3747.PubMedGoogle Scholar
  31. 31.
    Kaufman RJ, Swaroop M, Murthariel P. Depletion of manganese within the secretory pathway inhibits O-linked glycosylation in mammalian cells. Biochemistry 1994; 33:9813–9819.PubMedGoogle Scholar
  32. 32.
    Murray BW, Takayama S, Schultz J, et al. Mechanism and specificity of human α-1,3-fucosyltransferase V. Biochemistry 1996; 35:11183–11195.PubMedGoogle Scholar
  33. 33.
    Kingsley DM, Kozarsky KF, Hobbie L, et al. Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-Gal/UDP-GalNAc 4-epimerase deficient mutant. Cell 1986; 44:749–759.PubMedGoogle Scholar
  34. 34.
    O’Connell BC, Hagen FK, Tabak LA. The influence of flanking sequence on the O-glycosylation of threonine in vitro. J Biol Chem 1992; 267:25010–25018.Google Scholar
  35. 35.
    Wang Y, Agrwal N, Eckhardt AE, et al. The acceptor substrate specificity of porcine submaxillary UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase is dependent on the amino acid sequences adjacent to serine and threonine residues. J Biol Chem 1993; 268:22979–22983.PubMedGoogle Scholar
  36. 36.
    Cottrell JM, Hall RL, Sturton RG, et al. Polypeptide N-acetylgalactosaminyltransferase activity in tracheal epithelial microsomes. Biochem J 1992; 283:299–305.PubMedGoogle Scholar
  37. 37.
    Lloyd KO, Burchell J, Kudryashov V, et al. Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. Demonstration of simpler and fewer glycan chains in tumour cells. J Biol Chem 1996;271:33325–33334.PubMedGoogle Scholar
  38. 38.
    Nishimori I, Johnson NR, Sanderson SD, et al. Influence of acceptor substrate primary amino acid sequence on the activity of human UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase. Studies with the MUC1 tandem repeat. J Biol Chem 1994; 269:16123–16130.PubMedGoogle Scholar
  39. 39.
    Stadie TRE, Chai WG, Lawson AM, et al. Studies on the order and site specificity of GalNAc transfer to MUC1 tandem repeats by UDP-GalNAc:polypeptide N-acetyl-galactosaminyltransferase from milk or mammary carcinoma cells. Eur J Biochem 1995;229:140–147.PubMedGoogle Scholar
  40. 40.
    Sugahara T, Pixley MR, Fares F, et al. Characterization of the O-glycosylation sites in the chorionic gonadotropin β subunit in vivo using site-directed mutagenesis and gene transfer. J Biol Chem 1996; 271:20797–20804.PubMedGoogle Scholar
  41. 41.
    Elliott S, Bartley T, Delorme E, et al. Structural requirements for addition of O-linked carbohydrate to recombinant erythropoietin. Biochemistry 1994; 33:11237–11245.PubMedGoogle Scholar
  42. 42.
    Nehrke K, Hagen FK, Tabak LA. Charge distribution of flanking amino acids influences O-glycan acquisition in vivo. J Biol Chem 1996; 271:7061–7065.PubMedGoogle Scholar
  43. 43.
    Nehrke K, Ten Hagen KG, Hagen FK, Tabak LA. Charge distribution of flanking amino acids inhibits O-glycosylation of several single-site acceptors in vivo. Glycobiology 1997; 7:1053–1060.PubMedGoogle Scholar
  44. 44.
    Brockhausen I, Toki D, Brockhausen J, et al. Specificity of O-glycosylation by bovine colostrum UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferase using synthetic glycopeptide substrates. Glycoconj J 1996; 13:849–856.PubMedGoogle Scholar
  45. 45.
    Yoshida A, Suzuki M, Ikenaga H, et al. Discovery of the shortest sequence motif for high level mucin-type O-glycosylation. J Biol Chem 1997; 272:16884–16888.PubMedGoogle Scholar
  46. 46.
    Hennebicq S, Tataert D, Soudan B, et al. Influence of the amino acid sequence on the MUC5AC motif peptide O-glycosylation by human gastric UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase(s). Glycoconj J 1998; 15:275–282.PubMedGoogle Scholar
  47. 47.
    Wandall HH, Hassan H, Mirgorodskaya E, et al. Substrate specificities of three members of the human UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetyl-galactosaminyltransferase family, GalNAc-T1,-T2 and-T3. J Biol Chem 1997; 272:23503–23514.PubMedGoogle Scholar
  48. 48.
    Hagen FK, van Wuyckhuyse B, Tabak LA. Purification, cloning, and expression of a bovine UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. J Biol Chem 1993;268:18960–18965.PubMedGoogle Scholar
  49. 49.
    Elhammer A, Kornfeld S. Purification and characterization of UDP-N-acetyl-galactosamine:polypeptide N-acetylgalactosaminyltransferase from bovine colostrum and murine lymphoma BW5147 cells. J Biol Chem 1986; 261:5249–5255.PubMedGoogle Scholar
  50. 50.
    Homa FL, Hollander T, Lehman DJ, et al. Isolation and expression of a cDNA clone encoding a bovine UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. J Biol Chem 1993; 268:12609–12616.PubMedGoogle Scholar
  51. 51.
    Wragg S, Hagen, FK, Tabak LA. Identification of essential histidine residues in UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase-T1. Biochem J 1997;328:193–197.PubMedGoogle Scholar
  52. 52.
    Marth JD. Recent advances in gene mutagenesis by site-directed recombination. J Clin Invest 1996; 97:1999–2002.PubMedGoogle Scholar
  53. 53.
    Hennet T, Hagen FK, Tabak LA et al. T-cell-specific deletion of a polypeptide N-acetylgalactosaminyltransferase gene by site-directed recombination. Proc Natl Acad Sci USA 1995; 92:12070–12074.PubMedGoogle Scholar
  54. 54.
    Yoshida A, Hara T, Ikenaga H, et al. Cloning and expression of a porcine UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. Glycoconj J 1995; 12:824–828.PubMedGoogle Scholar
  55. 55.
    Hagen FK, Gregoire CA, Tabak LA. Cloning and sequence homology of a rat UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. Glycoconj J 1995; 12:901–909.PubMedGoogle Scholar
  56. 56.
    Hagen FK, TenHagen KG, Beres TM, et al. cDNA cloning and expression of a novel UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. J Biol Chem 1997; 272:13843–13848.PubMedGoogle Scholar
  57. 57.
    White T, Bennett EP, Takio K, et al. Purification and cDNA cloning of a human UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. J Biol Chem 1995;270:24156–24165.PubMedGoogle Scholar
  58. 58.
    Meurer JA, Drong RF, Homa FL, et al. Organization of a human UDP-GalNAc:poly-peptide N-acetylgalactosaminyltransferase gene and a related processed pseudogene. Glycobiology 1996; 6:231–241.PubMedGoogle Scholar
  59. 59.
    Takai S, Hinoda Y, Adachi T, et al. A human UDP-GalNAc:polypeptide N-acetyl-galactosaminyltranferase type 1 gene is located at the chromosomal region 18q12.1. Hum Genet 1997; 99:293–294.PubMedGoogle Scholar
  60. 60.
    Takai S, Hinoda Y, Adachi T, et al. Assignment of the human UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase-type-2 gene to chromosomal region 1q42 by fluorescence in situ hybridization. Jpn J Hum Genet 1997; 42:237–240.PubMedGoogle Scholar
  61. 61.
    Sørensen T, White T, Wandall HH, et al. UDP-N-acetyl-α-D-galactosamine:polypeptided N-acetylgalactosaminyltransferase. Identification and separation of two distinct transferase activities. J Biol Chem 1995; 270:24166–24173.PubMedGoogle Scholar
  62. 62.
    Bennett EP, Hassan H, Clausen H. cDNA cloning and expression of a novel human UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase, GalNAc-T3. J Biol Chem 1996; 271:17006–17012.PubMedGoogle Scholar
  63. 63.
    Wang Y, Abernethy JL, Eckhardt AE, et al. Purification and characterisation of a UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase specific for glycosylation of threonine residues. J Biol Chem 1992; 267:12709–12716.PubMedGoogle Scholar
  64. 64.
    Zara J, Hagen FK, Ten Hagen KG, et al. Cloning and expression of mouse UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase-T3. Biochem Biophys Res Commun 1996; 228:38–44.PubMedGoogle Scholar
  65. 65.
    Schachter H, Brockhausen I. The biosynthesis of serine(threonine)-N-acetyl-galactosamine-linked carbohydrate moieties. In: Allen HJ, Kisailus EC, eds. Glycoconjugates. Composition, structure and function. New York: Marcel Dekker, Inc., 1992:263–332.Google Scholar
  66. 66.
    Schachter H. Biosynthetic controls that determine the branching and microhetero-geneity of protein-bound oligosaccharides. Biochem Cell Biol 1986; 64:163–181.PubMedGoogle Scholar
  67. 67.
    King MJ, Chan A, Roe R, et al. Two different glycosyltransferase defects that result in GalNAc α-O-peptide (Tn) expression. Glycobiology 1994; 4:267–279.PubMedGoogle Scholar
  68. 68.
    Granovsky M, Bielfeldt T, Peters S, et al. UDP-Galactose:glycoprotein-N-acetyl-D-galactosamine 3-β-D-galactosyltransferase activity synthesizing O-glycan core 1 is controlled by the amino acid sequence and glycosylation of glycopeptide substrates. Eur J Biochem 1994; 221:1039–1046.PubMedGoogle Scholar
  69. 69.
    Brockhausen I, Orr J, Schachter H. Mucin synthesis. The action of pig gastric mucosal UDP-GlcNAc:Galβ1-3(R1)GalNAc-R2 (GlcNAc to Gal) β3-N-acetylglucosaminyl-transferase on high molecular weight substrates. Can J Biochem Cell Biol 1984; 62:1081–1090.PubMedGoogle Scholar
  70. 70.
    Kuhns W, Jain RK, Matta KL, et al. Characterization of a novel mucin sulpho-transferase activity synthesizing sulphated O-glycan core 1, 3-sulphate-Galβ1-3GalNAcα-R. Glycobiology 1995; 5:689–697.PubMedGoogle Scholar
  71. 71.
    Williams D, Schachter H. Mucin synthesis. I. Detection in canine submaxillary glands of an N-acetylglucosaminyltransferase which acts on mucin substrates. J Biol Chem 1980;255:11247–11252.PubMedGoogle Scholar
  72. 72.
    Williams D, Longmore GD, Matta KL, et al. Mucin synthesis. II. Substrate specificity and product identification studies on canine submaxillary gland UDP-GlcNAc:Galβ1-3-GalNAc (GlcNAc to GalNAc) β6-N-acetylglucosaminyltransferase. J Biol Chem 1980; 255:11253–11261.PubMedGoogle Scholar
  73. 73.
    Ropp PA, Little MR, Cheng PW. Mucin biosynthesis: Purification and characterization of a mucin β6-N-acetylglucosaminyltransferase. J Biol Chem 1991; 266:23863–23871.PubMedGoogle Scholar
  74. 74.
    Skrincosky D, Kain R, El-Battari A, et al. Altered Golgi localisation of core 2 β-1,6-N-acetylglucosaminyltransferase leads to decreased synthesis of branched O-glycans. J Biol Chem 1997; 272:22695–22702.PubMedGoogle Scholar
  75. 75.
    Whitehouse C, Burchell J, Gschmeissner S, et al. A transfected sialyltransferase that is elevated in breast cancer and localizes to the medial/trans-Goigi apparatus inhibits the development of core-2-based O-glycans. J Cell Biol 1997; 137:1229–1241.PubMedGoogle Scholar
  76. 76.
    Kuhns W, Rutz V, Paulsen H, et al. Processing of O-Glycan core 1, Galβl-3GalNAcα-R. Specificities of core 2, UDP-GlcNAc:Galβ1-3GalNAc-R (GlcNAc to GalNAc) β6-N-acetylglucosaminyltransferase and CMP-sialic acid:Galβ1-3GalNAc-R α3-sialyl-transferase. Glycoconj J 1993; 10:381–394.PubMedGoogle Scholar
  77. 77.
    Bierhuizen MF, Fukuda M. Expression cloning of a cDNA encoding UDP-GlcNAc:Gal β1-3-GalNAc-R (GlcNAc to GalNAc) β1-6GlcNAc transferase by gene transfer into CHO cells expressing polyoma large tumor antigen. Proc Natl Acad Sci USA 1992; 89:9326–9330.PubMedGoogle Scholar
  78. 78.
    Toki D, Sarkar M, Yip B, et al. Expression of stable human O-glycan core 2 β-1,6-N-acetylglucosaminyltransferase in Sf9 insect cells. Biochem J 1997; 325:63–69.PubMedGoogle Scholar
  79. 79.
    Bierhuizen MF, Maemura K, Fukuda M. Isolation and characterization of a pseudogene related to human core 2 β-1,6-N-acetylglucosaminyltransferase. Glycoconj J 1995; 12:857–864.PubMedGoogle Scholar
  80. 80.
    Sekine M, Hashimoto Y, Suzuki M, et al. Purification and characterization of UDP-GlcNAc:IV3βGal-Gb4Cer β-1,6-GlcNAc transferase from mouse kidney. J Biol Chem 1994;269:31143–31148.PubMedGoogle Scholar
  81. 81.
    Brockhausen I, Yang JM, Burchell J, et al. Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur J Biochem 1995; 233:607–617.PubMedGoogle Scholar
  82. 82.
    Yousefi S, Higgins E, Daoling Z, et al. Increased UDP-GlcNAc:Galβ1-3GalNAc-R (GlcNAc to GalNAc) β-1,6-N-acetylglucosaminyltransferase activity in metastatic murine tumor cell lines. Control of polylactosamine synthesis. J Biol Chem 1991; 266:1772–1782.PubMedGoogle Scholar
  83. 83.
    Datti A, Dennis JW. Regulation of UDP-GlcNAc:Galβ1-3GalNAc-R β1-6-N-acetyl-glucosaminyltransferase (GlcNAc to GalNAc) in Chinese hamster ovary cells. J Biol Chem 1993; 268:5409–5416.PubMedGoogle Scholar
  84. 84.
    Heffernan M, Lotan R, Amos B, et al. Branching β1-6-N-acetylglucosaminetransferases and polylactosamine expression in mouse F9 teratocarcinoma cells and differentiated counterparts. J Biol Chem 1993; 268:1242–1251.PubMedGoogle Scholar
  85. 85.
    Dennis JW. Core 2 GlcNAc-transferase and polylactosamine expression in O-glycans. Glycobiology 1993;3:91–93.PubMedGoogle Scholar
  86. 86.
    Piller F, Le Deist F, Weinberg KI, et al. Altered O-glycan synthesis in lymphocytes from patients with Wiskott-Aldrich syndrome. J Exp Med 1991; 173:1501–1510.PubMedGoogle Scholar
  87. 87.
    Higgins EA, Siminovitch KA, Zhuang D, et al. Aberrant O-linked oligosaccharide biosynthesis in lymphocytes and platelets from patients with the Wiskott-Aldrich syndrome. J Biol Chem 1991; 266:6280–6290.PubMedGoogle Scholar
  88. 88.
    Tsuboi S, Fukuda M. Branched O-linked oligosaccharides ectopically expressed in transgenic mice reduce primary T-cell immune responses. EMBO J 1997; 16:6343–6373.Google Scholar
  89. 89.
    Brockhausen I, Williams D, Matta KL, et al. Mucin synthesis. III. UDP-GlcNAc:Gal-β1-3(GlcNAcβ1-3)GalNAc-R (GlcNAc to Gal) β3-N-acetylglucosaminyltransferase, an enzyme in porcine gastric mucosa involved in the elongation of mucin-type oligosaccharides. Can J Biochem Cell Biol 1983; 61:1322–1333.PubMedGoogle Scholar
  90. 90.
    Barran P, Fellinger W, Warren CE, et al. Modification of CD43 and other lymphocyte O-glycoproteins by core 2 N-acetylglucosaminyltransferase. Glycobiology 1997; 7:129–136.PubMedGoogle Scholar
  91. 91.
    Wilkins PP, McEver RP, Cummings RD. Structures of the O-glycans on P-selectin glycoprotein ligand-1 from HL-60 cells. J Biol Chem 1996; 271:18732–18742.PubMedGoogle Scholar
  92. 92.
    Lo-Guidice JM, Perini JM, Lafitte JJ, et al. Characterization of a sulfotransferase from human airways responsible for the 3-O-sulfation of terminal galactose in N-acetyl-lactosamine-containing mucin carbohydrate chains. J Biol Chem 1995; 270:27544–27550.PubMedGoogle Scholar
  93. 93.
    Degroote S, Lo-Guidice J-M, Strecker G, et al. Characterisation of an N-acetyl-glucosamine-6-O-sulphotransferase from human respiratory mucosa active on mucin carbohydrate chains. J Biol Chem 1997; 272:29493–29501.PubMedGoogle Scholar
  94. 94.
    Brockhausen I, Matta KL, Orr J, et al. Mucin synthesis. VI. UDP-GlcNAc:GalNAc-R β3-N-acetylglucosaminyltransferase and UDP-GlcNAc:GlcNAcβ1-3GalNAc-R (GlcNAc to GalNAc) β6-N-acetylglucosaminyltransferase from pig and rat colon mucosa. Biochemistry 1985; 24:1866–1874.PubMedGoogle Scholar
  95. 95.
    Yang JM, Byrd JC, Siddiki BB, et al. Alterations of O-glycan biosynthesis in human colon cancer tissues. Glycobiology 1994; 4:873–884.PubMedGoogle Scholar
  96. 96.
    Vavasseur F, Yang JM, Dole K, et al. Synthesis of O-glycan core 3: Characterization of UDP-GlcNAc:GalNAc-R β3-N-acetylglucosaminyltransferase activity from colonic mucosal tissues and lack of the activity in human cancer cell lines. Glycobiology 1995; 5:351–357.PubMedGoogle Scholar
  97. 97.
    Chang ML, Eddy RL, Shows TB, et al. Three genes that encode human β-galactoside α2,3-sialyltransferases. Structural analysis and chromosomal mapping studies. Glycobiology 1995; 5:319–325.PubMedGoogle Scholar
  98. 98.
    Wen DX, Livingston BD, Medzihradszky KF, et al. Primary structure of Galβ 1,3(4)-GlcNAc β2,3-sialyltransferase determined by mass spectrometry sequence analysis and molecular cloning. J Biol Chem 1992; 267:21011–21019.PubMedGoogle Scholar
  99. 99.
    Kitagawa H, Paulson JC. Cloning of a novel α2,3-sialyltransferase that sialylates glycoprotein and glycolipid carbohydrate groups. J Biol Chem 1994; 269:1394–1401.PubMedGoogle Scholar
  100. 100.
    Sasaki K, Watanabe E, Kawashima K, et al. Expression cloning of a novel Galβ(1-3/ 1-4)GlcNAc α2,3-sialyltransferase using lectin resistance selection. J Biol Chem 1993; 268:22782–22787.PubMedGoogle Scholar
  101. 101.
    Kono M, Ohyama Y, Lee Y-C, et al. Mouse β-galactoside α2,3-sialyltransferases: Comparison of in vitro substrate specificities and tissue specific expression. Glycobiology 1997; 7:469–479.PubMedGoogle Scholar
  102. 102.
    Sadler JE, Rearick JI, Paulson JC, et al. Purification to homogeneity of a β-D-galactoside α2→3-sialyltransferase and partial purification of an α-N-acetyl-galactosaminide α2→6 sialyltransferase from porcine submaxillary glands. J Biol Chem 1979; 254:4434–4443.PubMedGoogle Scholar
  103. 103.
    Rearick JI, Sadler JE, Paulson JC, et al. Enzymatic characterisation of β-D-galactoside α2→3 sialyltransferase from porcine submaxillary gland. J Biol Chem 1979; 254:4444–4451.PubMedGoogle Scholar
  104. 104.
    Gillespie W, Kelm S, Paulson JC. Cloning and expression of the Galβ1,3GalNAc α2,3-sialyltransferase. J Biol Chem 1992; 267:21004–21010.PubMedGoogle Scholar
  105. 105.
    Lee YC, Kurosawa N, Hamamoto T, et al. Molecular cloning and expression of Gal-β-1,3GalNAc β-2,3-sialytransferase from mouse brain. Eur J Biochem 1993; 216:377–385.PubMedGoogle Scholar
  106. 106.
    Kurosawa N, Hamamoto T, Inoue M, et al. Molecular cloning and expression of chick Galβ1,3GalNAc α2,3-sialyltransferase. Biochem Biophys Acta 1995; 1244:216–222.PubMedGoogle Scholar
  107. 107.
    Kitagawa H, Paulson JC. Differential expression of five sialyltransferase genes in human tissues. J Biol Chem 1994; 269:17872–17878.PubMedGoogle Scholar
  108. 108.
    Priatel JJ, Marth JD. ST3Gal I-deficient mice display increased reactivity to the galactose-binding lectins peanut agglutinin and jacalin. Glycobiology 1997; 7:1051 (Abstract 145).Google Scholar
  109. 109.
    Kojima N, Lee YC, Hamamoto T, et al. Kinetic properties and acceptor substrate preferences of two kinds of Gal β1,3GalNAc α2,3-sialyltransferase from mouse brain. Biochemistry 1994; 33:5772–5776.PubMedGoogle Scholar
  110. 110.
    Hamamoto T, Kurosawa N, Lee YC, et al. Donor substrate specificities of Galβ1,4-GlcNAc α2,6-sialyltransferase and Gal β1,3GalNAc α2,3-sialyltransferase: Comparison of N-acetyl and N-glycolylneuraminic acids. Biochim Biophys Acta 1995; 1244:223–228.PubMedGoogle Scholar
  111. 111.
    Lee YC, Kojima N, Wada E, et al. Cloning and expression of cDNA for a new type of Gal β1,3GalNAc α2,3-sialyltransferase. J Biol Chem 1994; 269:10028–10033.PubMedGoogle Scholar
  112. 112.
    Kim YJ, Kim KS, Kim SH, et al. Molecular cloning and expression of human Galβ1,3-GalNAc α2,3-sialyltransferase (hST3Gal II). Biochem Biophys Res Commun 1996; 228:324–327.PubMedGoogle Scholar
  113. 113.
    Giordanengo V, Bannwarth S, Laffont C, et al. Cloning and expression of cDNA for a human Gal(β1-3)GalNAc α2,3-sialyltransferase from the CEM T-cell line. Eur J Biochem 1997; 247:558–566.PubMedGoogle Scholar
  114. 114.
    Sadler JE, Rearick JI, Hill RL. Purification to homogeneity and enzymatic characterization of an α-N-acetylgalactosaminide α2-6-sialyltransferase from porcine submaxillary glands. J Biol Chem 1979; 254:5934–5941.PubMedGoogle Scholar
  115. 115.
    Kurosawa N, Hamamoto T, Lee YC, et al. Molecular cloning and expression of GalNAc α2,6-sialyltransferase. J Biol Chem 1994; 269:1402–1409.PubMedGoogle Scholar
  116. 116.
    Kurosawa N, Kojima N, Inoue M, et al. Cloning and expression of Galβ1,3GalNAc-specific GalNAc α2,6-sialyltransferase. J Biol Chem 1994; 269:19048–19053.PubMedGoogle Scholar
  117. 117.
    Kurosawa N, Inoue M, Yoshida Y, et al. Molecular cloning and genomic analysis of mouse Galβ1,3GalNAc-specific GalNAc α2,6-sialyltransferase. J Biol Chem 1996; 271:15109–15116.PubMedGoogle Scholar
  118. 118.
    Sjoberg ER, Kitagawa H, Glushka J, et al. Molecular cloning of a developmentally regulated N-acetylgalactosamine α2,6-sialyltransferase specific for sialylated glycoconjugates. J Biol Chem 1996; 271:7450–7459.PubMedGoogle Scholar
  119. 119.
    Torres C-R, Hart GW. Topography and polypeptide distribution of terminal N-acetyl-glucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem 1984; 259:3308–3317.PubMedGoogle Scholar
  120. 120.
    Hart GW, Kreppel LK, Comer FI, et al. O-GlcNAcylation of key nuclear and cytoskeletal proteins: Reciprocity with O-phosphorylation and putative roles in protein multimerization. Glycobiology 1996; 6:711–716.PubMedGoogle Scholar
  121. 121.
    Dong DY, Xu ZS, Chevrier MR, et al. Glycosylation of mammalian neurofilaments. Localization of multiple O-linked N-acetylglucosamine moieties on neurofilament polypeptides L and M. J Biol Chem 1993; 268:16679–16687.PubMedGoogle Scholar
  122. 122.
    D’Onofrio M, Starr CM, Park MK, et al. Partial cDNA sequence encoding a nuclear pore protein modified by O-linked N-acetylglucosamine. Proc Natl Acad Sci USA 1988; 85:9595–9599.Google Scholar
  123. 123.
    Arnold CS, Johnson GVW, Cole RN, et al. The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J Biol Chem 1996; 271:28741–28744.PubMedGoogle Scholar
  124. 124.
    Yki-Järvinen H, Vogt C, Pipek R, et al. UDP-N-acetylglucosamine transferase and glutamine:fructose 6-phosphate amidotransferase activities in insulin-sensitive tissues. Diabetologia 1997; 40:76–81.PubMedGoogle Scholar
  125. 125.
    Dong DLY, Hart GW. Purification and characterization of an O-GlcNAc selective N-acetyl-β-D-glucosaminidase from rat spleen cytosol. J Biol Chem 1994; 269:19321–19330.PubMedGoogle Scholar
  126. 126.
    Haltiwanger RS, Grove K, Philipsberg GA. Modulation of O-linked N-acetyl-glucosamine levels on nuclear and cytoplasmic proteins in vivo using the peptide O-GlcNAc-β-N-acetylglucosaminidase inhibitor O-(2-acetamido-2-deoxy-D-gluco-pyranosylidene)amino-N-phenylcarbamate. J Biol Chem 1998; 273:3611–3617.PubMedGoogle Scholar
  127. 127.
    Kreppel LK, Blomberg MA, Hart GW. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem 1997; 272:9308–9315.PubMedGoogle Scholar
  128. 128.
    Lubas WA, Frank DW, Krause M, et al. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J Biol Chem 1997; 272:9316–9324.PubMedGoogle Scholar
  129. 129.
    Haltiwanger RS, Holt GD, Hart GW. Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. β-N-Acetylglucosaminyltransferase. J Biol Chem 1990; 265:2563–2568.PubMedGoogle Scholar
  130. 130.
    Haltiwanger RS, Blomberg MA, Hart GW. Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetyl-glucosamine:polypeptide β-N-acetylglucosaminyltransferase. J Biol Chem 1992; 267:9005–9013.PubMedGoogle Scholar
  131. 131.
    Harris RJ, Spellman MW. O-Linked fucose and other post-translational modifications unique to EGF modules. Glycobiology 1993; 3:219–224.PubMedGoogle Scholar
  132. 132.
    Hallgren P, Lundblad A, Svensson S. A new type of carbohydrate-protein linkage in a glycopeptide from normal human urine. J Biol Chem 1975; 250:5312–5314.PubMedGoogle Scholar
  133. 133.
    Kentzer EJ, Buko A, Menon G, et al. Carbohydrate composition and presence of a fucose-protein linkage in recombinant human pro-urokinase. Biochem Biophys Res Commun 1990; 171:401–406.PubMedGoogle Scholar
  134. 134.
    Buko AM, Kentzer EJ, Petros A, et al. Characterisation of a posttranslational fucosylation in the growth factor domain of urinary plasminogen activator. Proc Natl Acad Sci USA 1991; 88:3992–3996.PubMedGoogle Scholar
  135. 135.
    Harris RJ, Leonard CK, Guzzetta AW, et al. Tissue plasminogen activator has an O-linked fucose attached to threonine-61 in the epidermal growth factor domain. Biochemistry 1991; 30:2311–2314.PubMedGoogle Scholar
  136. 136.
    Nishimura H, Takao T, Hase S, et al. Human factor IX has a tetrasaccharide O-glycosidically linked to serine 61 through the fucose residue. J Biol Chem 1992; 267:17520–17525.PubMedGoogle Scholar
  137. 137.
    Harris RJ, van Halbeek H, Glushka J, et al. Identification and structural analysis of the tetrasaccharide NeuAcα(2→6)Galβ(1→4)GlcNAcβ(1→3)Fucα1→O linked to serine 61 of human factor IX. Biochemistry 1993; 32:6539–6547.PubMedGoogle Scholar
  138. 138.
    Stults NL, Cummings RD. O-Linked fucose in glycoproteins from Chinese hamster ovary cells. Glycobiology 1993; 3:589–596.PubMedGoogle Scholar
  139. 139.
    Moloney DJ, Lin AI, Haltiwanger RS. The O-linked fucose glycosylation pathway. Evidence for protein-specific elongation of O-linked fucose in Chinese hamster ovary cells. J Biol Chem 1997; 272:19046–19050.PubMedGoogle Scholar
  140. 140.
    Wang Y, Lee GF, Kelley RF, et al. Identification of a GDP-L-fucose:polypeptide fucosyltransferase and enzymatic addition of O-linked fucose to EGF domains. Glycobiology 1996; 6:837–842.PubMedGoogle Scholar
  141. 141.
    Wang Y, Wu K, Harris R, et al. Purification and molecular cloning of a GDP-fucose:polypeptide fucosyltransferase specific for EGF domain glycosylation. Glycobiology 1997; 7:1033 (Abstract 1075).Google Scholar
  142. 142.
    Nishimura H, Kawabata S, Kisiel W, et al. Identification of a disaccharide (Xyl-Glc) and a trisaccharide (Xyl2-Glc) O-glycosidically linked to a serine residue in the first epidermal growth factor-like domain of human factors VII and IX and protein Z and bovine protein Z. J Biol Chem 1989; 264:20320–20325.PubMedGoogle Scholar
  143. 143.
    Hase S, Nishimura H, Kawabata S, et al. The structure of (xylose)2glucose-O-serine 53 found in the first epidermal growth factor-like domain of bovine blood clotting factor IX. J Biol Chem 1990; 265:1858–1861.PubMedGoogle Scholar
  144. 144.
    Rodén L. Structure and metabolism of connective tissue proteoglycans. In: Lennarz WJ, ed. The Biochemistry of Glycoproteins and Proteoglycans. New York and London: Plenum Press, 1980:267–317.Google Scholar
  145. 145.
    Bourin M-C, Öhlin A-K, Lane DA, et al. Relationship between anticoagulant activities and polyanionic properties of rabbit thrombomodulin. J Biol Chem 1988; 263:8044–8052.PubMedGoogle Scholar
  146. 146.
    Gerlitz B, Hassell T, Vlahos CJ, et al. Identification of the predominant glycosamino-glycan-attachment site in soluble recombinant human thrombomodulin: Potential regulation of functionality by glycosyltransferase competition for serine-474. Biochem J 1993; 295:131–140.PubMedGoogle Scholar
  147. 147.
    Baker JR, Rodén L, Stoolmiller AC. Biosynthesis of chondrotin sulphate proteoglycan. Xylosyl transfer to Smith-degraded cartilage proteoglycan and other exogenous acceptors. J Biol Chem 1972; 247:3838–3847.PubMedGoogle Scholar
  148. 148.
    Esko JD, Stewart TE, Taylor WH. Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc Natl Acad Sci USA 1985; 82:3197–3201.PubMedGoogle Scholar
  149. 149.
    Esko JD, Zhang L. Influence of core protein sequence on glycosaminoglycan assembly. Curr Opin Struct Biol 1996; 6:663–670.PubMedGoogle Scholar
  150. 150.
    Zimmermann DR, Ruohslahti E. Multiple domains of the large fibroblast proteoglycan, versican. EMBO J 1989; 8:2975–2981.PubMedGoogle Scholar
  151. 151.
    Bourdon MA, Krusius T, Campbell S, et al. Identification and synthesis of a recognition signal for the attachment of glycosaminoglycans to proteins. Proc Natl Acad Sci USA 1987;84:3194–3198.PubMedGoogle Scholar
  152. 152.
    Huber S, Winterhalter KH, Vaughan L. Isolation and sequence analysis of the glycosaminoglycan attachment site of type IX collagen. J Biol Chem 1988; 263:752–756.PubMedGoogle Scholar
  153. 153.
    Mann DM, Yamaguchi Y, Bourdon MA, et al. Analysis of glycosaminoglycan substitution in decorin by site-directed mutagenesis. J Biol Chem 1990; 265:5317–5323.PubMedGoogle Scholar
  154. 154.
    Brinkmann T, Welke C, Kleesiek K. Recognition of acceptor proteins by UDP-D-xylose proteoglycan core protein β-D-xylosyltransferase. J Biol Chem 1997; 272:11171–11175.PubMedGoogle Scholar
  155. 155.
    Helting T, Rodén L. Biosynthesis of chondroitin sulphate. I. Galactosyl transfer in the formation of the carbohydrate-protein linkage region. J Biol Chem 1969; 244:2790–2798.PubMedGoogle Scholar
  156. 156.
    Esko JD, Weinke JL, Taylor WH, et al. Inhibition of chondroitin and heparan sulphate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I. J Biol Chem 1987; 262:12189–12195.PubMedGoogle Scholar
  157. 157.
    Etchison JR, Srikrishna G, Freeze HH. A novel method to co-localize glycosamino-glycan-core oligosaccharide glycosyltransferases in rat liver Golgi. Co-localization of galactosyltransferase I with a sialyltransferase. J Biol Chem 1995; 270:756–764.PubMedGoogle Scholar
  158. 158.
    Helting T, Rodén L. Biosynthesis of chondroitin sulphate. II. Glucuronosyl transfer in the formation of the carbohydrate-protein linkage region. J Biol Chem 1969; 244:2799–2805.PubMedGoogle Scholar
  159. 159.
    Kitagawa H, Tone Y, Tamura J-i, et al. Molecular cloning and expression of glucuronyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J Biol Chem 1998; 273:6615–6618.PubMedGoogle Scholar
  160. 160.
    Sugahara K, Ohkita Y, Shibata Y, et al. Structural studies on the hexasaccharide alditols isolated from the carbohydrate linkage region of dermatan sulphate proteoglycans of bovine aorta. Demonstration of iduronic acid-containing components. J Biol Chem 1995; 270:7204–7212.PubMedGoogle Scholar
  161. 161.
    Rohrmann K, Niemann R, Buddecke E. Two N-acetylgalactosaminyltransferases are involved in the biosynthesis of chondroitin sulphate. Eur J Biochem 1985; 148:463–469.PubMedGoogle Scholar
  162. 162.
    Kitagawa H, Ujikawa M, Tsutsumi K, et al. Characterisation of serum β-glucuronyl-transferase involved in chondroitin sulphate biosynthesis. Glycobiology 1997; 7:905–911.PubMedGoogle Scholar
  163. 163.
    Kitagawa H, Tanaka Y, Tsuchida K, et al. N-Acetylgalactosamine (GalNAc) transfer to the common carbohydrate-protein linkage region of sulfated glycosaminoglycans. Identification of UDP-GalNAc:chondro-oligosaccharide α-N-acetylgalactosaminyl-transferase in fetal bovine serum. J Biol Chem 1995; 270:22190–22195.PubMedGoogle Scholar
  164. 164.
    Fritz TA, Gabb MM, Wei G, et al. Two N-acetylglucosaminyltransferases catalyze the biosynthesis of heparan sulfate. J Biol Chem 1994; 269:28809–28814.PubMedGoogle Scholar
  165. 165.
    Pettersson I, Kusche M, Unger E, et al. Biosynthesis of heparin. Purification of a 110-kDa mouse mastocytoma protein required for both glucosaminyl N-deacetylation and N-sulfation. J Biol Chem 1991; 266:8044–8049.PubMedGoogle Scholar
  166. 166.
    Li J, Hagner-McWhirter Å, Kjéllen L, et al. Biosynthesis of heparin/heparan sulphate. cDNA cloning and expression of D-glucuronyl C5-epimerase from bovine lung. J Biol Chem 1997; 272:28158–28163.PubMedGoogle Scholar
  167. 167.
    Hashimoto Y, Orellana A, Gil G, et al. Molecular cloning and expression of rat liver N-heparan sulphate sulphotransferase. J Biol Chem 1992; 267:15744–15750.PubMedGoogle Scholar
  168. 168.
    Eriksson I, Sandback D, Ek B, et al. cDNA cloning and sequencing of mouse mastocytoma glucosaminyl N-deacetylase/N-sulfotransferase, an enzyme involved in the biosynthesis of heparin. J Biol Chem 1994; 269:10438–10443.PubMedGoogle Scholar
  169. 169.
    Orellana A, Hirschberg CB, Wei Z, et al. Molecular cloning and expression of a glycos-aminoglycan N-acetylglucosaminyl N-deacetylase/N-sulfotransferase from a heparin-producing cell line. J Biol Chem 1994; 269:2270–2276.PubMedGoogle Scholar
  170. 170.
    Kobayashi M, Habuchi H, Yoneda M, et al. Molecular cloning and expression of Chinese hamster ovary cell heparan-sulphate 2-sulphotransferase. J Biol Chem 1997; 272:13980–13985.PubMedGoogle Scholar
  171. 171.
    Shworak N, Liu J, Fritze LMS, et al. Molecular cloning and expression of mouse and human cDNAs encoding heparan sulphate D-glucosaminyl 3-O-sulphotransferase. J Biol Chem 1997; 272:28008–28019.PubMedGoogle Scholar
  172. 172.
    Fukuta M, Uchimura K, Nakashima K, et al. Molecular cloning and expression of chick chondrocyte chondroitin 6-sulphotransferase. J Biol Chem 1995; 270:18575–18580.PubMedGoogle Scholar
  173. 173.
    Fukuta M, Inazawa J, Torii T, et al. Molecular cloning and characterisation of human keratan sulphate Gal-6-sulphotransferase. J Biol Chem 1997; 272:32321–32328.PubMedGoogle Scholar
  174. 174.
    Sugumaran G, Katsman M, Drake RR. Purification, photoaffmity labeling and characterisation of a single enzyme for 6-sulphation of both chondroitin sulphate and keratan sulphate. J Biol Chem 1995; 270:22483–22487.PubMedGoogle Scholar
  175. 175.
    Habuchi O, Suzuki Y, Fukuta M. Sulphation of sialyl lactosamine oligosaccharides by chondroitin 6-sulfotransferase. Glycobiology 1997; 7:405–412.PubMedGoogle Scholar
  176. 176.
    Ong E, Yeh J-C, Ding Y, et al. Expression cloning of a human sulphotransferase that directs the synthesis of the HNK-1 glycan on the neural cell adhesion molecule and glycolipids. J Biol Chem 1998; 273:5190–5195.PubMedGoogle Scholar
  177. 177.
    Midura RJ, Calabro A, Yanagishita M, et al. Nonreducing end structures of chondroitin sulphate chains on aggrecan isolated from Swarm rat chondrosarcoma cultures. J Biol Chem 1995; 270:8009–8015.PubMedGoogle Scholar
  178. 178.
    Plaas AHK, Wong-Palms S, Roughley PJ, et al. Chemical and immunological assay of the nonreducing terminal residues of chondroitin sulphate from human aggrecan. J Biol Chem 1997; 272:20603–20610.PubMedGoogle Scholar
  179. 179.
    Brown GM, Huckerby TN, Abram BL, et al. Characterisation of a non-reducing terminal fragment from bovine articular cartilage keratan sulphates containing α(2-3)-linked sialic acid and α(1-3)-linked fucose. A sulphated variant of the VIM-2 epitope. Biochem J 1996; 319:137–141.PubMedGoogle Scholar
  180. 180.
    Tai G-H, Nieduszynski IA, Fullwood NJ, et al. Human corneal keratan sulphates. J Biol Chem 1997;272:28227–28231.PubMedGoogle Scholar
  181. 181.
    Butler WT, Cunningham LW. Evidence for the linkage of a disaccharide to hydroxy-lysine in tropocollagen. J Biol Chem 1966; 241:3882–3888.PubMedGoogle Scholar
  182. 182.
    Spiro RG. The structure of the disaccharide unit of the renal glomerular basement membrane. J Biol Chem 1967; 242:4813–4823.PubMedGoogle Scholar
  183. 183.
    Beisswenger PJ, Spiro RG. Human glomerular basement membrane: Chemical alteration in diabetes mellitus. Science 1970; 168:596–598.PubMedGoogle Scholar
  184. 184.
    Reid KBM. Complete amino acid sequences of the three collagen-like regions present in subcomponent C1q of the first component of human complement. Biochem J 1979; 179:367–371.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Roslyn M. Bill
    • 1
  • Leigh Revers
    • 2
  • Iain B. H. Wilson
    • 3
  1. 1.The Lundberg LaboratoryUniversity of GöteborgGöteborgSweden
  2. 2.Department of Biochemistry ResearchThe Hospital for Sick ChildrenTorontoCanada
  3. 3.Department of Biochemistry ResearchUniversity of DundeeDundeeScotland

Personalised recommendations