Advertisement

Complementing The Cell: Glycoform Synthesis In Vitro

  • Roslyn M. Bill
  • Leigh Revers
  • Iain B. H. Wilson
Chapter

Abstract

One of the many challenges in the field of glycobiology is the isolation of the pure glycoforms of a glycoprotein since the study of these glycoforms, or their synthetic analogues, is likely to provide a unique insight into the very nature of the glycoprotein itself. In particular, since glycoforms contain a well-defined oligosaccharide side chain at each glycosylation site, they are invaluable tools in understanding the relationship between oligosaccharide sequence and glycoprotein function: one of the holy grails of biology.

Keywords

Glycosyl Donor Chemoenzymatic Synthesis Oligosaccharide Synthesis Glycosyl Acceptor Oligosaccharide Side Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Novotny MV. Glycoconjugate analysis by capillary electrophoresis. Methods Enzymol 1996;271:319–347.PubMedGoogle Scholar
  2. 2.
    Rudd PM, Joao HC, Coghill E, et al. Glycoforms modify the dynamic stability and functional activity of an enzyme. Biochemistry 1994; 33:17–22.PubMedGoogle Scholar
  3. 3.
    Endo T. Fractionation of glycoprotein-derived oligosaccharides by affinity chromatography using immobilized lectin columns. J Chromatogr A 1996; 720:251–261.PubMedGoogle Scholar
  4. 4.
    Robertson ER, Kennedy JF. Glycoproteins: A consideration of the potential problems and their solutions with respect to purification and characterisation. Bioseparation 1996; 6:1–15.PubMedGoogle Scholar
  5. 5.
    Lee YC, Lee RT. Synthetic glycoconjugates. In: Allen HJ, Kisailus EC, eds. Glycoconjugates: Composition, Structure and Function. New York: Marcel Dekker, 1992:121–165.Google Scholar
  6. 6.
    Bill RM, Flitsch SL. Chemical and biological approaches to glycoprotein synthesis. Chem Biol 1996; 3:145–149.PubMedGoogle Scholar
  7. 7.
    Khan SH, Hindsgaul O. Chemical synthesis of oligosaccharides. In: Fukuda M, Hindsgaul O, eds. Molecular Glycobiology. Oxford: IRL Press/Oxford University Press, 1994:53–87. (Harnes BD, Glover DM, eds. Frontiers in Molecular Biology).Google Scholar
  8. 8.
    Sears P, Wong C-H. Intervention of carbohydrate recognition by proteins and nucleic acids. Proc Natl Acad Sci USA 1996; 93:12086–12093.Google Scholar
  9. 9.
    McGarvey GJ, Wong C-H. Chemical, enzymatic and structural studies in molecular glycobiology. Liebigs Ann Recueil 1997; 6:1059–1074.Google Scholar
  10. 10.
    Gijsen HJM, Qiao L, Fitz W, et al. Recent advances in the chemoenzymatic synthesis of carbohydrates and carbohydrate mimetics. Chem Rev 1996; 96:443–473.PubMedGoogle Scholar
  11. 11.
    Hindsgaul O, Kaur KJ, Gokhale UB, et al. Use of glycosyltransferases in synthesis of unnatural oligosaccharide analogs. In: Bednarski MD, Simon ES, eds. Enzymes in Carbohydrate Synthesis. Washington: American Chemical Society, 1991:38–50. (American Chemical Society Symposium Series; vol 466).Google Scholar
  12. 12.
    Palcic MM, Hindsgaul O. Flexibility in the donor substrate specificity of β1,4-galactosyltransferase: Application in the synthesis of complex carbohydrates. Glycobiology 1991; 1:205–209.PubMedGoogle Scholar
  13. 13.
    Deshpande PP, Danishefsky SJ. Total synthesis of the potential anticancer vaccine KH-1 adenocarcinoma antigen. Nature 1997; 387:164–166.PubMedGoogle Scholar
  14. 14.
    Malik A, Bauer H, Tschakert J, et al. Solid-phase synthesis of carbohydrates. Chem Ztg 1990;114:371–375.Google Scholar
  15. 15.
    Danishefsky SJ, McClure KF, Randolph JT, et al. A strategy for the solid-phase synthesis of oligosaccharides. Science 1993; 260:1307–1309.PubMedGoogle Scholar
  16. 16.
    Meldal M. Recent developments in glycopeptide and oligosaccharide synthesis. Curr Opin Struct Biol 1994; 4:710–718.Google Scholar
  17. 17.
    Ding Y, Kanie O, Labbe J, et al. Synthesis and biological activity of oligosaccharide libraries. Adv Exp Med Biol 1995; 376:261–269.PubMedGoogle Scholar
  18. 18.
    Liang R, Yan L, Loebach J, et al. Parallel synthesis and screening of a solid phase carbohydrate library. Science 1996; 274:1520–1522.PubMedGoogle Scholar
  19. 19.
    Paulsen H. Advances in selective chemical synthesis of complex oligosaccharides. Angew Chem Int Ed Engl 1982; 21:155–173.Google Scholar
  20. 20.
    Garegg PJ. Saccharides of biological importance: Challenges and opportunities for organic synthesis. Acc Chem Res 1992; 25:575–580.Google Scholar
  21. 21.
    Kanie O, Hindsgaul O. Synthesis of oligosaccharides, glycolipids and glycopeptides. Curr Opin Struct Biol 1992; 2:674–681.Google Scholar
  22. 22.
    Whitfield DM, Douglas SP. Glycosylation reactions—present status, future directions. Glycoconj J 1996; 13:5–17.PubMedGoogle Scholar
  23. 23.
    Flitsch SL, Watt GM. Chemical synthesis of glycoprotein glycans: Synthesis, analysis, and applications. In: Large DG, Warren CD, eds. Glycopeptides and Related Compounds. New York: Marcel Dekker, 1997:207–243.Google Scholar
  24. 24.
    Schmidt RR. New methods for the synthesis of glycosides and oligosaccharides—are there alternatives to the Koenigs-Knorr method? Angew Chem Int Ed Engl 1986; 25:212–235.Google Scholar
  25. 25.
    Paulsen H. Syntheses, conformations and X-ray structure analyses of the saccharide chains from the core regions of glycoproteins. Angew Chem Int Ed Engl 1990; 29:823–839.Google Scholar
  26. 26.
    Lemieux RU, Hendriks KB, Stick RV, et al. Halide ion catalyzed glycosidation reactions: Synthesis of α-linked disaccharides. J Am Chem Soc 1975; 97:4056–4062.Google Scholar
  27. 27.
    Sinay P. Recent advances in glycosylation reactions. Pure Appl Chem 1991; 63:519–528.Google Scholar
  28. 28.
    Paulsen H, Lockhoff O. Neue effektive α-Glycosidsynthese für Mannose-Glycoside Synthesen von Mannose-haltigen Oligosacchariden. Chem Ber 1981; 114:3102–3114.Google Scholar
  29. 29.
    Garegg PJ, Ossowski P. Silver zeolite as promoter in glycoside synthesis: The synthesis of β-D-mannopyranosides. Acta Chem Scand 1983; B37:249–250.Google Scholar
  30. 30.
    Paulsen H, Lebuhn R. Synthese der invarianten Pentasaccharid-Core-Region der Kohlenhydrat-Ketten der N-Glycoproteinen. Carbohydr Res 1984; 130:85–101.Google Scholar
  31. 31.
    Kunz H, Günther W. β-Mannosides from β-glucosides by intramolecular nucleophilic Substitution with inversion of configuration. Angew Chem Int Ed Engl 1988; 27:1086–1087.Google Scholar
  32. 32.
    Günther W, Kunz H. Synthesis of a β-mannosyl-chitobiosyl-asparagine conjugate—a central core region unit of the N-glycoproteins. Angew Chem Int Ed Engl 1990; 29:1050–1051.Google Scholar
  33. 33.
    Barresi F, Hindsgaul O. Synthesis of β-mannopyranosides by intramolecular aglycon delivery. J Am Chem Soc 1991; 113:9376–9377.Google Scholar
  34. 34.
    Barresi F, Hindsgaul O. Improved synthesis of β-mannopyranosides by intramolecular aglycon delivery. Synlett 1992; 759–761.Google Scholar
  35. 35.
    Barresi F, Hindsgaul O. The synthesis of β-mannopyranosides by intramolecular aglycon delivery: Scope and limitations of the existing methodology. Can J Chem 1994; 72:1447–1465.Google Scholar
  36. 36.
    Ito Y, Ogawa T. A novel approach to the stereoselective synthesis of β-mannosides. Angew Chem Int Ed Engl 1994; 33:1765–1767.Google Scholar
  37. 37.
    Nakahara Y, Shibayama S, Nakahara Y, et al. Rationally designed syntheses of high-mannose and complex type undecasaccharides. Carbohydr Res 1996; 280:67–84.PubMedGoogle Scholar
  38. 38.
    Norberg T. Glycosylation properties and reactivity of thioglycosides, sulfoxides, and other S-glycosides: Current scope and future prospects. In: Khan SH, O’Neill RA, eds. Modern Methods in Carbohydrate Synthesis. Amsterdam: Harwood Academic Publishers, 1996:82–106.Google Scholar
  39. 39.
    Boons G-J, Bowers S, Coe DM. Trityl ethers in oligosaccharide synthesis: A novel strategy for the convergent assembly of oligosaccharides. Tetrahedron Lett 1997; 38:3773–3776.Google Scholar
  40. 40.
    Uhlmann P, Vasella A. Glycosidation of benzyl β-D-and β-L-ribopyranosides. Further evidence for the effect of stereoelectronic control on the regioselectivity of glycosidation. Helv Chim Acta 1994; 77:1175–1192.Google Scholar
  41. 41.
    Bilodeau MT, Danishefsky SJ. Coupling of glycals: A new strategy for the rapid assembly of oligosaccharides. In: Khan SH, O’Neill RA, eds. Modern Methods in Carbohydrate Synthesis. Amsterdam: Harwood Academic Publishers, 1996:171–193.Google Scholar
  42. 42.
    Schmidt RR. New aspects of glycosylation reactions. In: Ogura H, Hasegawa A, Suami T, eds. Carbohydrates: Synthetic Methods and Applications in Medicinal Chemistry. Tokyo: Kodansha, 1992:68–88.Google Scholar
  43. 43.
    Barresi F, Hindsgaul O. Glycosylation methods in oligosaccharide synthesis. In: Ernst B, Leumann C, eds. Modern Synthetic Methods. Basel: Verlag Helvetica Chimica Acta, 1995:283–330.Google Scholar
  44. 44.
    Martin TJ, Schmidt RR. Efficient sialylation with phosphite as leaving group. Tetrahedron Lett 1992; 33:6123–6126.Google Scholar
  45. 45.
    Masden R, Fraser-Reid B. n-Pentenyl glycosides in oligosaccharide synthesis. In: Khan SH, O’Neill RA, eds. Modern Methods in Carbohydrate Synthesis. Amsterdam: Harwood Academic Publishers, 1996:155–170.Google Scholar
  46. 46.
    Stowell CP, Lee YC. Neoglycoproteins: The preparation and application of synthetic glycoproteins. Adv Carbohydr Chem Biochem 1980; 37:225–281.PubMedGoogle Scholar
  47. 47.
    Aplin JD, Wriston Jr JC. Preparation, properties, and applications of carbohydrate conjugates of proteins and lipids. CRC Crit Rev Biochem 1981; 10:259–306.PubMedGoogle Scholar
  48. 48.
    Greene TW, Wuts PGM. Protective Groups in Organic Synthesis. (2nd ed.) New York: Wiley, 1991.Google Scholar
  49. 49.
    Anisfeld ST, Lansbury Jr PT. A convergent approach to the chemical synthesis of asparagine-linked glycopeptides. J Org Chem 1990; 55:5560–5562.Google Scholar
  50. 50.
    Montreuil J, Bouquelet S, Debray H, et al. Glycoproteins. In: Chaplin MF, Kennedy JF, eds. Carbohydrate Analysis: A Practical Approach. Oxford: IRL, 1986:143–204.Google Scholar
  51. 51.
    Otvos Jr L, Wroblewski K, Kollat E, et al. Coupling strategies in solid-phase synthesis of glycopeptides. Peptide Res 1989; 2:362–366.Google Scholar
  52. 52.
    Garg HG, Jeanloz RW. Synthetic N-and O-glycosyl derivatives of L-asparagine, L-serine and L-threonine. Adv Carbohydr Chem Biochem 1985; 43:135–201.PubMedGoogle Scholar
  53. 53.
    Meldal M. Glycopeptide Synthesis. In: Lee YC, Lee RT, eds. Neoglycoconjugates: Preparation and Applications. San Diego: Academic Press, 1994:145–198.Google Scholar
  54. 54.
    McDonald FE, Danishefsky SJ. A stereoselective route from glycals to asparagine-linked N-protected glycopeptides. J Org Chem 1992; 57:7001–7002.Google Scholar
  55. 55.
    Handlon AL, Fraser-Reid B. A convergent strategy for the critical β-linked chitobiosyl-N-glycopeptide core. J Am Chem Soc 1993; 115:3796–3797.Google Scholar
  56. 56.
    Sames D, Chen X-T, Danishefsky SJ. Convergent total synthesis of a tumour-associated mucin motif. Nature 1997; 389:587–591.PubMedGoogle Scholar
  57. 57.
    Magnusson G, Chernyak AY, Kihlberg J, et al. Synthesis of neoglycoconjugates. In: Lee YC, Lee RT, eds. Neoglycoconjugates: Preparation and Applications. San Diego: Academic Press, 1994:53–143.Google Scholar
  58. 58.
    Kunz H, Dombo B. Solid phase synthesis of peptides and glycopeptides on polymeric supports with allylic anchor groups. Angew Chem Int Ed Engl 1988; 27:711–713.Google Scholar
  59. 59.
    Meinjohanns E, Vargas-Berenguel A, Meldal M, et al. Comparison of N-Dts and N-Aloc in the solid-phase syntheses of O-GlcNAc glycopeptide fragments of RNA-polymerase II and mammalian neurofilaments. J Chem Soc, Perkin Trans 1995; 1:2165–2175.Google Scholar
  60. 60.
    Paulsen H, Peters S, Bielfeldt T. Chemical synthesis of glycopeptides. In: Montreuil J, Schacter H, Vliegenthart JFG, eds. Glycoproteins. Amsterdam: Elsevier Science, 1995:87–121. (Neuberger A, van Deenen LLM, eds. New Comprehensive Biochemistry; vol 29a).Google Scholar
  61. 61.
    Schultz M, Kunz H. Chemical and enzymatic synthesis of glycopeptides. In: Jollès P, Jörnvall H, eds. Interface Between Chemistry and Biochemistry. Basel: Birkhäuser Verlag, 1995:201–228.Google Scholar
  62. 62.
    Arsequell G, Dwek RA, Wong SYC. 9-Fluorenylmethoxycarbonyl (Fmoc)-glycine coupling of saccharide β-glycosylamines for the fractionation of oligosaccharides and the formation of neoglycoconjugates. Anal Biochem 1994; 216:165–170.PubMedGoogle Scholar
  63. 63.
    Lee J, Coward JK. Enzyme-catalyzed glycosylation of peptides using a synthetic lipid disaccharide substrate. J Org Chem 1992; 57:4126–4135.Google Scholar
  64. 64.
    Lee YC, Lee RT. Neoglycoconjugates: Preparation and applications. San Diego: Academic Press, 1994.Google Scholar
  65. 65.
    Lee RT, Lee YC. Neoglycoproteins. In: Montreuil J, Vliegenthart JFG, Schachter H, eds. Glycoproteins II. Amsterdam: Elsevier Science, 1997:599–618. (Neuberger A, van Deenen LLM, eds. New Comprehensive Biochemistry; vol 29b).Google Scholar
  66. 66.
    Avery OT, Goebel WF. Chemo-immunological studies on conjugated carbohydrate-proteins. II. Immunological specificity of synthetic sugar-protein antigens. J Exp Med 1929; 50:533–550.PubMedGoogle Scholar
  67. 67.
    Goebel WF, Avery OT. Chemo-immunological studies on conjugated carbohydrate-proteins. I. The synthesis of p-aminophenol β-glucoside, p-aminophenol β-galactoside, and their coupling with serum globulin. J Exp Med 1929; 50:521–531.PubMedGoogle Scholar
  68. 68.
    Westphal O, Feier H. Darstellung künstlicher Antigene mit determinanten Zuckergruppen, IL Mitteil. Synthese der p-Aminophenyl-O-α-glykoside von L-Fucose, L-Rhamnose, D-Galaktose und D-Mannose. Chem Ber 1956; 89:582–588.Google Scholar
  69. 69.
    McBroom CR, Samanen CH, Goldstein IJ. Carbohydrate antigens: Coupling of carbohydrates to proteins by diazonium and phenylisothiocyanate reactions. Methods Enzymol 1972; 28:212–219.Google Scholar
  70. 70.
    Smith DF, Zopf DA, Ginsburg V. Carbohydrate antigens: Coupling of oligosaccharide phenethylamine-isothiocyanate derivatives to bovine serum albumin. Methods Enzymol 1978;50:169–171.PubMedGoogle Scholar
  71. 71.
    Gray GR. The direct coupling of oligosaccharides to proteins and derivatized gels. Arch Biochem Biophys 1974; 163:426–428.PubMedGoogle Scholar
  72. 72.
    Lee RT, Lee YC. A new method of attaching sugars to proteins by reductive amination. Abstr Pap Am Chem Soc 1978; 176:BIOL 11.Google Scholar
  73. 73.
    Lee YC, Stowell CP, Krantz MJ. 2-Imino-2-methoxyethyl 1-thioglycosides: New reagents for attaching sugars to proteins. Biochemistry 1976; 15:3956–3963.PubMedGoogle Scholar
  74. 74.
    Moczar E, Leboul J. Preparation of N-acetylglucosamine derivatives of proteins. FEBS Lett 1975; 50:300–302.PubMedGoogle Scholar
  75. 75.
    Hayes CE, Goldstein IJ. An α-D-galactosyl-binding lectin from Bandeiraea simplicifolia seeds: Isolation by affinity chromatography and characterization. J Biol Chem 1974; 249:1904–1914.PubMedGoogle Scholar
  76. 76.
    Manger ID, Rademacher TW, Dwek RA. 1-N-Glycyl β-oligosaccharide derivatives as stable intermediates for the formation of glycoconjugate probes. Biochemistry 1992; 31:10724–10732.PubMedGoogle Scholar
  77. 77.
    Manger ID, Wong SYC, Rademacher TW, et al. Synthesis of 1-N-glycyl β-oligosaccharide derivatives. Reactivity of Lens culinaris lectin with a fluorescent labeled streptavidin pseudoglycoprotein and immobilized neoglycolipid. Biochemistry 1992;31:10733–10740.PubMedGoogle Scholar
  78. 78.
    Davis NJ, Flitsch SL. A novel method for the specific glycosylation of proteins. Tetrahedron Lett 1991; 32:6793–6796.Google Scholar
  79. 79.
    Wong SYC, Guile GR, Dwek RA, et al. Synthetic glycosylation of proteins using N-(β-saccharide) iodoacetamides: Applications in site-specific glycosylation and solid-phase enzymic oligosaccharide synthesis. Biochem J 1994; 300:843–850.PubMedGoogle Scholar
  80. 80.
    Bill RM, Winter PC, McHale CM, et al. Expression and mutagenesis of recombinant human and murine erythropoietins in Escherichia coli. Biochim Biophys Acta 1995; 1261:35–43.PubMedGoogle Scholar
  81. 81.
    Bednarski MD, Simon ES, eds. Enzymes in Carbohydrate Synthesis. Washington: American Chemical Society, 1991. (American Chemical Society Symposium Series; vol 466).Google Scholar
  82. 82.
    Watt GM, Lowden PAS, Flitsch SL. Enzyme-catalyzed formation of glycosidic linkages. Curr Opin Struct Biol 1997; 7:652–660.PubMedGoogle Scholar
  83. 83.
    Vandana O, Hindsgaul O, Baenziger JU. Synthesis of oligosaccharide structures unique to pituitary glycoprotein hormones. Can J Chem 1987; 65:1645–1652.Google Scholar
  84. 84.
    Toone EJ, Simon ES, Bednarski MD, et al. Enzyme-catalyzed synthesis of carbohydrates. Tetrahedron 1989; 45:5365–5422.Google Scholar
  85. 85.
    Ichikawa Y, Look GC, Wong C-H. Enzyme-catalyzed oligosaccharide synthesis. Anal Biochem 1992; 202:215–238.PubMedGoogle Scholar
  86. 86.
    Heidias JE, Williams KW, Whitesides GM. Nucleoside phosphate sugars: Syntheses on practical scales for use as reagents in the enzymatic preparation of oligosaccharides and glycoconjugates. Acc Chem Res 1992; 25:307–314.Google Scholar
  87. 87.
    Ichikawa Y, Wang R, Wong C-H. Regeneration of sugar nucleotide for enzymatic oligosaccharide synthesis. Methods Enzymol 1994; 247:107–127.PubMedGoogle Scholar
  88. 88.
    Unverzagt C, Kunz H, Paulson JC. High-efficiency synthesis of sialyloligosaccharides and sialylglycopeptides. J Am Chem Soc 1990; 112:9308–9309.Google Scholar
  89. 89.
    Kaur KJ, Alton G, Hindsgaul O. Use of N-acetylglucosaminyltransferases I and II in the preparative synthesis of oligosaccharides. Carbohydr Res 1991; 210:145–153.PubMedGoogle Scholar
  90. 90.
    Reck F, Springer M, Paulsen H, et al. Synthesis of tetrasaccharide analogues of the N-glycan substrate of β-(1→2)-N-acetylglucosaminyltransferase II using trisaccharide precursors and recombinant β-(1→2)-N-acetylglucosaminyltransferase I. Carbohydr Res 1994; 259:93–101.PubMedGoogle Scholar
  91. 91.
    Reck F, Meinjohanns E, Tan J, et al. Synthesis of pentasaccharide analogues of the N-glycan substrates of N-acetylglucosaminyltransferases III, IV and V using tetrasaccharide precursors and recombinant β-(1→2)-N-acetylglucosaminyltransferase II. Carbohydr Res 1995; 275:221–229.PubMedGoogle Scholar
  92. 92.
    Look GC, Ichikawa Y, Shen G-J, et al. A combined chemcial and enzymatic strategy for the construction of carbohydrate-containing antigen core units. J Org Chem 1993; 58:4326–4330.Google Scholar
  93. 93.
    Nunez HA, Barker R. Enzymatic synthesis and carbon-13 nuclear magnetic resonance conformational studies of disaccharides containing β-D-galactopyranosyl and β-D-[1-13C]galactopyranosyl residues. Biochemistry 1980; 19:489–495.PubMedGoogle Scholar
  94. 94.
    Unverzagt C. Chemoenzymatic synthesis of a sialylated undecasaccharide-asparagine conjugate. Angew Chem Int Ed Engl 1996; 35:2350–2353.Google Scholar
  95. 95.
    Seto NOL, Palcic MM, Hindsgaul O, et al. Expression of a recombinant human glycosyltransferase from a synthetic gene and its utilization for synthesis of the human blood group B trisaccharide. Eur J Biochem 1995; 234:323–328.PubMedGoogle Scholar
  96. 96.
    De Vries T, van den Eijnden DH, Schultz J, et al. Efficient enzymatic synthesis of the sialyl-Lewisx tetrasaccharide: A ligand for selectin-type adhesion molecules. FEBS Lett 1993; 330:243–248.PubMedGoogle Scholar
  97. 97.
    Wang P, Shen G-J, Wang Y-F, et al. Enzymes in oligosaccharide synthesis: Active-domain overproduction, specificity study, and synthetic use of an α-1,2-mannosyl-transferase with regeneration of GDP-Man. J Org Chem 1993; 58:3985–3990.Google Scholar
  98. 98.
    Herrmann GF, Wang P, Shen G-J, et al. Recombinant whole cells as catalysts for the enzymatic synthesis of oligosaccharides and glycopeptides. Angew Chem Int Ed Engl 1994;33:1241–1242.Google Scholar
  99. 99.
    Watt GM, Revers L, Webberley MC, et al. Efficient enzymatic synthesis of the core trisaccharide of N-glycans with a recombinant β-mannosyltransferase. Angew Chem Int Ed Engl 1997; 36:2354–2356.Google Scholar
  100. 100.
    Williams MA, Kitagawa H, Datta AK, et al. Large-scale expression of recombinant sialyltransferases and comparison of their kinetic properties with native enzymes. Glycoconj J 1995; 12:755–761.PubMedGoogle Scholar
  101. 101.
    Ichikawa Y, Lin Y-C, Dumas DP, et al. Chemical-enzymatic synthesis and conformational analysis of sialyl Lewisx and derivatives. J Am Chem Soc 1992; 114:9283–9298.Google Scholar
  102. 102.
    Oehrlein R, Hindsgaul O, Palcic MM. Use of the “core-2” N-acetylglucosaminyl-transferase in the chemical-enzymatic synthesis of a sialyl-Lex-containing hexasaccharide found on O-linked glycoproteins. Carbohydr Res 1993; 244:149–159.PubMedGoogle Scholar
  103. 103.
    Lin C-H, Shen G-J, Garcia-Junceda E, et al. Enzymatic synthesis and regeneration of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) for regioselective sulfation of oligosaccharides. J Am Chem Soc 1995; 117:8031–8032.Google Scholar
  104. 104.
    Wong C-H, Ichikawa Y, Krach T, et al. Probing the acceptor specificity of β-1,4-galactosyltransferase for the development of enzymatic synthesis of novel oligosaccharides. J Am Chem Soc 1991; 113:8137–8145.Google Scholar
  105. 105.
    Wiemann T, Nishida Y, Sinnwell V, et al. Xylose: The first ambident acceptor substrate for galactosyltransferase from bovine milk. J Org Chem 1994; 59:6744–6747.Google Scholar
  106. 106.
    Greenwell P, Yates AD, Watkins WM. UDP-N-acetylgalactosamine as a donor substrate for the glycosyltransferase encoded by the B gene at the human blood group ABO locus. Carbohydr Res 1986; 149:149–170.PubMedGoogle Scholar
  107. 107.
    Seitz O, Wong C-H. Chemoenzymatic solution-and solid-phase synthesis of O-glycopeptides of the mucin domain of MAdCAM-1. A general route to O-LacNAc, O-sialyl-LacNAc, and O-sialyl-Lewisx peptides. J Am Chem Soc 1997; 119:8766–8776.Google Scholar
  108. 108.
    Schuster M, Wang P, Paulson JC, et al. Solid-phase chemical-enzymatic synthesis of glycopeptides and oligosaccharides. J Am Chem Soc 1994; 116:1135–1136.Google Scholar
  109. 109.
    Halcomb RL, Huang H, Wong C-H. Solution-and solid-phase synthesis of inhibitors of H. pylori attachment and E-selectin-mediated leukocyte adhesion. J Am Chem Soc 1994;116:11315–11322.Google Scholar
  110. 110.
    Meldal M, Auzanneau F-I, Hindsgaul O, et al. A PEGA resin for use in the solid-phase chemical-enzymatic synthesis of glycopeptides. J Chem Soc, Chem Commun 1994; 16:1849–1850.Google Scholar
  111. 111.
    De Luca C, Lansing M, Martini I, et al. Enzymatic synthesis of hyaluronic acid with regeneration of sugar nucleotides. J Am Chem Soc 1995; 117:5869–5870.Google Scholar
  112. 112.
    Barton NW, Brady RO, Dambrosia JM, et al. Replacement therapy for inherited enzyme deficiency: Macrophage-targeted glucocerebrosidase for Gaucher’s disease. N Engl J Med 1991; 324:1464–1470.PubMedGoogle Scholar
  113. 113.
    Friedman B, Hubbard SC, Rasmussen JR. Development of a recombinant form of Ceredase® (glucocerebrosidase) for the treatment of Gaucher’s disease. Glycoconj J 1993; 10:257.Google Scholar
  114. 114.
    Radin NS. Treatment of Gaucher disease with an enzyme inhibitor. Glycoconj J 1996; 13:153–157.PubMedGoogle Scholar
  115. 115.
    Bourquelot E, Bridel M. Synthèse des glucosides d’alcools a l’aide de l’émulsine et réversibilité des actions fermentaires. Ann Chim Phys 1913; Ser 8, 29:145–218.Google Scholar
  116. 116.
    Bourquelot E. Synthèse biochimique des glucosides et des polysaccharides. Réversibilité des actions fermentaire. J Pharm Chim 1914; Ser 7, 10:361–375.Google Scholar
  117. 117.
    Wong C-H, Halcomb RL, Ichikawa Y, et al. Enzymes in organic synthesis: Application to the problems of carbohydrate recognition (part 1). Angew Chem Int Ed Engl 1995; 34:412–432.Google Scholar
  118. 118.
    Wong C-H, Halcomb RL, Ichikawa Y, et al. Enzymes in organic synthesis: Application to the problems of carbohydrate recognition (part 2). Angew Chem Int Ed Engl 1995; 34.Google Scholar
  119. 119.
    Laane C, Tramper J, Lilly MD, eds. Biocatalysis in Organic Media. Amsterdam: Elsevier Science, 1987.Google Scholar
  120. 120.
    Wang L, Fan J, Lee YC. Chemoenzymatic synthesis of a high-mannose-type N-glycopeptide analog with C-glycosidic linkage. Tetrahedron Lett 1996; 37:1975–1978.Google Scholar
  121. 121.
    Nilsson KGI. Glycosidase-catalysed synthesis of di-and trisaccharide derivatives related to antigens involved in the hyperacute rejection of xenotransplants. Tetrahedron Lett 1997; 38:133–136.Google Scholar
  122. 122.
    Singh S, Scigelova M, Crout DHG. Glycosidase-catalysed synthesis of oligosaccharides: A two-step synthesis of the core trisaccharide of N-linked glycoproteins using the β-N-acetylhexosaminidase and the β-mannosidase from Aspergillus oryzae. J Chem Soc Chem Commun 1996; 993–994.Google Scholar
  123. 123.
    Withers SG, Rupitz K, Trimbur D, et al. Mechanisitic consequences of mutation of the active site nucleophile Glu 358 in Agrobacterium β-glucosidase. Biochemistry 1992; 31:9979–9985.PubMedGoogle Scholar
  124. 124.
    Burke C. Oligosaccharide synthesis using glycosidases. J Chem Technol Biotechnol 1996; 67: 217–220.Google Scholar
  125. 125.
    Tomlinson S, Pontes de Carvalho L, Vanderkerckhove F, et al. Resialylation of sialidase-treated sheep and human erythrocytes by Trypanosoma cruzi trans-sialidase: Restoration of complement resistance of desialylated sheep erythrocytes. Glycobiology 1992;2:549–551.PubMedGoogle Scholar
  126. 126.
    Fan J-Q, Takegawa K, Iwahara S, et al. Enhanced transglycosylation activity of Arthrobacter protophormiae endo-β-N-acetylglucosaminidase in media containing organic solvents. J Biol Chem 1995; 270:17723–17729.PubMedGoogle Scholar
  127. 127.
    Yan S-CB, Wold F. Neoglycoproteins: In vitro introduction of glycosyl units at glutamines in β-casein using transglutaminase. Biochemistry 1984; 23:3759–3765.PubMedGoogle Scholar
  128. 128.
    Liu Y-L, Hoops GC, Coward JK. A comparison of proteins and peptides as substrates for microsomal and solubilized oligosaccharyltransferase. Bioorg Med Chem 1994; 2:1133–1141.PubMedGoogle Scholar
  129. 129.
    Witte K, Sears P, Martin R, et al. Enzymatic glycoprotein synthesis: Preparation of ribonuclease glycoforms via enzymatic glycopeptide condensation and glycosylation. J Am Chem Soc 1997; 119:2114–2118.Google Scholar
  130. 130.
    Jackson DY, Burnier J, Quan C, et al. A designed peptide ligase for total synthesis of ribonuclease A with unnatural catalytic residues. Science 1994; 266:243–247.PubMedGoogle Scholar
  131. 131.
    Wong C-H, Schuster M, Wang P, et al. Enzymatic synthesis of N- and O-linked glycopeptides. J Am Chem Soc 1993; 115:5893–5901.Google Scholar
  132. 132.
    Sears P, Wong C-H. Engineering enzymes for bioorganic synthesis: Peptide bond formation. Biotechnol Prog 1996; 12:423–433.Google Scholar
  133. 133.
    Mamaev SV, Laikhter AL, Arslan T, et al. Firefly luciferase: Alteration of the color of emitted light resulting from substitutions at position 286. J Am Chem Soc 1996; 118:7243–7244.Google Scholar
  134. 134.
    Arslan T, Mamaev SY, Mamaeva NV, et al. Structurally modified firefly luciferase. Effects of amino acid substitution at position 286. J Am Chem Soc 1997; 119:10877–10887.Google Scholar
  135. 135.
    Mahal LK, Yarema KJ, Bertozzi CR. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 1997; 276:1125–1128.PubMedGoogle Scholar
  136. 136.
    Stanley P. Glycosylation engineering. Glycobiology 1992; 2:99–107.PubMedGoogle Scholar
  137. 137.
    Stanley P. Glycosylation mutants of animal cells. Annu Rev Genet 1984; 18:525–552.PubMedGoogle Scholar
  138. 138.
    Kalsner I, Hintz W, Reid LS, et al. Insertion into Aspergillus nidulans of functional UDP-GlcNAc:α3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I, the enzyme catalysing the first committed step from oligomannose to hybrid and complex N-glycans. Glycoconj J 1995; 12:360–370.PubMedGoogle Scholar
  139. 139.
    Stanley P, Raju TS, Bhaumik M. CHO cells provide access to novel N-glycans and developmentally regulated glycosyltransferases. Glycobiology 1996; 6:695–699.PubMedGoogle Scholar
  140. 140.
    Stanley P. Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. Mol Cell Biol 1989; 9:377–383.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Roslyn M. Bill
    • 1
  • Leigh Revers
    • 2
  • Iain B. H. Wilson
    • 3
  1. 1.The Lundberg LaboratoryUniversity of GöteborgGöteborgSweden
  2. 2.Department of Biochemistry ResearchThe Hospital for Sick ChildrenTorontoCanada
  3. 3.Department of Biochemistry ResearchUniversity of DundeeDundeeScotland

Personalised recommendations