The High Voltage Capacitor

  • Joel B. Ennis
  • Mark W. Kroll
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 188)


ONE OF the most critical components of the ICD is the high voltage capacitor, which stores the electrical pulse just before delivery to the heart. This capacitor also represents an increasing fraction of the total physical volume of the ICD. In fact, the capacitor (as it will be referred to below, for simplicity) is the primary reason that an ICD is so much larger than an implantable pacemaker.


Breakdown Strength Electrochemical Capacitor Aluminum Electrolytic Capacitor Equivalent Series Resistance Electrolytic Capacitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moynihan JD. Theory design and application of electrolytic capacitors. Component Technology Institute, 1982.Google Scholar
  2. 2.
    Albella JM, Hornillos A, Sanz JM, et al. A mathematical approach to the CV product in aluminum electrolytic capacitors. Electrochemical Science & Tech. 1978;125:1950–1954.CrossRefGoogle Scholar
  3. 3.
    Terryn H, Vereecken J, de Jaeger N. Characterization of aluminum surface treatments by means of gas adsorption measurements. Colloids & Surfaces 1993;80:171–179.CrossRefGoogle Scholar
  4. 4.
    Wakino K, Tsujimoto Y, Morimoto K, et al. Technological progress in materials application for electronic capacitors in Japan. IEEE Electrical Insulation Magazine, 1990;6:29–43.CrossRefGoogle Scholar
  5. 5.
    Nakata T, Ohi M. Tantalum dielectrics open tantalizing potential in capacitor field. J Electronic Ene 1993;30:74–78.Google Scholar
  6. 6.
    Bockriz JO, Drazic DM, Electrochemical Science. 1972 Taylor & Francis, London.Google Scholar
  7. 7.
    Yoshida A, Imoto K, Nishino A, et al. An electric double-layer capacitor with high capacitance and low resistance. IEEE Proc 41st Electronic Components Technology Conf 1991:531–536.Google Scholar
  8. 8.
    Oxley JE. High rate solid state electrochemical capacitors. IEEE Proc 34th Intl Power Sources Symp 1990:346–350.Google Scholar
  9. 9.
    Ardizzone S, Fregonara G, Trasatti S. Inner and outer active surface of RuO2 electrodes. Electrochem Acta 1990;35:263–267.CrossRefGoogle Scholar
  10. 10.
    Evans DA. High energy density electrolytic-electrochemical hybrid capacitor. Carts’94 Proceedings 1994Google Scholar
  11. 11.
    Buczkowski GJ. Hydrogen evolution in aluminum electrolytic capacitors. IEEE Proc 37th Electronic Components Conf 1987:440–448.Google Scholar
  12. 12.
    Gomez-Aleixandre C, Albella JM, Martinez-Duart JM. Gas evolution in aluminum electrolytic capacitors. J Electrochem Soc 1984;131:612–614.CrossRefGoogle Scholar
  13. 13.
    Nakata T. Long life low impedance aluminum electrolytic capacitors overcome many problems. J Electronic Ene 1989;26:46–49.Google Scholar
  14. 14.
    Swartz JF, Fletcher RD, Karasik PE. Optimization of biphasic waveforms for human nonthoracotomy defibrillation. Circulation 1993;88:2646–2654.PubMedCrossRefGoogle Scholar
  15. 15.
    Rist KE, Tchou PJ, Mowrey K, et al. Smaller capacitors improve the biphasic waveform. J Cardiovasc Electrophys 1994;5:771–776.CrossRefGoogle Scholar
  16. 16.
    Matula MH, Brooks MJ, Pan Q, et al. Can capacitance be lowered without affecting defibrillation requirements using biphasic waveforms? Circulation 1994;90:1–228. (abstract)CrossRefGoogle Scholar
  17. 17.
    Swerdlow CD, Kass RM, Chen PS, et al. Effect of capacitor size and pathway resistance on defibrillation threshold for implantable defibrillators. Circulation 1994;90:1840–1846.PubMedCrossRefGoogle Scholar
  18. 18.
    Albella JM, Gomez-Aleixandre G, Martinez-Duart JM. Dielectric characteristics of miniature aluminum electrolytic capacitors under stressed voltage conditions. J Applied Electrochem 1984;14:9–14.CrossRefGoogle Scholar
  19. 19.
    Bora JS, Short-term and long-term performance of electrolytic capacitors. Microelectron Reliab 1978;18:237–240.CrossRefGoogle Scholar
  20. 20.
    de Wit HJ, Crevecoeur C. The CV product of etched aluminum anode foil. J Electrochem Soc 1983;130:770–776.CrossRefGoogle Scholar
  21. 21.
    Morley AR, Campbell DS. Electrolytic capacitors: their fabrication and the interpretation of their operational behaviour. Radio and Electronic Engineer 1973;43:421–429.CrossRefGoogle Scholar
  22. 22.
    Harper CA. Handbook of Components for Electronics. McGraw-Hill. New York 1977.Google Scholar
  23. 23.
    Aluminum electrolytic capacitors. Rubycon Technical Note REB G88-03. Rubycon Corporation, Japan.Google Scholar
  24. 24.
    Kadaba PK, Dobbs W. Dielectric study of anodized foils of aluminum electrolytic capacitors. Material Sci & Eng 1982;54:279–283.CrossRefGoogle Scholar
  25. 25.
    Kadaba PK, Dobbs W. TEM and SEM analysis of the anode layer of aluminum electrolytic capacitors. J Materials Sci Letters 1982;1:203–206.CrossRefGoogle Scholar
  26. 26.
    Bernard WJ, Florio SM. The oxide forming role of water in aluminum electrolytic capacitors. ElectroComponent Sci Tech 1984;11:137–145.CrossRefGoogle Scholar
  27. 27.
    Kiuchi K, Yanagibashi N. Operating life of aluminum electrolytic capacitor. Fifth Intl Telecommunications Energy Conf 1983. IEEE 83CH 1855-6:535–540.Google Scholar
  28. 28.
    Greason WD, Critchley J. Shelf-life evaluation of aluminum electrolytic capacitors. IEEE Trans Components, Hybrids, and Mfg Tech 1986;CHMT-9:293–299.Google Scholar
  29. 29.
    Harris KW, McDuff G, Burkes TR. Evaluation of electrolytic capacitors for high peak current pulse duty. IEEE Trans Electron Devices 1991:38:758–766.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Joel B. Ennis
  • Mark W. Kroll

There are no affiliations available

Personalised recommendations