Adding The Finishing Touches: Terminal Elaborations

  • Roslyn M. Bill
  • Leigh Revers
  • Iain B. H. Wilson


The remarkable diversity of eukaryotic N- and O-linked oligosaccharide structures is not only a consequence of the branching phenomena we described in Chapters 5 and 6, but can also result from the modification of the non-reducing termini of these branches: that is, the ends of the ‘antennae.’ In fact, it is the terminal groups of these antennae that are the ‘business end’ of major oligosaccharide-ligand interactions, such as those which occur in some intercellular adhesion events, and also between numerous pathogens and their target host cells. Exemplary are the sialic acids which are often part of the ligands for microbial invaders, and also fucosylated structures which are important in determining intraspecies variation and the migrational behaviour of leukocytes.


Sialic Acid Blood Group Chinese Hamster Ovary Cell Neural Cell Adhesion Molecule Polysialic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hearn VM, Smith ZG, Watkins WM. An α-N-acetyl-D-galactosaminyltransferase associated with the human blood-group A character. Biochem J 1968; 109:315–317.PubMedGoogle Scholar
  2. 2.
    Beyer TA, Rearick JI, Paulson JC, et al. Biosynthesis of mammalian glycoproteins. Glycosylation pathways in the synthesis of the nonreducing terminal sequences. J Biol Chem 1979;254:12531–12541.PubMedGoogle Scholar
  3. 3.
    Schachter H. Biosynthetic controls that determine the branching and microhetero-geneity of protein-bound oligosaccharides. Biochem Cell Biol 1986; 64:163–181.PubMedGoogle Scholar
  4. 4.
    Landsteiner K. Zur Kenntnis der antifermentativen, lytischen und agglutinierenden Wirkungen des Blutserums und der Lymphe. Zentr Bakteriol Parasitenk 1900; 27:357–362.Google Scholar
  5. 5.
    Von Decastello A, Sturli A. Ueber die Agglutinine in Serum gesunder und kranker Menschen. Münch Med Wschr 1902; 49:1090–1095.Google Scholar
  6. 6.
    Watkins WM. Biochemical genetics of blood group antigens: Retrospect and prospect. Biochem Soc Trans 1987; 15:620–624.PubMedGoogle Scholar
  7. 7.
    Greenwell P. Blood group antigens: Molecules seeking a function? Glycoconj J 1997; 14:159–173.PubMedGoogle Scholar
  8. 8.
    Bernstein F. Ergebnisse einer biostatistischen zusammenfassenden Betrachtunger über die erblichen Blutstrukturen des Menschen. Klin Wochenschr 1924; 3:1495–1497.Google Scholar
  9. 9.
    Watkins WM, Morgan WTJ. Some observations on the O and H characters of human blood and secretions. Vox Sang 1955; 5:1–14.Google Scholar
  10. 10.
    Bhende YM, Deshpande CK, Bhatia HM, et al. A ‘new’ blood-group character related to the ABO system. Lancet 1952; 262:903–904.Google Scholar
  11. 11.
    Oriol R. ABO, Hh, Lewis and secretion. Serology genetics and tissue distribution. In: Cartron J-P, Rouger P, eds. Molecular Basis of Major Human Blood Group Antigens. New York: American Society for Biochemistry and Molecular Biology, 1995:37–73. (Blood Cell Biochemistry; vol 6).Google Scholar
  12. 12.
    Lehrs H. Über gruppenspezifische Eigenschaften des menschlichen Speichels. Z Immunitätsforsch 1930; 66:175–192.Google Scholar
  13. 13.
    Putkonen T. Über die gruppenspezifischen Eigenschaften verschiedener Korper-flüssigkeiten. Acta Soc Med ‘Duodecim’ Ser A 1930; 14:107–121.Google Scholar
  14. 14.
    Solomon JM, Waggoner R, Leyshon WC. A quantitative immunogenetic study of gene suppression involving A1 and H antigens of the erythrocyte without affecting secreted blood group substance. The ABH phenotypes Ah m and Oh m. Blood 1965; 25:470–485.PubMedGoogle Scholar
  15. 15.
    Oriol R, Danilovs J, Hawkins BR. A new genetic model proposing that the Se gene is a structural gene closely linked to the H gene. Am J Hum Genet 1981; 33:421–431.PubMedGoogle Scholar
  16. 16.
    Oriol R, Samuelsson BE, Messeter L. ABO antibodies—serological behaviour and immunochemical characterization. J Immunogenet 1990; 17:279–299.PubMedGoogle Scholar
  17. 17.
    Lundblad A. Oligosaccharides from human urine. Methods Enzymol 1978; 50:226–235.PubMedGoogle Scholar
  18. 18.
    Sabharwal H, Nilsson B, Chester MA, et al. Blood group specific oligosaccharides from faeces of a blood group A breast-fed infant. Mol Immunol 1984; 21:1105–1112.PubMedGoogle Scholar
  19. 19.
    Greenwell P, Ball MG, Watkins WM. Fucosytransferase activities in human lymphocytes and granulocytes. Blood group H-gene-specified α-2-L-fucosyltransferase is a discriminatory marker of peripheral blood lymphocytes. FEBS Lett 1983; 164:314–317.PubMedGoogle Scholar
  20. 20.
    Hitoshi S, Kusunoki S, Kanazawa I, et al. Molecular cloning and expression of a third type of rabbit GDP-L-fucose:β;-D-galactoside 2-α-L-fucosyltransferase. J Biol Chem 1996;271:16975–16981.PubMedGoogle Scholar
  21. 21.
    Ernst LK, Rajan VP, Larsen RD, et al. Stable expression of blood group H determinants and GDP-L-fucose:β-D-galactoside 2-α-L-fucosyltransferase in mouse cells after transfection with human DNA. J Biol Chem 1989; 264:3436–3447.PubMedGoogle Scholar
  22. 22.
    Rajan VP, Larsen RD, Ajmera S, et al. A cloned human DNA restriction fragment determines expression of a GDP-L-fucose:β-D-galactoside 2-α-L-fucosyltransferase in transfected cells. Evidence for isolation and transfer of the human H blood group locus. J Biol Chem 1989;264:11158–11167.PubMedGoogle Scholar
  23. 23.
    Larsen RD, Ernst LK, Nair RP, et al. Molecular cloning, sequence, and expression of a human GDP-L-fucose:β-D-galactoside 2-α-L-fucosyltransferase cDNA that can form the H blood group antigen. Proc Natl Acad Sci USA 1990; 87:6674–6678.PubMedGoogle Scholar
  24. 24.
    Koda Y, Soejima M, Kimura H. Structure and expression of H-type GDP-L-fucose:β-D-galactoside 2-α-L-fucosyltransferase gene (FUT1): Two transcription start sites and alternative splicing generate several forms of FUT1 mRNA. J Biol Chem 1997; 272:7501–7505.PubMedGoogle Scholar
  25. 25.
    Sarnesto A, Kühlin T, Thurin J, et al. Purification of H gene-encoded β-galactoside α1→2 fucosyltransferase from human serum. J Biol Chem 1990; 265:15067–15075.PubMedGoogle Scholar
  26. 26.
    Chandrasekaran EV, Jain RK, Larsen RD, et al. Characterization of the specificities of human blood group H gene-specified α1,2-L-fucosyltransferase toward sulfated/sialylated/fucosylated acceptors: Evidence for an inverse relationship between α1,2-L-fucosylation of Gal and α1,6-L-fucosylation of asparagine-linked GlcNAc. Biochemistry 1996; 35:8914–8924.PubMedGoogle Scholar
  27. 27.
    Prieto PA, Larsen RD, Cho M, et al. Expression of human H-type α1,2-fucosyl-transferase encoding for blood group H(O) antigen in Chinese hamster ovary cells. Evidence for preferential fucosylation and truncation of polylactosamine sequences. J Biol Chem 1997; 272:2089–2097.PubMedGoogle Scholar
  28. 28.
    Sepp A, Skacel P, Lindstedt R, et al. Expression of α1,3-galactose and other type 2 oligosaccharide structures in a porcine endothelial cell line transfected with human α1,2-fucosyltransferase cDNA. J Biol Chem 1997; 272:23104–23110.PubMedGoogle Scholar
  29. 29.
    Sarnesto A, Kühlin T, Hindsgaul O, et al. Purification of the secretor-type β-galactoside α1→2-fucosyltransferase from human serum. J Biol Chem 1992; 267:2737–2744.PubMedGoogle Scholar
  30. 30.
    Rouquier S, Lowe JB, Kelly RJ, et al. Molecular cloning of a human genomic region containing the H blood group α(1,2)fucosyltransferase gene and two H locus-related DNA restriction fragments. Isolation of a candidate for the human Secretor blood group locus. J Biol Chem 1995; 270:4632–4639.PubMedGoogle Scholar
  31. 31.
    Kelly RJ, Rouquier S, Giorgi D, et al. Sequence and expression of a candidate for the human Secretor blood group α(1,2)fucosyltransferase gene (FUT2): Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J Biol Chem 1995; 270:4640–4649.PubMedGoogle Scholar
  32. 32.
    Koda Y, Soejima M, Wang BJ, et al. Structure and expression of the gene encoding secretor-type galactoside 2-α-L-fucosyltransferase (FUT2). Eur J Biochem 1997; 246:750–755.PubMedGoogle Scholar
  33. 33.
    Yu LC, Broadberry RE, Yang YH, et al. Heterogeneity of the human Secretor α(1,2)fucosyltransferase gene among Lewis(a+b)-non-secretors. Biochem Biophys Res Commun 1996; 222:390–394.PubMedGoogle Scholar
  34. 34.
    Henry S, Mollicone R, Lowe JB, et al. A second nonsecretor allele of the blood group α(1,2)fucosyl-transferase gene (FUT2). Vox Sang 1996; 70:21–25.PubMedGoogle Scholar
  35. 35.
    Kudo T, Iwasaki H, Nishihara S, et al. Molecular genetic analysis of the human Lewis histo-blood group system. II. Secretor gene inactivation by a novel single missense mutation A385T in Japanese nonsecretor individuals. J Biol Chem 1996; 271:9830–9837.PubMedGoogle Scholar
  36. 36.
    Yu LC, Yang YH, Broadberry RE, et al. Correlation of a missense mutation in the human Secretor α1,2-fucosyltransferase gene with the Lewis(a+b+) phenotype: A potential molecular basis for the weak Secretor allele (Se w). Biochem J 1995; 312:329–332.PubMedGoogle Scholar
  37. 37.
    Henry S, Mollicone R, Fernandez P, et al. Molecular basis for erythrocyte Le(a+b+) and salivary ABH partial-secretor phenotypes: Expression of a FUT2 secretor allele with an A→T mutation at nucleotide 385 correlates with reduced α(1,2) fucosyltransferase activity. Glycoconj J 1996; 13:985–993.PubMedGoogle Scholar
  38. 38.
    Henry S, Mollicone R, Fernandez P, et al. Homozygous expression of a missense mutation at nucleotide 385 in the FUT2 gene associates with the Le(a+b+) partial-secretor phenotype in an Indonesian family. Biochem Biophys Res Commun 1996; 219:675–678.PubMedGoogle Scholar
  39. 39.
    Sturgeon P, Ardila MB. Studies on the secretion of blood group substances. 1. Observations on the red cell phenotype Le(a+b+x+). Vox Sang 1970; 18:301–322.Google Scholar
  40. 40.
    Koda Y, Soejima M, Johnson PH, et al. Missense mutation of FUT1 and deletion of FUT2 are responsible for Indian Bombay phenotype of ABO blood group system. Biochem Biophys Res Commun 1997; 238:21–25.PubMedGoogle Scholar
  41. 41.
    Fernandez-Mateos P, Cailleua A, Henry S, et al. Point mutations and deletion responsible for the Bombay H null and the Reunion H weak blood groups. Vox Sang 1998; in press.Google Scholar
  42. 42.
    Kaneko M, Nishihara S, Shinya N, et al. Wide variety of point mutations in the H gene of Bombay and para-Bombay individuals that inactivate H enzyme. Blood 1997; 90:839–849.PubMedGoogle Scholar
  43. 43.
    Yu LC, Yang YH, Broadberry RE, et al. Heterogeneity of the human H blood group α(1,2)fucosyltransferase gene among para-Bombay individuals. Vox Sang 1997; 72:36–40.PubMedGoogle Scholar
  44. 44.
    Shechter Y, Etzioni A, Levene C, et al. A Bombay individual lacking H and Le antigens but expressing normal levels of α-2-and α-4-fucosyltransferases. Transfusion 1995; 35:773–776.PubMedGoogle Scholar
  45. 45.
    Hitoshi S, Kusunoki S, Kanazawa I, et al. Molecular cloning and expression of two types of rabbit β-galactoside α1,2-fucosyltransferase. J Biol Chem 1995; 270:8844–8850.PubMedGoogle Scholar
  46. 46.
    Piau JP, Labarriere N, Dabouis G, et al. Evidence for two distinct α(1,2)-fucosyl-transferase genes differentially expressed throughout the rat colon. Biochem J 1994; 300:623–626.PubMedGoogle Scholar
  47. 47.
    Thurin J, Blaszczyk-Thurin M. Porcine submaxillary gland GDP-L-fucose:β-D-galacto-side α-2-L-fucosyltransferase is likely a counterpart of the human Secretor gene-encoded blood group transferase. J Biol Chem 1995; 270:26577–26580.PubMedGoogle Scholar
  48. 48.
    Domino SE, Hiraiwa N, Lowe JB. Molecular cloning, chromosomal assignment and tissue-specific expression of a murine α(1,2)fucosyltransferase expressed in thymic and epididymal epithelial cells. Biochem J 1997; 327:105–115.PubMedGoogle Scholar
  49. 49.
    Greenwell P, Yates AD, Watkins WM. UDP-N-acetyl-D-galactosamine as a donor substrate for the glycosyltransferase encoded by the B gene at the human blood group ABO locus. Carbohydr Res 1986; 149:149–170.PubMedGoogle Scholar
  50. 50.
    Schachter H, Michaels MA, Tilley CA, et al. Qualitative differences in the N-acetyl-D-galactosaminyltransferases produced by human A 1 and A 2 genes. Proc Natl Acad Sci USA 1973; 70:220–224.PubMedGoogle Scholar
  51. 51.
    Greenwell P, Watkins WM. Tissue differences in the isoelectric focusing profiles of the human blood group A 1 and A 2 gene specified glycosyltransferases. Biochem Soc Trans 1989; 17:134–135.Google Scholar
  52. 52.
    Yamamoto F, McNeill PD, Hakomori S. Human histo-blood group A2 transferase coded by A 2 allele, one of the A subtypes, is characterized by a single base deletion in the coding sequence, which results in an additional domain at the carboxyl terminal. Biochem Biophys Res Commun 1992; 187:366–374.PubMedGoogle Scholar
  53. 53.
    Greenwell P, Edwards YH, Williams J, et al. Approaches to cloning the genes at the human blood group ABO locus. Biochem Soc Trans 1987; 15:601–603.PubMedGoogle Scholar
  54. 54.
    Clausen H, White T, Takio K, et al. Isolation to homogeneity and partial characterization of a histo-blood group A defined Fucα1→2Galα1→3-N-acetyl-galactosaminyltransferase from human lung tissue. J Biol Chem 1990; 265:1139–1145.PubMedGoogle Scholar
  55. 55.
    Yamamoto F, Marken J, Tsuji T, et al. Cloning and characterization of DNA complementary to human UDP-GalNAc:Fucα1→2Galα1→3GalNAc transferase (histo-blood group A transferase) mRNA. J Biol Chem 1990; 265:1146–1151.PubMedGoogle Scholar
  56. 56.
    Yamamoto F, McNeill PD, Hakomori S. Genomic organization of human histo-blood group ABO genes. Glycobiology 1995; 5:51–58.PubMedGoogle Scholar
  57. 57.
    Yamamoto F, Clausen H, White T, et al. Molecular genetic basis of the histo-blood group ABO system. Nature 1990; 345:229–233.PubMedGoogle Scholar
  58. 58.
    Zago MA, Tavella MH, Simões BP, et al. Racial heterogeneity of DNA polymorphisms linked to the A and O alleles of the ABO blood group gene. Ann Hum Genet 1996; 60:67–72.PubMedGoogle Scholar
  59. 59.
    Yamamoto F, Hakomori S. Sugar-nucleotide donor specificity of histo-blood group A and B transferases is based on amino acid substitutions. J Biol Chem 1990; 265:19257–19262.PubMedGoogle Scholar
  60. 60.
    Seto NOL, Palcic MM, Compston CA, et al. Sequential interchange of four amino acids from blood group B to blood group A glycosyltransferase boosts catalytic activity and progressively modifies substrate recognition in human recombinant enzymes. J Biol Chem 1997; 272:14133–14138.PubMedGoogle Scholar
  61. 61.
    Dabelsteen E. Cell surface carbohydrates as prognostic markers in human carcinomas. J Pathol 1996; 179:358–369.PubMedGoogle Scholar
  62. 62.
    Sun J, Thurin J, Cooper HS, et al. Elevated expression of H type GDP-L-fucose: β-D-galactoside α-2-L-fucosyltransferase is associated with human colon adenocarcinoma progression. Proc Natl Acad Sci USA 1995; 92:5724–5728.PubMedGoogle Scholar
  63. 63.
    Goupille C, Hallouin F, Meflah K, et al. Increase of rat colon carcinoma cells tumorigenicity by α(1–2)fucosyltransferase gene transfection. Glycobiology 1997; 7:221–229.PubMedGoogle Scholar
  64. 64.
    Galili U, Shohet SB, Kobrin E, et al. Man, apes, and old world monkeys differ from other mammals in the expression of α-galactosyl epitopes on nucleated cells. J Biol Chem 1988; 263:17755–17762.PubMedGoogle Scholar
  65. 65.
    Galili U, Clark MR, Shohet SB, et al. Evolutionary relationship between the natural anti-Gal antibody and the Galα1→3Gal epitope in primates. Proc Natl Acad Sci USA 1987;84:1369–1373.PubMedGoogle Scholar
  66. 66.
    Larsen RD, Rajan VP, Ruff MM, et al. Isolation of a cDNA encoding a murine UDPgalactose: β-D-galactosyl-1,4-N-acetyl-D-glucosaminide α-1,3-galactosyl-transferase: Expression cloning by gene transfer. Proc Natl Acad Sci USA 1989; 86:8227–8231.PubMedGoogle Scholar
  67. 67.
    Joziasse DH, Shaper JH, van den Eijnden DH, et al. Bovine α1→3-galactosyl-transferase: Isolation and characterization of a cDNA clone. Identification of homologous sequences in human genomic DNA. J Biol Chem 1989; 264:14290–14297.PubMedGoogle Scholar
  68. 68.
    Henion TR, Macher BA, Anaraki F, et al. Defining the minimal size of catalytically active primate αl1,3-galactosyltransferase: Structure-function studies on the recombinant truncated enzyme. Glycobiology 1994; 4:193–201.PubMedGoogle Scholar
  69. 69.
    Vanhove B, Goret F, Soulillou JP, et al. Porcine α(1,3)-galactosyltransferase: Tissue-specific and regulated expression of splicing isoforms. Biochim Biophys Acta 1997; 1356:1–11.PubMedGoogle Scholar
  70. 70.
    Joziasse DH, Shaper NL, Kim D, et al. Murine α1,3-galactosyltransferase. A single gene locus specifies four isoforms of the enzyme by alternative splicing. J Biol Chem 1992;267:5534–5541.PubMedGoogle Scholar
  71. 71.
    Larsen RD, Rivera-Marrero CA, Ernst LK, et al. Frame-shift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal:β-D-Gal(1,4)-D-GlcNAc α(1,3)-galactosyltransferase cDNA. J Biol Chem 1990; 265:7055–7061.PubMedGoogle Scholar
  72. 72.
    Joziasse DH, Shaper JH, Jabs EW, et al. Characterization of an α1→3-galactosyl-transferase homologue on human chromosome 12 that is organized as a processed pseudogene. J Biol Chem 1991; 266:6991–6998.PubMedGoogle Scholar
  73. 73.
    Galili U, Swanson K. Gene sequences suggest inactivation of α-1,3-galactosyl-transferase in catarrhines after the divergence of apes from monkeys. Proc Natl Acad Sci USA 1991; 88:7401–7404.PubMedGoogle Scholar
  74. 74.
    Elices MJ, Goldstein IJ. Biosynthesis of bi-, tri-, and tetraantennary oligosaccharides containing α-D-galactosyl residues at their nonreducing termini. Branch specificity of the Ehrlich tumor cell α(1,3)-galactosyltransferase. J Biol Chem 1989; 264:1375–1380.PubMedGoogle Scholar
  75. 75.
    Blanken WM, van den Eijnden DH. Biosynthesis of terminal Galα1→3 Galβ1→4-GlcNAc-R oligosaccharide sequences on glycoconjugates. Purification and acceptor specificity of a UDP-Gal:N-acetyllactosaminide α1→3-galactosyltransferase from calf thymus. J Biol Chem 1985; 260:12927–12934.PubMedGoogle Scholar
  76. 76.
    Blanken WM. Purification and characterisation of galactosyltransferases involved in the biosynthesis of glycoconjugates. Amsterdam: Vrije Universiteit, 1985. PhD Thesis.Google Scholar
  77. 77.
    Cho SK, Yeh JC, Cho MJ, et al. Transcriptional regulation of α1,3-galactosyl-transferase in embryonal carcinoma cells by retinoic acid. Masking of Lewis X antigens by α-galactosylation. J Biol Chem 1996; 271:3238–3246.PubMedGoogle Scholar
  78. 78.
    Sharma A, Okabe J, Birch P, et al. Reduction in the level of Gal(α1,3)Gal in transgenic mice and pigs by the expression of an α(1,2)fucosyltransferase. Proc Natl Acad Sci USA 1996; 93:7190–7195.PubMedGoogle Scholar
  79. 79.
    Osman N, McKenzie IFC, Mouhtouris E, et al. Switching amino-terminal cytoplasmic domains of α(1,2)fucosytransferase and α(1,3)galactosyltransferase alters the expression of H substance and Gala(1,3)Gal. J Biol Chem 1996; 271:33105–33109.PubMedGoogle Scholar
  80. 80.
    Osman N, McKenzie IFC, Ostenried K, et al. Combined transgenic expression of α-galactosidase and α-1,2-fucosyltransferase leads to optimal reduction in the major xenoepitope Galα(1,3)Gal. Proc Natl Acad Sci USA 1997; 94:14677–14682.PubMedGoogle Scholar
  81. 81.
    Johnston DS, Shaper JH, Shaper NL, et al. The gene encoding murine α1,3-galactosyl-transferase is expressed in female germ cells but not in male germ cells. Dev Biol 1995; 171:224–232.PubMedGoogle Scholar
  82. 82.
    Thall AD, Maly P, Lowe JB. Oocyte Gal α1,3Gal epitopes implicated in sperm adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse. J Biol Chem 1995; 270:21437–21440.PubMedGoogle Scholar
  83. 83.
    Tearle RG, Tange MJ, Zannettino ZL, et al. The α-1,3-galactosyltransferase knockout mouse: Implications for xenotransplantation. Transplantation 1996; 61:13–19.PubMedGoogle Scholar
  84. 84.
    Ashford DA, Alafi CD, Gamble VM, et al. Site-specific glycosylation of recombinant rat and human soluble CD4 variants expressed in Chinese hamster ovary cells. J Biol Chem 1993; 268:3260–3267.PubMedGoogle Scholar
  85. 85.
    Mourant AE. A ‘new’ human blood group antigen of frequent occurrence. Nature 1946; 158:237–238.PubMedGoogle Scholar
  86. 86.
    Sneath JS, Sneath PHA. Transformation of the Lewis groups of human red cells. Nature 1955; 176:172.PubMedGoogle Scholar
  87. 87.
    Mäkelä O, Mäkelä P. Leb antigen. Studies on its occurrence in red cells, plasma and saliva. Ann Med Exp Biol Fenn 1956; 34:157–162.PubMedGoogle Scholar
  88. 88.
    Grubb R. Observations on the human blood group system Lewis. Acta Path Microbiol Scand 1951; 28:61–81.PubMedGoogle Scholar
  89. 89.
    Ceppellini R, Siniscalco M. Una nuova ipostesi genetica per il sistema Lewis secretore e suoi riflessi nei riguardi di alcune evidenze di linkage con altri loci. Rev Inst Sieroterapico Ital 1955; 30:431–445.Google Scholar
  90. 90.
    Lowe JB. Selectin ligands, leukocyte trafficking, and fucosyltransferase genes. Kidney Int 1997; 51:1418–1426.PubMedGoogle Scholar
  91. 91.
    Wilkins PP, McEver RP, Cummings RD. Structures of the O-glycans on P-selectin glycoprotein ligand-1 from HL-60 cells. J Biol Chem 1996; 271:18732–18742.PubMedGoogle Scholar
  92. 92.
    Etzioni A, Frydman M, Pollack S, et al. Brief report: Recurrent severe infections caused by a novel leukocyte adhesion deficiency. N Engl J Med 1992; 327:1789–1792.PubMedGoogle Scholar
  93. 93.
    Kuijpers TW, Etzioni A, Pollack S, et al. Antigen-specific immune responsiveness and lymphocyte recruitment in leukocyte adhesion deficiency type II. Int Immunol 1997; 9:607–613.PubMedGoogle Scholar
  94. 94.
    Frydman M, Etzioni A, Eidlitz-Markus T, et al. Rambam-Hasharon syndrome of psychomotor retardation, short stature, defective neutrophil motility, and Bombay phenotype. Am J Med Genet 1992; 44:297–302.PubMedGoogle Scholar
  95. 95.
    Lowe JB, Ward PA. Therapeutic inhibition of carbohydrate-protein interactions in vivo. J Clin Invest 1997; 99:822.PubMedGoogle Scholar
  96. 96.
    Macher BA, Holmes EH, Swiedler SJ, et al. Human α1-3 fucosyltransferases. Glycobiology 1991; 1:577–584.PubMedGoogle Scholar
  97. 97.
    Staudacher E. α1,3-Fucosyltransferases. Trends Glycosci Glycotechnol 1996; 8:391–408.Google Scholar
  98. 98.
    Weston BW, Smith PL, Kelly RJ, et al. Molecular cloning of a fourth member of a human α(1,3)fucosyltransferase gene family. Multiple homologous sequences that determine expression of the Lewisx, sialyl Lewisx, and difucosyl sialyl Lewisx epitopes. J Biol Chem 1992; 267:24575–24584 [Correction: J Biol Chem 1993; 268:18398].PubMedGoogle Scholar
  99. 99.
    Natsuka S, Gersten KM, Zenita K, et al. Molecular cloning of a cDNA encoding a novel human leukocyte α-1,3-fucosyltransferase capable of synthesizing the sialyl Lewisx determinant. J Biol Chem 1994; 269:16789–16794 [Correction: J Biol Chem 1994; 269:20806].PubMedGoogle Scholar
  100. 100.
    Chester MA, Watkins WM. α-L-Fucosyltransferases in human submaxillary gland and stomach tissues associated with the H, Lea and Leb blood-group characters and ABH secretor status. Biochem Biophys Res Commun 1969; 34:835–842.PubMedGoogle Scholar
  101. 101.
    Kukowska-Latallo JF, Larsen RD, Nair RP, et al. A cloned human cDNA determines expression of a mouse stage-specific embryonic antigen and the Lewis blood group α(1,3/1,4)fucosyltransferase. Genes Dev 1990; 4:1288–1303.PubMedGoogle Scholar
  102. 102.
    Lowe JB, Stoolman LM, Nair RP, et al. ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA. Cell 1990; 63:475–484.PubMedGoogle Scholar
  103. 103.
    McCurley RS, Recinos A, Olsen AS, et al. Physical maps of human α(1,3)fucosyl-transferase genes FUT3-FUT6 on chromosomes 19p13-3 and 11q21. Genomics 1995; 26:142–146.PubMedGoogle Scholar
  104. 104.
    Xu XH, Vo L, Macher BA. Structure-function analysis of human α1,3-fucosyl-transferase. Amino acids involved in acceptor substrate specificity. J Biol Chem 1996; 271:8818–8823.PubMedGoogle Scholar
  105. 105.
    De Vries T, Srnka CA, Palcic MM, et al. Acceptor specificity of different length constructs of human recombinant α1,3/4-fucosyltransferases: Replacement of the stem region and the transmembrane domain of fucosyltransferase V by protein A results in an enzyme with GDP-fucose hydrolyzing activity. J Biol Chem 1995; 270:8712–8722.PubMedGoogle Scholar
  106. 106.
    Costa J, Grabenhorst E, Nimtz M, et al. Stable expression of the Golgi form and secretory variants of human fucosyltransferase III from BHK-21 cells: Purification and characterization of an engineered truncated form from the culture medium. J Biol Chem 1997;272:11613–11621.PubMedGoogle Scholar
  107. 107.
    Holmes EH. Human Lewis α1→3/4fucosyltransferase: Specificity of focose transfer to GlcNAcβ1→3Galβ1→4Glcβ1→Cer (LcOse3Cer). Glycobiology 1993; 3:77–81.PubMedGoogle Scholar
  108. 108.
    Chandrasekaran EV, Jain RK, Rhodes JM, et al. Expression of blood group Lewisb determinant from Lewisb: Association of this novel α(1,2)-L-fucosylating activity with the Lewis type α(1,3/4)-L-fucosyltransferase. Biochemistry 1995; 34:4748–4756.PubMedGoogle Scholar
  109. 109.
    Falk PG, Bry L, Holgersson J, et al. Expression of a human α-1,3/4-fucosyltransferase in the pit cell lineage of FVB/N mouse stomach results in production of Leb-containing glycoconjugates: A potential transgenic mouse model for studying Helicobacter pylori infection. Proc Natl Acad Sci USA 1995; 92:1515–1519.PubMedGoogle Scholar
  110. 110.
    Bry L, Falk PG, Gordon JI. Genetic engineering of carbohydrate biosynthetic pathways in transgenic mice demonstrates cell cycle-associated regulation of glycoconjugate production in small intestinal epithelial cells. Proc Natl Acad Sci USA 1996; 93:1161–1166.PubMedGoogle Scholar
  111. 111.
    Ørntoft TF, Vestergaard EM, Holmes E, et al. Influence of Lewis α1-3/4-L-fucosyl-transferase (FUT3) gene mutations on enzyme activity, erythrocyte phenotyping, and circulating tumor marker sialyl-Lewis a levels. J Biol Chem 1996; 271:32260–32268.PubMedGoogle Scholar
  112. 112.
    Elmgren A, Mollicone R, Costache M, et al. Significance of individual point mutations, T202C and C314T, in the human Lewis (FUT3) gene for expression of Lewis antigens by the human α(1,3/1,4)-fucosyltransferase, Fuc-TIII. J Biol Chem 1997; 272:21994–21998.PubMedGoogle Scholar
  113. 113.
    Nishihara S, Yazawa S, Iwasaki H, et al. α(1,3/1,4)Fucosyltransferase (FucT-III) gene is inactivated by a single amino acid substitution in Lewis histo-blood type negative individuals. Biochem Biophys Res Commun 1993; 196:624–631.PubMedGoogle Scholar
  114. 114.
    Nishihara S, Narimatsu H, Iwasaki H, et al. Molecular genetic analysis of the human Lewis histo-blood group system. J Biol Chem 1994; 269:29271–29278.PubMedGoogle Scholar
  115. 115.
    Mollicone R, Reguigne I, Kelly RJ, et al. Molecular basis for Lewis α(1,3/1,4)-fucosyl-transferase gene deficiency (FUT3) found in Lewis-negative Indonesian pedigrees. J Biol Chem 1994; 269:20987–20994.PubMedGoogle Scholar
  116. 116.
    Goelz SE, Hession C, Goff D, et al. ELFT: A gene that directs the expression of an ELAM-1 ligand. Cell 1990; 63:1349–1356.PubMedGoogle Scholar
  117. 117.
    Lowe JB, Kukowska-Latallo JF, Nair RP, et al. Molecular cloning of a human fucosyl-transferase gene that determines expression of the Lewisx and VIM-2 epitopes but not ELAM-1-dependent cell adhesion. J Biol Chem 1991; 266:17467–17477.PubMedGoogle Scholar
  118. 118.
    Gersten KM, Natsuka S, Trinchera M, et al. Molecular cloning, expression, chromosomal assignment, and tissue-specific expression of a murine α-(1,3)-fucosyl-transferase locus corresponding to the human ELAM-1 ligand fucosyl transferase. J Biol Chem 1995; 270:25047–25056.PubMedGoogle Scholar
  119. 119.
    Weston BW, Nair RP, Larsen RD, et al. Isolation of a novel human α(1,3)fucosyl-transferase gene and molecular comparison to the human Lewis blood group α(1,3/1,4)-fucosyltransferase gene. Syntenic, homologous, nonallelic genes encoding enzymes with distinct acceptor substrate specificities. J Biol Chem 1992; 267:4152–4160.PubMedGoogle Scholar
  120. 120.
    Potvin B, Kumar R, Howard DR, et al. Transfection of a human α-(1,3)fucosyl-transferase gene into Chinese hamster ovary cells. Complications arise from activation of endogenous α-(1,3)fucosyltransferases. J Biol Chem 1990; 265:1615–1622.PubMedGoogle Scholar
  121. 121.
    Kumar R, Potvin B, Muller WA, et al. Cloning of a human α(1,3)-fucosyltransferase gene that encodes ELFT but does not confer ELAM-1 recognition on Chinese hamster ovary cell transfectants. J Biol Chem 1991; 266:21777–21783.PubMedGoogle Scholar
  122. 122.
    Goelz S, Kumar R, Potvin B, et al. Differential expression of an E-selectin ligand (SLex) by two Chinese hamster ovary cell lines transfected with the same α(1,3)-fucosyltransferase gene (ELFT). J Biol Chem 1994; 269:1033–1040.PubMedGoogle Scholar
  123. 123.
    Holmes EH, Xu ZH, Sherwood AL, et al. Structure-function analysis of human α1→3fucosyltransferases. A GDP-fucose-protected, N-ethylmaleimide-sensitive site in FucT-III and FucT-V corresponds to Ser(178) in FucT-IV. J Biol Chem 1995; 270:8145–8151.PubMedGoogle Scholar
  124. 124.
    Chandrasekaran EV, Jain RK, Larsen RD, et al. Specificity analysis of three clonal and five non-clonal α1,3-L-fucosyltransferases with sulfated, sialylated, or fucosylated synthetic carbohydrates as acceptors in relation to the assembly of 3′-sialyl-6′-sulfo Lewisx (the L-selectin ligand) and related complex structures. Biochemistry 1996; 35:8925–8933.PubMedGoogle Scholar
  125. 125.
    Borsig L, Kleene R, Dinter A, et al. Immunodetection of α1-3 fucosyltransferase (FucT-V). Eur J Cell Biol 1996; 70:42–53.PubMedGoogle Scholar
  126. 126.
    Ichikawa Y, Lin YC, Dumas DP, et al. Chemical-enzymatic synthesis and conformational analysis of sialyl Lewisx and derivatives. J Am Chem Soc 1992; 114:9283–9298.Google Scholar
  127. 127.
    De Vries T, van den Eijnden DH, Schultz J, et al. Efficient enzymatic synthesis of the sialyl-Lewisx tetrasaccharide. A ligand for selectin-type adhesion molecules. FEBS Lett 1993;330:243–248.PubMedGoogle Scholar
  128. 128.
    Murray BW, Takayama S, Schultz J, et al. Mechanism and specificity of human a-l,3-fucosyltransferase V. Biochemistry 1996; 35:11183–11195.PubMedGoogle Scholar
  129. 129.
    Qiao L, Murray BW, Shimazaki M, et al. Synergistic inhibition of human α-1,3-fucosyltransferase V. J Am Chem Soc 1996; 118:7653–7662.Google Scholar
  130. 130.
    Murray BW, Wittmann V, Burkart MD, et al. Mechanism of human α-1,3-fucosyl-transferase V: Glycosidic cleavage occurs prior to nucleophilic attack. Biochemistry 1997;36:823–831.PubMedGoogle Scholar
  131. 131.
    Sarnesto A, Köhlin T, Hindsgaul O, et al. Purification of the β-N-acetylglucosaminide α1→3-fucosyltransferase from human serum. J Biol Chem 1992; 267:2745–2752.PubMedGoogle Scholar
  132. 132.
    Johnson PH, Donald ASR, Clarke JL, et al. Purification, properties and possible gene assignment of an α1,3-fucosyltransferase expressed in human liver. Glycoconj J 1995; 12:879–893.PubMedGoogle Scholar
  133. 133.
    Koszdin KL, Bowen BR. The cloning and expression of a human α-1,3 fucosyl-transferase capable of forming the E-selectin ligand. Biochem Biophys Res Commun 1992; 187:152–157.PubMedGoogle Scholar
  134. 134.
    Cameron HS, Szczepaniak D, Weston BW. Expression of human chromosome 19p α(1,3)-fucosyltransferase genes in normal tissues: Alternative splicing, poly-adenylation, and isoforms. J Biol Chem 1995; 270:20112–20122.PubMedGoogle Scholar
  135. 135.
    Britten CJ, Bird ML Chemical modification of an α3-fucosyltransferase. Definition of amino acid residues essential for enzyme activity. Biochim Biophys Acta 1997; 1334:57–64.PubMedGoogle Scholar
  136. 136.
    Legault DJ, Kelly RJ, Natsuka Y, et al. Human α(1,3/1,4)-fucosyltransferases discriminate between different oligosaccharide acceptor substrates through a discrete peptide fragment. J Biol Chem 1995; 270:20987–20996.PubMedGoogle Scholar
  137. 137.
    De Vries T, Palcic MM, Schoenmakers PS, et al. Acceptor specificity of GDP-Fuc: Galβ1→4GlcNAc-R α3-fucosyltransferase VI (FucT VI) expressed in insect cells as soluble, secreted enzyme. Glycobiology 1997; 7:921–927.PubMedGoogle Scholar
  138. 138.
    Brinkman-van der Linden ECM, Mollicone R, Oriol R, et al. A missense mutation in the FUT6 gene results in total absence of α3-fucosylation of human α1-acid glycoprotein. J Biol Chem 1996; 271:14492–14495.Google Scholar
  139. 139.
    Mollicone R, Reguigne I, Fletcher A, et al. Molecular basis for plasma α(1,3)-fucosyl-transferase gene deficiency (Fut6). J Biol Chem 1994; 269:12662–12671.PubMedGoogle Scholar
  140. 140.
    Sasaki K, Kurata K, Funayama K, et al. Expression cloning of a novel α1,3-fucosyl-transferase that is involved in biosynthesis of the sialyl Lewisx carbohydrate determinants in leukocytes. J Biol Chem 1994; 269:14730–14737.PubMedGoogle Scholar
  141. 141.
    Clarke JL, Watkins WM. α1,3-L-Fucosyltransferase expression in developing human myeloid cells. Antigenic, enzymatic, and mRNA analyses. J Biol Chem 1996; 271:10317–10328.PubMedGoogle Scholar
  142. 142.
    Handa K, Withers DA, Hakomori S. The α1→3 fucosylation at the penultimate GlcNAc catalysed by fucosyltransferase VII is blocked by internally fucosylated residue in sialosyl long-chain poly-LacNAc: Enzymatic bases for expression of physiological E-selectin epitope. Biochem Biophys Res Commun 1998; 243:199–204.PubMedGoogle Scholar
  143. 143.
    Handa K, Stroud MR, Hakomori S. Sialosyl-fucosyl poly-LacNAc without the terminal sialosyl-Lex epitope as the physiological myeloid cell ligand in E-selectin-dependent adhesion: Studies under static and dynamic flow conditions. Biochemistry 1997; 36:12412–12420.PubMedGoogle Scholar
  144. 144.
    Niemelä R, Natunen J, Majuri M-L, et al. Complementary acceptor and site specificities of Fuc-TIV and Fuc-TVII allow effective biosynthesis of sialyl-TriLex and related polylactosamines present on glycoprotein counterreceptors of selectins. J Biol Chem 1998;273:4021–4026.PubMedGoogle Scholar
  145. 145.
    Hemmerich S, Leffler H, Rosen SD. Structure of the O-glycans in GlyCAM-1, an endothelial-derived ligand for L-selectin. J Biol Chem 1995; 270:12035–12047.PubMedGoogle Scholar
  146. 146.
    Chandrasekaran EV, Jain RK, Larsen RD, et al. Selectin ligands and tumor-associated carbohydrate structures: Specificities of α2,3-sialyltransferases in the assembly of 3′-sialyl-6-sulfo/sialyl Lewis a and x, 3′-sialyl-6′-sulfo Lewis x, and 3′-sialyl-6-sialyl/ sulfo blood group T-hapten. Biochemistry 1995; 34:2925–2936.PubMedGoogle Scholar
  147. 147.
    Crommie D, Rosen SD. Biosynthesis of GlyCAM-1, a mucin-like ligand for L-selectin. J Biol Chem 1995; 270:22614–22624.PubMedGoogle Scholar
  148. 148.
    Costache M, Apoil P-M, Cailleau A, et al. Evolution of fucosyltransferase genes in vertebrates. J Biol Chem 1997; 272:29721–29728.PubMedGoogle Scholar
  149. 149.
    Costache M, Cailleau A, Fernandez-Mateos P, et al. Advances in molecular genetics of α-2-and α-3/4-fucosyltransferases. Transfus Clin Biol 1997; 4:367–382.PubMedGoogle Scholar
  150. 150.
    Edbrooke MR, Britten CJ, Kelly VAM, et al. The α(1-3)-fucosyltransferases come of age. Biochem Soc Trans 1997; 25:880–886.PubMedGoogle Scholar
  151. 151.
    Breton C, Oriol R, Imberty A. Conserved structural features in eukaryotic and prokaryotic fucosyltransferases. Glycobiology 1998; 8:87–94.PubMedGoogle Scholar
  152. 152.
    Sajdel-Sulkowska EM, Smith FI, Wiederschain G, et al. Cloning of a rat α1,3-fucosyl-transferase gene: A member of the fucosyltransferase IV family. Glycoconj J 1997; 14:249–258.PubMedGoogle Scholar
  153. 153.
    Smith PL, Gersten KM, Petryniak B, et al. Expression of the α(1,3)fucosyltransferase Fuc-T VII in lymphoid aggregate high endothelial venules correlates with expression of L-selectin ligands. J Biol Chem 1996; 271:8250–8259.PubMedGoogle Scholar
  154. 154.
    Maly P, Thall AD, Petryniak B, et al. The α(1,3)Fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 1996; 86:643–653.PubMedGoogle Scholar
  155. 155.
    Lee KP, Carlson LM, Woodcock JB, et al. Molecular cloning and characterization of CFT1, a developmentally regulated avian α(1,3)-fucosyltransferase gene. J Biol Chem 1996;271:32960–32967.PubMedGoogle Scholar
  156. 156.
    Howard DR, Fukuda M, Fukuda MN, et al. The GDP-fucose:.N-acetylglucosaminide 3-α-L-fucosyltransferases of LEC11 and LEC12 Chinese hamster ovary mutants exhibit novel specificities for glycolipid substrates. J Biol Chem 1987; 262:16830–16837.PubMedGoogle Scholar
  157. 157.
    Potvin B, Stanley P. Activation of two new α(1,3)fucosy transferase activities in Chinese hamster ovary cells by 5-azacytidine. Cell Regul 1991; 2:989–1000.PubMedGoogle Scholar
  158. 158.
    Zhang A, Stanley P. A negative regulator of trtanscription of a FUT5 gene in CHO cells. Glycoconj J 1997; 14:S4 (Abstract 3).Google Scholar
  159. 159.
    Oulmouden A, Wierinckx A, Petit JM, et al. Molecular cloning and expression of a bovine α(1,3)-fucosyltransferase gene homologous to a putative ancestor gene of the human FUT3-FUT5-FUT6 cluster. J Biol Chem 1997; 272:8764–8773.PubMedGoogle Scholar
  160. 160.
    Martin SL, Edbrooke MR, Hodgman TC, et al. Lewis X biosynthesis in Helicobacter pylori. Molecular cloning of an α(1,3)-fucosyltransferase gene. J Biol Chem 1997; 272:21349–21356.PubMedGoogle Scholar
  161. 161.
    Ge ZM, Chan NWC, Palcic MM, et al. Cloning and heterologous expression of an α(1,3)-fucosyltransferase gene from the gastric pathogen Helicobacter pylori. J Biol Chem 1997;272:21357–21363.PubMedGoogle Scholar
  162. 162.
    Sueyoshi S, Tsuboi S, Sawadahirai R, et al. Expression of distinct fucosylated oligosaccharides and carbohydrate-mediated adhesion efficiency directed by two different α-1,3-fucosyltransferases: Comparison of E-and L-selectin-mediated adhesion. J Biol Chem 1994; 269:32342–32350.PubMedGoogle Scholar
  163. 163.
    Knibbs RN, Craig RA, Natsuka S, et al. The fucosyltransferase FucT-VII regulates E-selectin ligand synthesis in human T cells. J Cell Biol 1996; 133:911–920.PubMedGoogle Scholar
  164. 164.
    Wagers AJ, Lowe JB, Kansas GS. An important role for the α 1,3 fucosyltransferase, FucT-VII, in leukocyte adhesion to E-selectin. Blood 1996; 88:2125–2132.PubMedGoogle Scholar
  165. 165.
    Hiraiwa N, Dohi T, Kawakami-Kimura N, et al. Suppression of sialyl Lewis X expression and E-selectin-mediated cell adhesion in cultured human lymphoid cells by transfection of antisense cDNA of an α1→3 fucosyltransferase (Fuc-T VII). J Biol Chem 1996;271:31556–31561.PubMedGoogle Scholar
  166. 166.
    Tsuboi S, Isogai Y, Hada N, et al. 6′-sulfo sialyl Lex but not 6-sulfo sialyl Lex expressed on the cell surface supports L-selectin-mediated adhesion. J Biol Chem 1996; 271:27213–27216.PubMedGoogle Scholar
  167. 167.
    Fuhlbrigge RC, Alon R, Puri KD, et al. Sialylated, fucosylated ligands for L-selectin expressed on leukocytes mediate tethering and rolling adhesions in physiologic flow conditions. J Cell Biol 1996; 135:837–848.PubMedGoogle Scholar
  168. 168.
    Li FG, Wilkins PP, Crawley S, et al. Post-translational modifications of recombinant P-selectin glycoprotein ligand-1 required for binding to P-and E-selectin. J Biol Chem 1996;271:3255–3264.PubMedGoogle Scholar
  169. 169.
    Zöllner O, Vestweber D. The E-selectin ligand-1 is selectively activated in Chinese hamster ovary cells by the α(1,3)-fucosyltransferases IV and VII. J Biol Chem 1996; 271:33002–33008.PubMedGoogle Scholar
  170. 170.
    Wagers AJ, Stoolman LM, Kannagi R, et al. Expression of leukocyte fucosyl-transferases regulates binding to E-selectin. J Immunol 1997; 159:1917–1929.PubMedGoogle Scholar
  171. 171.
    Fukuda M. Cell surface carbohydrates: Cell-type specific expression. In: Fukuda M, Hindsgaul O, eds. Molecular Glycobiology. Oxford, UK: Oxford University Press/IRL Press, 1994:1–52. (Harnes BD, Glover DM, eds. Frontiers in Molecular Biology).Google Scholar
  172. 172.
    Maemura K, Fukuda M. Poly-N-acetyllactosaminyl O-glycans attached to leukosialin. The presence of sialyl Lex structures in O-glycans. J Biol Chem 1992; 267:24379–24386.PubMedGoogle Scholar
  173. 173.
    Moonjae C, Cummings RD. Galectin-1: Oligomeric structure and interactions with polylactosamines. Trends Glycosci Glycotechnol 1997; 9:47–56.Google Scholar
  174. 174.
    Hummel M, Hedrich HC, Hasilik A. Elongation of N-acetyllactosamine repeats in diantennary oligosaccharides. Eur J Biochem 1997; 245:428–433.PubMedGoogle Scholar
  175. 175.
    Van den Eijnden DH, Winterwerp H, Smeeman P, et al. Novikoff Ascites tumour cells contain N-acetyllactosaminide β1,3 and 1,6 GlcNAc-transferase activity. J Biol Chem 1983; 258:3435–3437.PubMedGoogle Scholar
  176. 176.
    Van den Eijnden DH, Koenderman AHL, Schiphorst WECM. Biosynthesis of blood group i-active polylactosaminoglycans. Partial purification and properties of an UDP-GlcNAc:N-acetyllactosaminide β1→3-N-acetylglucosaminyltransferase from Novikoff tumor cell ascites fluid. J Biol Chem 1988; 263:12461–12471.PubMedGoogle Scholar
  177. 177.
    Kawashima H, Yamamoto K, Osawa T, et al. Purification and characterization of UDP-GlcNAcGal β1-4Glc(NAc) α-1,3-N-acetylglucosaminyltransferase (poly-N-acetyl-lactosamine extension enzyme) from calf serum. J Biol Chem 1993; 268:27118–27126.PubMedGoogle Scholar
  178. 178.
    Sasaki K, Kurata-Miura K, Ujita M, et al. Expression cloning of cDNA encoding a human β-1,3-N-acetylglucosaminyltransferase that is essential for poly-N-acetyl-lactosamine synthesis. Proc Natl Acad Sci USA 1997; 94:14292–14299.Google Scholar
  179. 179.
    Blanken WM, Hooghwinkel GJM, van den Eijnden DH. Biosynthesis of blood-group I and i substances. Specificity of bovine colostrum β-N-acetyl-D-glucosaminide β1-4 galactosyltransferase. Eur J Biochem 1982; 127:547–552.PubMedGoogle Scholar
  180. 180.
    Feizi T, Childs RA, Watanabe K, et al. Three types of blood group I specificity among monoclonal anti-I autoantibodies revealed by analogues of a branched erythrocyte glycolipid. J Exp Med 1979; 149:975–980.PubMedGoogle Scholar
  181. 181.
    Fukuda M, Fukuda MN, Hakomori S. Developmental change and genetic defect in the carbohydrate structure of band 3 glycoprotein of human erythrocyte membrane. J Biol Chem 1979; 254:3700–3703.PubMedGoogle Scholar
  182. 182.
    Watanabe K, Hakomori SI, Childs RA, et al. Characterization of a blood group I-active ganglioside. Structural requirements for I and i specificities. J Biol Chem 1979; 254:3221–3228.PubMedGoogle Scholar
  183. 183.
    Marsh WL. Anti-i: Cold antibody defining the Ii relationship in human red cells. Br J Haematol 1961; 7:200–209.PubMedGoogle Scholar
  184. 184.
    Wiener AS, Unger LH, Cohen L, et al. Type-specific cold autoantibodies as a cause of acquired haemolytic anaemia and haemolytic transfusion reactions: Biologic test with bovine red cells. Ann Intern Med 1956; 44:221–240.PubMedGoogle Scholar
  185. 185.
    Schubothe H. The cold hemagglutinin disease. Semin Haematol 1966; 3:27–47.Google Scholar
  186. 186.
    Bierhuizen MF, Mattei MG, Fukuda M. Expression of the developmental I antigen by a cloned human cDNA encoding a member of a β-1,6-N-acetylglucosaminyltransferase gene family. Genes Dev 1993; 7:468–478.PubMedGoogle Scholar
  187. 187.
    Leppänen A, Penttilä L, Niemelä R, et al. Human serum contains a novel β1,6-N-acetyl-glucosaminyltransferase activity that is involved in midchain branching of oligo-(N-aceryllactosaminoglycans). Biochemistry 1991; 30:9287–9296.PubMedGoogle Scholar
  188. 188.
    Helin J, Penttila L, Leppanen A, et al. The β1,6-GlcNAc transferase activity present in hog gastric mucosal microsomes catalyses site-specific branch formation on a long polylactosamine backbone. FEBS Lett 1997; 412:637–642.PubMedGoogle Scholar
  189. 189.
    Leppänen A, Niemelä R, Renkonen O. Enzymatic midchain bracnhing of polylactosamine backbones is restricted in a site-specific manner in α1,3-fucosylated chains. Biochemistry 1997; 36:13729–13735.PubMedGoogle Scholar
  190. 190.
    Bierhuizen MF, Fukuda M. Expression cloning of a cDNA encoding UDP-GlcNAc: Galβ1-3GalNAc-R (GlcNAc to GalNAc) β1-6GlcNAc transferase by gene transfer into CHO cells expressing polyoma large tumor antigen. Proc Natl Acad Sci USA 1992; 89:9326–9330.PubMedGoogle Scholar
  191. 191.
    Bierhuizen MF, Maemura K, Kudo S, et al. Genomic organization of core 2 and I branching β-1,6-N-acetylglucosaminyltransferases. Implication for evolution of the β-1,6-N-acetylglucosaminyltransferase gene family. Glycobiology 1995; 5:417–425.PubMedGoogle Scholar
  192. 192.
    Bierhuizen MF, Maemura K, Fukuda M. Isolation and characterization of a pseudogene related to human core 2 β-1,6-N-acetylglucosaminyltransferase. Glycoconj J 1995; 12:857–864.PubMedGoogle Scholar
  193. 193.
    Magnet AD, Fukuda M. Expression of the large I antigen forming β-1,6-N-acetyl-glucosaminyltransferase in various tissues of adult mice. Glycobiology 1997; 7:285–295.PubMedGoogle Scholar
  194. 194.
    Yousefi S, Higgins E, Daoling Z, et al. Increased UDP-GlcNAc:Galβ1-3GalNAc-R (GlcNAc to GalNAc) β-1,6-N-acetylglucosaminyltransferase activity in metastatic murine tumor cell lines. Control of polylactosamine synthesis. J Biol Chem 1991; 266:1772–1782.PubMedGoogle Scholar
  195. 195.
    Schauer R. Characterisation of sialic acids. Methods Enzymol 1978; 50:64–89.PubMedGoogle Scholar
  196. 196.
    Varki A. “Unusual” modifications and variations of vertebrate oligosaccharides: Are we missing the flowers for the trees? Glycobiology 1996; 6:707–710.PubMedGoogle Scholar
  197. 197.
    Kean EL. Sialic acid activation. Glycobiology 1991; 1:441–447.PubMedGoogle Scholar
  198. 198.
    Kolter T, Sandhoff K. Sialic acids: Why always α-linked? Glycobiology 1997; 7:vii–ix.PubMedGoogle Scholar
  199. 199.
    Hinderlich S, Stäsche R, Zeitler R, et al. A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Purification and characterization of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. J Biol Chem 1997; 272:24313–24318.PubMedGoogle Scholar
  200. 200.
    Stäsche R, Hinderlich S, Weise C, et al. A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Molecular cloning and functional expression of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. J Biol Chem 1997; 272:24319–24324.PubMedGoogle Scholar
  201. 201.
    Maru I, Ohta Y, Murata K, Tsukada Y. Molecular cloning and identification of N-acyl-D-glucosamine 2-epimerase from porcine kidney as a renin-binding protein. J Biol Chem 1996; 271:16294–16299.PubMedGoogle Scholar
  202. 202.
    Potvin B, Raju TS, Stanley P. Lec32 is a new mutation in Chinese hamster ovary cells that essentially abrogates CMP-N-acetylneuraminic acid synthetase activity. J Biol Chem 1995;270:30415–30421.PubMedGoogle Scholar
  203. 203.
    Muchmore EA, Milewski M, Varki A, et al. Biosynthesis of N-glycolyneuraminic acid. The primary site of hydroxylation of N-acetylneuraminic acid is the cytosolic sugar nucleotide pool. J Biol Chem 1989; 264:20216–20223.PubMedGoogle Scholar
  204. 204.
    Hirabayashi Y, Kasakura H, Matsumoto M, et al. Specific expression of unusual GM2 ganglioside with Hanganutziu-Deicher antigen activity on human colon cancers. Jpn J Cancer Res 1987; 78:251–260.PubMedGoogle Scholar
  205. 205.
    Hirabayashi Y, Higashi H, Kato S, et al. Occurrence of tumor-associated ganglioside antigens with Hanganutziu-Deicher antigenic activity on human melanomas. Jpn J Cancer Res 1987; 78:614–620.PubMedGoogle Scholar
  206. 206.
    Eckhardt M, Gerardy-Schahn R. Molecular cloning of the hamster CMP-sialic acid transporter. Eur J Biochem 1997; 248:187–192.PubMedGoogle Scholar
  207. 207.
    Tsuji S. Molecular cloning and functional analysis of sialyltransferases. J Biochem (Tokyo) 1996; 120:1–13.Google Scholar
  208. 208.
    Tsuji S, Datta AK, Paulson JC. Systematic nomenclature for sialyltransferases. Glycobiology 1996; 6:R5–R7.Google Scholar
  209. 209.
    Hamamoto T, Kurosawa N, Lee YC, et al. Donor substrate specificities of Galβ1,4-GlcNAc α2,6-sialyltransferase and Galβ1,3GalNAc α2,3-sialyltransferase: Comparison of N-acetyl and N-glycolylneuraminic acids. Biochim Biophys Acta 1995; 1244:223–228.PubMedGoogle Scholar
  210. 210.
    Butor C, Diaz S, Varki A. High level O-acetylation of sialic acids on N-linked oligosaccharides of rat liver membranes. Differential subcellular distribution of 7-and 9-O-acetyl groups and of enzymes involved in their regulation. J Biol Chem 1993; 268:10197–10206.PubMedGoogle Scholar
  211. 211.
    Manzi AE, Sjoberg ER, Diaz S, Varki A. Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells. J Biol Chem 1990; 265:13091–13103.PubMedGoogle Scholar
  212. 212.
    Chammas R, Mccaffery JM, Klein A, et al. Uptake and incorporation of an epitope-tagged sialic acid donor into intact rat liver Golgi compartments. Functional localization of sialyltransferase overlaps with β-galactosyltransferase but not with sialic acid O-acetyltransferase. Mol Biol Cell 1996; 7:1691–1707.PubMedGoogle Scholar
  213. 213.
    Shi WX, Chammas R, Varki A. Linkage-specific action of endogenous sialic acid O-acetyltransferase in Chinese hamster ovary cells. J Biol Chem 1996; 271:15130–15138.PubMedGoogle Scholar
  214. 214.
    Harduin-Lepers A, Recchi MA, Delannoy P. 1994, The year of sialyltransferases. Glycobiology 1995; 5:741–758.PubMedGoogle Scholar
  215. 215.
    Weinstein J, Lee EU, McEntee K, et al. Primary structure of β-galactoside α2,6-sialyl-transferase. Conversion of membrane-bound enzyme to soluble forms by cleavage of the NH2-terminal signal abchor. J Biol Chem 1987; 262:17735–17743.PubMedGoogle Scholar
  216. 216.
    Gillespie W, Kelm S, Paulson JC. Cloning and expression of the Galβ1,3GalNAc α2,3-sialyltransferase. J Biol Chem 1992; 267:21004–21010.PubMedGoogle Scholar
  217. 217.
    Wen DX, Livingston BD, Medzihradszky KF, et al. Primary structure of Galβ1,3(4)-GlcNAc α2,3-sialyltransferase determined by mass spectrometry sequence analysis and molecular cloning. J Biol Chem 1992; 267:21011–21019.PubMedGoogle Scholar
  218. 218.
    Livingston BD, Paulson JC. Polymerase chain reaction cloning of a developmentally regulated member of the sialyltransferase gene family. J Biol Chem 1993; 268:11504–11507.PubMedGoogle Scholar
  219. 219.
    Drickamer K. A conserved disulphide bond in sialyltransferases. Glycobiology 1993; 3:2–3.PubMedGoogle Scholar
  220. 220.
    Datta AK, Paulson JC. Sialylmotifs of sialyltransferases. Indian J Biochem Biophys 1997;34:157–165.PubMedGoogle Scholar
  221. 221.
    Geremia RA, Harduin-Lepers A, Delannoy P. Identification of two novel conserved amino acid residues in eukaryotic sialyltransferases: Implications for their mechanism of action. Glycobiology 1997; 7:v–vii.PubMedGoogle Scholar
  222. 222.
    Kono M, Ohyama Y, Lee Y-C, et al. Mouse β-galactoside α2,3-sialyltransferases: Comparison of in vitro substrate specificities and tissue specific expression. Glycobiology 1997; 7:469–479.PubMedGoogle Scholar
  223. 223.
    Kitagawa H, Paulson JC. Cloning of a novel α2,3-sialyltransferase that sialylates glycoprotein and glycolipid carbohydrate groups. J Biol Chem 1994; 269:1394–1401.PubMedGoogle Scholar
  224. 224.
    Paulson JC, Weinstein J, de Souza-e-Silva U. Biosynthesis of a disialylated sequence in N-linked oligosaccharides: Identification of an N-acetylglucosaminide α(2→6)-sialyl-transferase in Golgi apparatus from rat liver. Eur J Biochem 1984; 140:523–530.PubMedGoogle Scholar
  225. 225.
    Datta AK, Paulson JC. The sialyltransferase’ sialylmotif’ participates in binding the donor substrate CMP-NeuAc. J Biol Chem 1995; 270:1497–1500.PubMedGoogle Scholar
  226. 226.
    Kurosawa N, Hamamoto T, Lee YC, et al. Molecular cloning and expression of GalNAc α2,6-sialyltransferase. J Biol Chem 1994; 269:1402–1409.PubMedGoogle Scholar
  227. 227.
    Kurosawa N, Kojima N, Inoue M, et al. Cloning and expression of Galβ1,3GalNAc-specific GalNAc α2,6-sialyltransferase. J Biol Chem 1994; 269:19048–19053.PubMedGoogle Scholar
  228. 228.
    Sjoberg ER, Kitagawa H, Glushka J, et al. Molecular cloning of a developmentally regulated N-acetylgalactosamine α2,6-sialyltransferase specific for sialylated glycoconjugates. J Biol Chem 1996; 271:7450–7459.PubMedGoogle Scholar
  229. 229.
    Rutishauser U, Acheson A, Hall AK, et al. The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions. Science 1988; 240:53–57.PubMedGoogle Scholar
  230. 230.
    Edelman GM, Crossin KL. Cell adhesion molecules. Implications for a molecular histology. Annu Rev Biochem 1991; 60:155–190.PubMedGoogle Scholar
  231. 231.
    Matersteck CM, Kedersha NL, Drapp DA, et al. Unique α2,8-polysialylated glycoproteins in breast cancer and leukaemia cells. Glycobiology 1996; 6:289–301.Google Scholar
  232. 232.
    Haraguchi M, Yamashiro S, Yamamoto A, et al. Isolation of GD3 synthase gene by expression cloning of GM3 α-2,8-sialyltransferase cDNA using anti-GD2 monoclonal antibody. Proc Natl Acad Sci USA 1994; 91:10455–10459.PubMedGoogle Scholar
  233. 233.
    Nara K, Watanabe Y, Maruyama K, et al. Expression cloning of a CMP-NeuAc: NeuAcα2-3Galβl-4Glcβ1-1′-Cer α2,8-sialyltransferase (GD3 synthase) from human melanoma cells. Proc Natl Acad Sci USA 1994; 91:7952–7956.PubMedGoogle Scholar
  234. 234.
    Sasaki K, Kurata K, Kojima N, et al. Expression cloning of a GM3-specific α-2,8-sialyl-transferase (GD3 synthase). J Biol Chem 1994; 269:15950–15956.PubMedGoogle Scholar
  235. 235.
    Watanabe Y, Nara K, Takahashi H, et al. The molecular cloning and expression of α2,8-sialyltransferase (GD3 synthase) in a rat brain. J Biochem (Tokyo) 1996; 120:1020–1027.Google Scholar
  236. 236.
    Zeng GC, Gao LY, Ariga T, et al. Molecular cloning of cDNA for rat brain GD3-synthase. Biochem Biophys Res Commun 1996; 226:319–323.PubMedGoogle Scholar
  237. 237.
    Nakayama J, Fukuda MN, Hirabayashi Y, et al. Expression cloning of a human GT3 synthase: GD3 and GT3 are synthesized by a single enzyme. J Biol Chem 1996; 271:3684–3691.PubMedGoogle Scholar
  238. 238.
    Kono M, Yoshida Y, Kojima N, et al. Molecular cloning and expression of a fifth type of α2,8-sialyltransferase (ST8Sia V): Its substrate specificity is similar to that of SAT-V/III, which synthesize GDlc, GTla, GQlb and GT3. J Biol Chem 1996; 271:29366–29371.PubMedGoogle Scholar
  239. 239.
    Kim YJ, Kim DS, Do S, et al. Molecular cloning and expression of human α2,8-sialyl-transferase (hST8Sia V). Biochem Biophys Res Commun 1997; 235:327–330.PubMedGoogle Scholar
  240. 240.
    Stoykova LI, Glick MC. Purification of an α-2,8-sialyltransferase, a potential initiating enzyme for the biosynthesis of polysialic acid in human neuroblastoma cells. Biochem Biophys Res Commun 1995; 217:777–783.PubMedGoogle Scholar
  241. 241.
    Kitagawa H, Paulson JC. Differential expression of five sialyltransferase genes in human tissues. J Biol Chem 1994; 269:17872–17878.PubMedGoogle Scholar
  242. 242.
    Scheidegger EP, Sternberg LR, Roth J, et al. A human STX cDNA confers polysialic acid expression in mammalian cells. J Biol Chem 1995; 270:22685–22688.PubMedGoogle Scholar
  243. 243.
    Angata K, Nakayama J, Fredette B, et al. Human STX polysialyltransferase forms the embryonic form of the neural cell adhesion molecule. Tissue-specific expression, neurite outgrowth, and chromosomal localization in comparison with another polysialyltransferase, PST. J Biol Chem 1997; 272:7182–7190.PubMedGoogle Scholar
  244. 244.
    Kojima N, Yoshida Y, Kurosawa N, et al. Enzymatic activity of a developmentally regulated member of the sialyltransferase family (STX): Evidence for a2,8-sialyl-transferase activity toward N-linked oligosaccharides. FEBS Lett 1995; 360:1–4.PubMedGoogle Scholar
  245. 245.
    Kojima N, Yoshida Y, Tsuji S. A developmentally regulated member of the sialyl-transferase family (ST8Sia II, STX) is a polysialic acid synthase. FEBS Lett 1995; 373:119–122.PubMedGoogle Scholar
  246. 246.
    Kojima N, Tachida Y, Yoshida Y, et al. Characterization of mouse ST8Sia II (STX) as a neural cell adhesion molecule-specific polysialic acid synthase: Requirement of core α1,6-linked fucose and a polypeptide chain for polysialylation. J Biol Chem 1996; 271:19457–19463.PubMedGoogle Scholar
  247. 247.
    Kurosawa N, Yoshida Y, Kojima N, et al. Polysialic acid synthase (ST8Sia II/STX) mRNA expression in the developing mouse central nervous system. J Neurochem 1997; 69:494–503.PubMedGoogle Scholar
  248. 248.
    Kojima N, Kono M, Yoshida Y, et al. Biosynthesis and expression of polysialic acid on the neural cell adhesion molecule is predominantly directed by ST8Sia II/STX during in vitro neuronal differentiation. J Biol Chem 1996; 271:22058–22062.PubMedGoogle Scholar
  249. 249.
    Yoshida Y, Kurosawa N, Kanematsu T, et al. Genomic structure and promoter activity of the mouse polysialic acid synthase gene (mST8Sia II): Brain-specific expression from a TATA-less GC-rich sequence. J Biol Chem 1996; 271:30167–30173.PubMedGoogle Scholar
  250. 250.
    Yoshida Y, Kojima N, Kurosawa N, et al. Molecular cloning of Siaα2,3Galβ1,4-GlcNAc α2,8-sialyltransferase from mouse brain. J Biol Chem 1995; 270:14628–14633.PubMedGoogle Scholar
  251. 251.
    Zeng GC, Gao LY, Yu RK. Cloning of the cDNA coding for rat brain CMP-NeuAc: GD3 α2-8 sialyltransferase. Gene 1997; 187:131–134.PubMedGoogle Scholar
  252. 252.
    Yoshida Y, Kurosawa N, Kanematsu T, et al. Unique genomic structure and expression of the mouse α2,8-sialyltransferase (ST8Sia III) gene. Glycobiology 1996; 6:573–580.PubMedGoogle Scholar
  253. 253.
    Eckhardt M, Mühlenhoff M, Bethe A, et al. Molecular characterization of eukaryotic polysialyltransferase-1. Nature (London) 1995; 373:715–718.Google Scholar
  254. 254.
    Yoshida Y, Kojima N, Tsuji S. Molecular cloning and characterization of a third type of N-glycan α2,8-sialyltransferase from mouse lung. J Biochem (Tokyo) 1995; 118:658–664.Google Scholar
  255. 255.
    Nakayama J, Fukuda MN, Fredette B, et al. Expression cloning of a human polysialyl-transferase that forms the polysialylated neural cell adhesion molecule present in embryonic brain. Proc Natl Acad Sci USA 1995; 92:7031–7035.PubMedGoogle Scholar
  256. 256.
    Nakayama J, Fukuda M. A human polysialyltransferase directs in vitro synthesis of polysialic acid. J Biol Chem 1996; 271:1829–1832.PubMedGoogle Scholar
  257. 257.
    Takashima S, Yoshida Y, Kanematsu T, et al. Genomic structure and promoter activity of the mouse polysialic acid synthase (mST8Sia IV/PST) gene. J Biol Chem 1998; 273:7675–7683.PubMedGoogle Scholar
  258. 258.
    Van den Eijnden DH, Bakker H, Neeleman AP, et al. Novel pathways in complex-type oligosaccharide synthesis: New vistas opened by studies in invertebrates. Biochem Soc Trans 1997; 25:887–893.PubMedGoogle Scholar
  259. 259.
    Do KY, Do SI, Cummings RD. Differential expression of LacdiNAc sequences (GalNAcβ1-4GlcNAc-R) in glycoproteins synthesized by Chinese hamster ovary and human 293 cells. Glycobiology 1997; 7:183–194.PubMedGoogle Scholar
  260. 260.
    Baenziger JU. Protein-specific glycosyltransferases: How and why they do it! FASEB J 1994; 8:1019–1025.PubMedGoogle Scholar
  261. 261.
    Manzella SM, Hooper LV, Baenziger JU. Oligosaccharides containing β1,4-linked N-acetylgalactosamine, a paradigm for protein-specific glycosylation. J Biol Chem 1996;271:12117–12120.PubMedGoogle Scholar
  262. 262.
    Mengeling BJ, Manzella SM, Baenziger JU. A cluster of basic amino acids within an α-helix is essential for α-subunit recognition by the glycoprotein hormone N-acetyl-galactosaminyltransferase. Proc Natl Acad Sci USA 1995; 92:502–506.PubMedGoogle Scholar
  263. 263.
    Donald ASR, Yates AD, Soh CPC, et al. A blood group Sda-active pentasaccharide isolated from Tamm-Horsfall urinary glycoprotein. Biochem Biophys Res Commun 1983;115:625–631.PubMedGoogle Scholar
  264. 264.
    Smith PL, Lowe JB. Molecular cloning of a murine N-acetylgalactosamine transferase cDNA that determines expression of the T lymphocyte-specific CT oligosaccharide differentiation antigen. J Biol Chem 1994; 269:15162–15171.PubMedGoogle Scholar
  265. 265.
    Dohi T, Yuyama Y, Natori Y, et al. Detection of N-acetylgalactosaminyltransferase mRNA which determines expression of Sda blood group carbohydrate structure in human gastrointestinal mucosa and cancer. Int J Cancer 1996; 67:626–631.PubMedGoogle Scholar
  266. 266.
    Skelton TP, Hooper LV, Srivastava V, et al. Characterization of a sulphotransferase responsible for the 4-O-sulphation of terminal β-N-acetyl-D-galactosamine on asparagine-linked oligosaccharides of glycoprotein hormones. J Biol Chem 1991; 266:17142–17150.PubMedGoogle Scholar
  267. 267.
    Spiro RG, Bhoyroo VD. Occurence of sulphate in the asparagine-linked complex carbohydrate units of thyroglobulin. Indentification and localisation of galactose-3-sulphate and N-acetylglucosamine-6-sulphate residues in the human and calf proteins. J Biol Chem 1988; 263:14351–14358.PubMedGoogle Scholar
  268. 268.
    Spiro RG, Yasumoto Y, Bhoyroo V. Characterization of a rat liver Golgi sulphotransferase responsible for the 6-O-sulphation of N-acetylglucosamine residues in β-linkage to mannose: Role in assembly of sialylgalactosyl-N-acetylglucosamine 6-sulphate sequence of N-linked oligosaccharides. Biochem J 1996; 319:209–216.PubMedGoogle Scholar
  269. 269.
    Kato Y, Spiro RG. Characterization of a thyroid sulfotransferase responsible for the 3-O-sulfation of terminal β-D-galactosyl residues in N-linked carbohydrate units. J Biol Chem 1989; 264:3364–3371.PubMedGoogle Scholar
  270. 270.
    Chandrasekaran EV, Jain RK, Vig R, et al. The enzymatic sulfation of glycoprotein carbohydrate units: Blood group T-hapten specific and two other distinct Gal: 3-O-sulfotransferases as evident from specificities and kinetics and the influence of sulfate and fucose residues occurring in the carbohydrate chain on C-3 sulfation of terminal Gal. Glycobiology 1997; 7:753–768.PubMedGoogle Scholar
  271. 271.
    Lo-Guidice JM, Perini JM, Lafitte JJ, et al. Characterization of a sulfotransferase from human airways responsible for the 3-O-sulfation of terminal galactose in N-acetyl-lactosamine-containing mucin carbohydrate chains. J Biol Chem 1995; 270:27544–27550.PubMedGoogle Scholar
  272. 272.
    Spiro RG, Bhoyroo VD. Characterisation of a spleen sulphotransferase responsible for the 6-O-sulphation of the galactose residue in sialyl-N-acetyllactosamine. Biochem J 1998;331:265–271.PubMedGoogle Scholar
  273. 273.
    Brown GM, Huckerby TN, Abram BL, et al. Characterisation of a non-reducing terminal fragment from bovine articular cartilage keratan sulphates containing α(2-3)-linked sialic acid and α(1-3)-linked fucose. A sulphated variant of the VIM-2 epitope. Biochem J 1996; 319:137–141.PubMedGoogle Scholar
  274. 274.
    Habuchi O, Suzuki Y, Fukuta M. Sulphation of sialyl lactosamine oligosaccharides by chondroitin 6-sulfotransferase. Glycobiology 1997; 7:405–412.PubMedGoogle Scholar
  275. 275.
    Jacques AJ, Opdenakker G, Rademacher TW, et al. The glycosylation of Bowes melanoma tissue plasminogen activator: Lectin mapping, reaction with anti-L2/HNK-l antibodies and the presence of sulphated/glucuronic acid containing glycans. Biochem J 1996;316:427–437.Google Scholar
  276. 276.
    Voshol H, van Zuylen WEM, Orberger G, et al. Structure of the HNK-1 carbohydrate epitope on bovine peripheral myelin glycoprotein P0. J Biol Chem 1996; 271:22957–22960.PubMedGoogle Scholar
  277. 277.
    Terayama K, Oka S, Seiki T, et al. Cloning and functional expression of a novel glucuronyltransferase involved in the biosynthesis of the carbohydrate epitope HNK-1. Proc Natl Acad Sci USA 1997; 94:6093–6098.PubMedGoogle Scholar
  278. 278.
    Bakker H, Friedmann I, Oka S, et al. Expression cloning of a cDNA encoding a sulphotransferase involved in the biosynthesis of the HNK-1 carbohydrate epitope. J Biol Chem 1997; 272:29942–29946.PubMedGoogle Scholar
  279. 279.
    Ong E, Yeh J-C, Ding Y, et al. Expression cloning of a human sulphotransferase that directs the synthesis of the HNK-1 glycan on the neural cell adhesion molecule and glycolipids. J Biol Chem 1998; 273:5190–5195.PubMedGoogle Scholar
  280. 280.
    Von Figura K, Hasilik A. Lysosomal enzymes and their receptors. Annu Rev Biochem 1986;55:167–193.Google Scholar
  281. 281.
    Kornfeld S, Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol 1989; 5:483–525.PubMedGoogle Scholar
  282. 282.
    Hasilik A, Klein U, Waheed A, et al. Phosphorylated oligosaccharides in lysosomal enzymes: Identification of α-N-acetylglucosamine(1)phospho(6)mannose diester groups. Proc Natl Acad Sci USA 1980; 77:7074–7078.PubMedGoogle Scholar
  283. 283.
    Tabas I, Kornfeld S. Biosynthetic intermediates of β-glucuronidase contain high mannose oligosaccharides with blocked phosphate groups. J Biol Chem 1980; 255:6633–6639.PubMedGoogle Scholar
  284. 284.
    Varki A, Kornfeld S. Structural studies of phosphorylated high mannose oligosaccharides. J Biol Chem 1980; 255:10847–10858.PubMedGoogle Scholar
  285. 285.
    Goldberg DE, Kornfeld S. The phosphorylation of β-glucuronidase oligosaccharides in mouse P388D1 cells. J Biol Chem 1981; 256:13060–13067.PubMedGoogle Scholar
  286. 286.
    Reitman ML, Kornfeld S. UDP-N-acetylglucosamine:glycoprotein N-acetyl-glucosamine-1-phosphotransferase. Proposed enzyme for the phosphorylation of the high mannose oligosaccharide units of lysosomal enzymes. J Biol Chem 1981; 256:4275–4281.PubMedGoogle Scholar
  287. 287.
    Reitman ML, Kornfeld S. Lysosomal enzyme targeting. N-Acetylglucosaminyl-phosphotransferase selectively phosphorylates native lysosomal enzymes. J Biol Chem 1981;256:11977–11980.PubMedGoogle Scholar
  288. 288.
    Baranski TJ, Faust PL, Kornfeld S. Generation of a lysosomal enzyme targeting signal in the secretory protein pepsinogen. Cell 1990; 63:281–291.PubMedGoogle Scholar
  289. 289.
    Bao M, Booth JL, Elmendorf BJ, et al. Bovine UDP-N-acetylglucosamine:lysosomal-enzyme N-acetylglucosamine-1-phosphotransferase. I. Purification and subunit structure. J Biol Chem 1996; 271:31437–31445.PubMedGoogle Scholar
  290. 290.
    Bao M, Elmendorf BJ, Booth JL, et al. Bovine UDP-N-acetylglucosamine:lysosomal-enzyme N-acetylglucosamine-1-phosphotransferase. II. Enzymatic characterisation and identification of the catalytic subunit. J Biol Chem 1996; 271:31446–31451.PubMedGoogle Scholar
  291. 291.
    Reitman ML, Varki A, Kornfeld S. Fibroblasts from patients with I-cell disease and pseudo-Hurler polydystrophy are deficient in uridine 5′-diphosphate-N-acetyl-glucosamine:glycoprotein N-acetylglucosaminylphosphotransferase activity. J Clin Invest 1981; 67:1574–1579.PubMedGoogle Scholar
  292. 292.
    Leroy JG, Demars RI. Mutant enzymatic and cytological phenotypes in cultured human fibroblasts. Science 1967; 157:804–806.PubMedGoogle Scholar
  293. 293.
    Hwu WL, Chuang SC, Wang WC, et al. Diagnosis of I-cell disease. Acta Paed Sinica 1994; 35:508–513.Google Scholar
  294. 294.
    Ben-Yoseph Y, Potier M, Mitchell DA, et al. Altered molecular size of N-acetyl-glucosamine 1-phosphotransferase in I-cell disease and pseudo-Hurler polydystrophy. Biochem J 1987;248:697–701.PubMedGoogle Scholar
  295. 295.
    Mueller OT, Wasmuth JJ, Murray JC, et al. Chromosomal assignment of N-acetyl-glucosaminylphosphotransferase, the lysosomal hydrolase targeting enzyme deficient in mucolipidosis II and III. Cytogenet Cell Genet 1987; 46:664.Google Scholar
  296. 296.
    Fowler ML, Fan YS, Mueller OT, Henry WM, Shows TB. Correction of mucolipidosis III in vitro by gene transfer. Genomics 1993; 18:236–243.PubMedGoogle Scholar
  297. 297.
    Varki A, Kornfeld S. Identification of a rat liver α-N-acetylglucosaminy 1 phosphodiesterase capable of removing ‘blocking’ α-N-acetylglucosamine residues from phosphorylated high mannose oligosaccharides of lysosomal enzymes. J Biol Chem 1980;255:8398–8401.PubMedGoogle Scholar
  298. 298.
    Waheed A, Hasilik A, von Figura K. Processing of the phosphorylated recognition marker in lysosomal enzymes. Characterisation and partial purification of a microsomal α-N-acetylglucosaminylphosphodiesterase. J Biol Chem 1981; 256:5717–5721.PubMedGoogle Scholar
  299. 299.
    Varki A, Kornfeld S. Purification and characterisation of rat liver α-N-acetyl-glucosaminyl phosphodiesterase. J Biol Chem 1981; 256:9937–9943.PubMedGoogle Scholar
  300. 300.
    Mullis KG, Kornfeld RH. Purification and kinetic parameters of bovine liver N-acetylglucosamine-1-phosphodiester α-N-acetylglucosaminidase. J Biol Chem 1994; 256:1718–1726.Google Scholar
  301. 301.
    Mullis KG, Kornfeld RH. Characterisation and immunolocalisation of bovine liver N-acetylglucosamine-1-phosphodiester α-N-acetylglucosaminidase. J Biol Chem 1994; 256:1727–1733.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Roslyn M. Bill
    • 1
  • Leigh Revers
    • 2
  • Iain B. H. Wilson
    • 3
  1. 1.The Lundberg LaboratoryUniversity of GöteborgGöteborgSweden
  2. 2.Department of Biochemistry ResearchThe Hospital for Sick ChildrenTorontoCanada
  3. 3.Department of Biochemistry ResearchUniversity of DundeeDundeeScotland

Personalised recommendations