The Defibrillation Threshold

  • Igor Singer
  • Douglas Lang
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 188)


EFFICACY of implantable cardioverter defibrillator therapy is critically dependent on the ICD’s ability to terminate ventricular tachycardia and ventricular fibrillation in a variety of clinical circumstances. To ensure that a device is reliable, adequate testing procedures are required at the time of the implant to determine effective defibrillation energies. This information is needed to determine whether the ICD can be programmed with adequate energy margins so that the shock of the implanted device is sufficient to defibrillate the heart given the lead system and waveform.


Safety Margin Implantable Cardioverter Defibrillator Therapy Curve Width Defibrillation Threshold Biphasic Waveform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zipes DP, Fisher J. King RM, et al. Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. Am J Cardiol 1975;36:37–44.PubMedCrossRefGoogle Scholar
  2. 2.
    Jones JL, Jones RE. Improved defibrillator waveform safety factor with biphasic waveforms. Am J Physiol 1983;245:H60-65.Google Scholar
  3. 3.
    Mower MM, Mirowski M, Spear JF, et al. Patterns of ventricular activity during catheter defibrillation. Circulation 1974;49:858–861.PubMedCrossRefGoogle Scholar
  4. 4.
    Singer I and Lang D. Defibrillation threshold, clinical utility and therapeutic implications. PACE 1992;15:932–949.PubMedCrossRefGoogle Scholar
  5. 5.
    Lang D and KenKnight B. Implant Support Devices. In I Singer (ed.): Implantable Cardioverter Defibrillator. New York: Futura Publishing, 1994, p 223–252.Google Scholar
  6. 6.
    McDaniel WC, Schuder JC. The cardiac ventricular defibrillation threshold-inherent limitations in its application and interpretation. Med Instrum 1987;21:170–176.PubMedGoogle Scholar
  7. 7.
    Lang DJ, Cato EL, Echt DS. Protocol for evaluation of internal defibrillation safety margins. J Am Coll Cardiol 1989;13:111A. (abstract)Google Scholar
  8. 8.
    Rattes MF, Jones DL, Sharma AD, et al. Defibrillation threshold: A simple and quantitative estimate of the ability to defibrillate. PACE 1987;10:70–77.PubMedCrossRefGoogle Scholar
  9. 9.
    Davy JM, Fain ES, Dorian P, et al. The relationship between successful defibrillation and delivered energy in open-chest dogs: Reappraisal of the “defibrillation threshold” concept. Am Heart J 1987;113:77–84.PubMedCrossRefGoogle Scholar
  10. 10.
    Lang DJ, Swanson DK. Safety margin for defibrillation. In E Alt, H Klein JC Griffin (eds.): The Implantable Cardioverter/Defibrillator. Berlin: Springer-Verlag 1992, p272.CrossRefGoogle Scholar
  11. 11.
    Jones DL, Klein GJ, Guiraudon GM, et al. Prediction of defibrillation success from a single defibrillation threshold measurement with sequential pulses and two current pathways in humans. Circulation 1988;78:1144–1149.PubMedCrossRefGoogle Scholar
  12. 12.
    Deeb GM, Griffith BP, Thompson ME, et al. Lead systems for internal ventricular fibrillation. Circulation 1981;64:242–245.PubMedCrossRefGoogle Scholar
  13. 13.
    Guarnieri T, Levine JH, Veltri EP, et al. Success of chronic defibrillation and the role of antiarrhythmic drugs with the automatic implantable cardioverter/defibrillator. Am J Cardiol 1987;60:1061–1064.PubMedCrossRefGoogle Scholar
  14. 14.
    Wetherbee JN, Chapman PD, Troup PJ, et al Long-term internal cardiac defibrillation threshold stability. PACE 1989;12:443–450.PubMedCrossRefGoogle Scholar
  15. 15.
    Frame R, Brodman R, Furman S, et al. Long-term stability of defibrillation thresholds with intrapericardial defibrillator patches. PACE 1993;16:208–212.PubMedCrossRefGoogle Scholar
  16. 16.
    Tummala RV, Riggio DW, Weiss D, et al. Chronic changes in defibrillation parameters with a transvenous lead system. J Am Coll Cardiol 1994;February:112A. (abstract)Google Scholar
  17. 17.
    Winter J, Vester EG, Kuhls S, et al. Defibrillation energy requirements with single endocardial (Endotak) Lead. PACE 1993;16:540–546.PubMedCrossRefGoogle Scholar
  18. 18.
    Vester EG, Kuhls S, Perings C, et al. Efficacy and long term stability of a single endocardial lead configuration for permanent implantation of cardioverter/defibrillators. PACE 1993;16:875. (abstract)CrossRefGoogle Scholar
  19. 19.
    Pitschner H, Neuzner J, Huth C, et al. Long-term stability of nonthoracotomy lead defibrillation thresholds. PACE 1994;17:836. (abstract)Google Scholar
  20. 20.
    Neuzner J, Pitschner H, Stöhring R, et al. Implantierbare Kardioverter/Defibrillatoren mit endokardiaien Elektrodensystemen: Langfristige Stabilität der Defibrillationseffektivitat. Z Kardiologie 1995;84:44–50.Google Scholar
  21. 21.
    Hsia HH, Mitra RL, Flores BT, et al. Early postoperative increase in defibrillation threshold with nonthoracotomy system in humans. PACE 1994;17:1166–1173.PubMedCrossRefGoogle Scholar
  22. 22.
    Bardy GH, Buono G, Troutman CL, et al. Subacute changes in defibrillation threshold following multiprogrammable defibrillator implantation in man. J Ara Coll Cardiol 1991;17:344A. (abstract)Google Scholar
  23. 23.
    Venditti FJ, Martin DT, Vassolas G, et al. Rise in chronic defibrillation thresholds in nonthoracotomy implantable defibrillator. Circulation 1994;89:216–223.PubMedCrossRefGoogle Scholar
  24. 24.
    Venditti FJ, Bowen S, John R, et al. Rise in defibrillation threshold in transvenous ICD using a biphasic waveform. PACE 1994;17:836. (abstract)Google Scholar
  25. 25.
    Schwartzman D, Maliavarapu C, Callans DJ, et al. Rise in defibrillation threshold early after implantation of non-thoracotomy defibrillation lead systems: incidence and predictors. J Am Coll Cardiol 1994;February:112A. (abstract)Google Scholar
  26. 26.
    Poole JE, Bardy GH, Dolack GL, et al. Serial defibrillation threshold measures in man: a prospective controlled study. J Cardiovasc Electrophysiol 1995;6:19–25.PubMedCrossRefGoogle Scholar
  27. 27.
    Schwartzman D, Callans DJ, Gottlieb CD, et al. Early postoperative rise in defibrillation threshold in patients with nonthoracotomy defibrillation lead systems: attenuation with Diphasic shock waveforms. J Cardiovasc Electrophysiol 1996;7:483–493.PubMedCrossRefGoogle Scholar
  28. 28.
    Usui M, Walcott GP, KenKnight BH, et al. Influence on defibrillation efficacy of the malpositioning of transvenous leads with and without a subcutaneous array. PACE 1994;17:784. (abstract)CrossRefGoogle Scholar
  29. 29.
    Echt DS, Barbey JT, Black NJ. Influence of ventricular fibrillation duration on defibrillation energy in dogs using bidirectional pulse discharges. PACE 1988;11;1315–1323.PubMedCrossRefGoogle Scholar
  30. 30.
    Jones JL, Swartz JF, Jones RE, et al. Increasing fibrillation duration enhances relative asymmetrical biphasic versus monophasic defibrillator waveform efficacy. Circ Res 1990;67:376–384.PubMedCrossRefGoogle Scholar
  31. 31.
    Tacker WA, Babbs CF, Parris RL, et al. Effect of fibrillation duration on defibrillation threshold in dogs using a pervenous catheter-electrode designed for use with an automatic implantable defibrillator. Med Instrum 1981;15:327. (abstract)Google Scholar
  32. 32.
    Fujimura O, Jones DL, Klein GJ. Effects of time to defibrillation and subthre-shold preshocks on defibrillation success in pigs. PACE 1989;12:358–365.PubMedCrossRefGoogle Scholar
  33. 33.
    Winkle RA, Mead RH, Ruder MA, et al. Defibrillation efficacy in man after 5 vs. 15 seconds of ventricular fibrillation. J Am Coll Cardiol 1988;11:18A. (abstract)Google Scholar
  34. 34.
    Bardy GH, Ivey TD, Allen M, et al. A prospective, randomized evaluation of effect of ventricular fibrillation duration on defibrillation thresholds in humans. J Am Coll Cardiol 1989;13:1362–1366.PubMedCrossRefGoogle Scholar
  35. 35.
    Bardy GH, Ivey TD, Johnson G, et al. Prospective evaluation of initially ineffective defibrillation pulses on subsequent defibrillation success during ventricular fibrillation in survivors of cardiac arrest. Am J Cardiol 1988;62:718–722.PubMedCrossRefGoogle Scholar
  36. 36.
    KenKnight BH, Johnson CR, Epstein AE, et al. Does the optimal biphasic waveform change with duration of ventricular fibrillation? PACE 1996;19:623. (abstract)Google Scholar
  37. 37.
    Troup PJ, Chapman PD, Wetherbee JN, et al. Do sub-threshold shocks increase energy requirement for subsequent defibrillation attempts? Circulation 1987;76:IV-311. (abstract)Google Scholar
  38. 38.
    CPI VENTAK PRx Clinical Report, PMA Panel for IDE #G900150, June 22, 1993.Google Scholar
  39. 39.
    Borbola J, Denes P, Ezri MD, et al. The automatic implantable cardioverter-defibrillator. Clinical experience, complications and followup in 25 patients. Arch Int Med 1988;148:70–76.CrossRefGoogle Scholar
  40. 40.
    Meesmann M. Factors associated with implantation-related complications. PACE 1992;15(Pt. III):649–653.PubMedCrossRefGoogle Scholar
  41. 41.
    Lehmann MH, Saksena S. Implantable cardioverter defibrillators in cardiovascular practice: report of the policy conference of the North American Society of Pacing and Electrophysiology. PACE 1991;14:969–979.PubMedCrossRefGoogle Scholar
  42. 42.
    Strickberger SA, Brownstein SL, Wilkoff BL, et al. Clinical predictors of defibrillation energy requirements in patients treated with a nonthoracotomy defibrillator system: the Res-Q investigators. Am Heart J 1996;131:257–260.PubMedCrossRefGoogle Scholar
  43. 43.
    Singer I, Edmonds HL, vänder Lakern C, et al. Is defibrillation testing safe? PACE 1991;14:1899–1904.PubMedCrossRefGoogle Scholar
  44. 44.
    Steinbeck G, Dorwarth U, Mattke S, et al. Hemodynamic deterioration during ICD implant: Predictors of high-risk patients. Am Heart J 1994;127:1064–1067.PubMedCrossRefGoogle Scholar
  45. 45.
    Meyer J, Möllhoff XXX, Seifert T, et al. Cardiac output is not affected during intraoperative testing of the automatic implantable cardioverter defibrillator. J Cardiovasc Electrophysiol 1996;7:211–216.PubMedCrossRefGoogle Scholar
  46. 46.
    Konstadt SN, Blakeman B, Wilber D, et al. The effects of normothermic hypoperfusion on processed EEG in patients. Aneth Anaig 1990;70:21.CrossRefGoogle Scholar
  47. 47.
    Bruggeman T, Andresen D. Zerebrale Ischämie wahrend der Implantation automatischer Defibrillatoren. Z Kardiol 1995;84:798–807.Google Scholar
  48. 48.
    Ideker RE, Hillsley RE, Wharton JM. Shock strength for the implantable defibrillator: can you have too much of a good thing? PACE 1992;15:841–844.PubMedCrossRefGoogle Scholar
  49. 49.
    Jones JL, Lepeschkin E, Jones RE, et al. Response of cultured myocardial cells to countershock-type electric field stimulation. Am J Physiol 1987;235:H214. (abstract)Google Scholar
  50. 50.
    Rubin L, Hudson P, Driller J, et al. Effect of defibrillation energy on pacing threshold. Med Instrum 1983;17:15–17.PubMedGoogle Scholar
  51. 51.
    Yabe S, Smith WM, Daubert JP, et al. Conduction disturbances caused by high current density electric fields. Circ Res 1990;66:1190–1203.PubMedCrossRefGoogle Scholar
  52. 52.
    Cates AW, Wolf PD, Hillsley RE, et al. The probability of defibrillation success and the incidence of postsnock arrhythmia as a function of shock strength. PACE 1994;17:1208–1217.PubMedCrossRefGoogle Scholar
  53. 53.
    Pansegrau DG, Abboud FM. Hemodynamic effects of ventricular defibrillation. J Clin Invest 1970;49:282–297.PubMedCrossRefGoogle Scholar
  54. 54.
    Dahl CF, Ewy GA, Warner ED, et al. Myocardial necrosis from direct current countershock: Effect of paddle size and time interval between discharge. Circulation 1974;50:956–961.PubMedCrossRefGoogle Scholar
  55. 55.
    Swerdlow CD, Ahern T, Kass RM, et al. Upper limit of vulnerability is a good estimate of shock strength associated with 90% probability of successful defibrillation in humans with transvenous implantable cardioverter-defibrillators. J Am Coll Cardiol 1996;27:1112–1118.PubMedCrossRefGoogle Scholar
  56. 56.
    Swerdlow CD, Peter T, Hwang C, et al. Programming of implantable defibrillators based on the upper limit of vulnerability rather than the defibrillation threshold. PACE 1996;19:614. (abstract)Google Scholar
  57. 57.
    Chen P-S, Shibata N, Dixon EG, et al. Comparison of defibrillation threshold and the upper limit of ventricular vulnerability. Circulation 1986;73:1022–1028.PubMedCrossRefGoogle Scholar
  58. 58.
    Kavanaugh KM, Harrison JH, Dixon EG, et al. Correlation of the probability of success curves for defibrillation and for the upper limit of vulnerability. PACE 1990;13:536. (abstract)Google Scholar
  59. 59.
    Chen P-S, Feld GK, Mower MM, et al. Effects of pacing rate and timing of defibrillation shock on the relationship between the defibrillation threshold and the upper limit of vulnerability in open chest dogs. J Am Coll Cardiol 1991;18:1555–1563.PubMedCrossRefGoogle Scholar
  60. 60.
    Malkin RA, Pilkington TC, Ideker RE. Estimating defibrillation efficacy using combined upper limit of vulnerability and defibrillation testing. IEEE Trans Biomed Eng 1996;43:69–78.PubMedCrossRefGoogle Scholar
  61. 61.
    Fabritz CL, Kirchhof PF, Behrens S, et al. Myocardial vulnerability to T wave shocks: relation to shock strength, shock coupling interval, and dispersal of ventricular repolarization. J Cardiovasc Electrophysiol 1996:7;231–242.PubMedCrossRefGoogle Scholar
  62. 62.
    Chen P-S, Feld GK, Kriett JM, et al. Relation between upper limit of vulnerability and defibrillation threshold in humans. Circulation 1993;88:186–192.PubMedCrossRefGoogle Scholar
  63. 63.
    Hwang C, Swerdlow CD, Kass RM, et al. Upper limit of vulnerability reliably predicts the defibrillation threshold in humans. Circulation 1994;90:2308–2314.PubMedCrossRefGoogle Scholar
  64. 64.
    Singer I, Guarnieri T, Kupersrnith J. Implanted automatic defibrillators: effects of drugs and pacemakers. PACE 1988;11:2250–2262.PubMedCrossRefGoogle Scholar
  65. 65.
    Haberman RJ, Veltri EP, Mower MM. The effect of amiodarone on defibrillation threshold. J Electrophysiol 1988;2:415. (abstract)Google Scholar
  66. 66.
    Fain ES, Lee JT, Winkle RA. Effects of acute intravenous and chronic oral amiodarone on defibrillation energy requirements. Am Heart J 1987;114:8–17.PubMedCrossRefGoogle Scholar
  67. 67.
    Kentsch M, Kunze KP, Bleifeld W. Effect of intravenous amiodarone on ventricular fibrillation during out-of-hospital cardiac arrest. J Am Coll Cardiol 1986;7:82A. (abstract)Google Scholar
  68. 68.
    Fogoros RN. Amiodarone-induced refractoriness to cardioversion. Am Intern Med 1984;100:699–700.Google Scholar
  69. 69.
    Guarnieri T, Levine JH, Veltri EP. Success of chronic defibrillation and the role of antiarrhythmic drugs with the automatic implantable cardioverter/ defibrillator. Am J Cardiol 1987;60:1061–1064.PubMedCrossRefGoogle Scholar
  70. 70.
    Epstein AE, Ellenbogen KA, Kirk K, et al. Clinical characteristics and outcome of patients with high defibrillation thresholds. A multicenter study. Circulation 1992;86:1206–1216.PubMedCrossRefGoogle Scholar
  71. 71.
    Jung W, Manz M, Pizzulli L, et al. Effects of chronic amiodarone therapy on defibrillation threshold. Am J Cardiol 1992;70:1023–1027.PubMedCrossRefGoogle Scholar
  72. 72.
    Wang M, Dorian P, Ogilvie RI. Isoproterenol increases defibrillation energy requirements in dogs. J Cardiovasc Pharmacol 1992;19:201–208.PubMedCrossRefGoogle Scholar
  73. 73.
    Dorian P, Wang M, David I, et al. Oral clofilium produces sustained lowering of defibrillation energy requirements in a canine model. Circulation 1991;83:614–621.PubMedCrossRefGoogle Scholar
  74. 74.
    Wang M, Dorian P. DL and D Sotalol decrease defibrillation energy requirements. PACE 1989;12:1522–1529.PubMedCrossRefGoogle Scholar
  75. 75.
    Fain ES, Dorian P, Davy JM, et al. Effects of encainide and its metabolites on energy requirements for defibrillation. Circulation 1986;73:1334–1341.PubMedCrossRefGoogle Scholar
  76. 76.
    Reiffei JA, Coromilas J, Zimmerman JM, et al. Drug-device interactions: clinical considerations. PACE 1985;8:369–373.CrossRefGoogle Scholar
  77. 77.
    Frame LH, Sheldon JH. Effect of recainam on the energy required for ventricular defibrillation in dogs as assessed with implanted electrodes. J Am Coll Cardiol 1988;12:746–752.PubMedCrossRefGoogle Scholar
  78. 78.
    Dorian P, Fain ES, Davy JM, et al. Lidocaine causes a reversible, concentration-dependent increase in defibrillation energy requirements. J Am Coll Cardiol 1986;8:327–332.PubMedCrossRefGoogle Scholar
  79. 79.
    Marinchak RA, Friehling TD, Line RA, et al. Effect of antiarrhythmic drugs on defibrillation threshold: Case report of an adverse effect of mexiletine and review of the literature. PACE 1988;11:7–12.PubMedCrossRefGoogle Scholar
  80. 80.
    Echt DS, Gremillion ST, Lee JT, et al. Effects of procainamide and lidocaine on defibrillation energy requirements in patients receiving implantable cardioverter defibrillator devices. J Cardiovasc Electrophysiol 1994;5:752–760.PubMedCrossRefGoogle Scholar
  81. 81.
    Ujhelyi MR, Schur M, Frede T, et al. Differential effects of lidocaine on defibrillation threshold with monophasic versus biphasic shock waveforms. Circulation 1995;92:1644–1650.PubMedCrossRefGoogle Scholar
  82. 82.
    Holt DW, Tucker GT, Jackson PR, et al. Amiodarone pharmacokinetics. Am Heart J 1983;106:840–847.PubMedCrossRefGoogle Scholar
  83. 83.
    Barbieri E, Conti F, Zampieri P, et al. Amiodarone and desethylamiodarone distribution in the atrium and adipose tissue of patients undergoing short and long-term treatment with amiodarone. J Am Coll Cardiol 1986;8:210–213.PubMedCrossRefGoogle Scholar
  84. 84.
    Dorian P, Fain ES, Davy JM, et al. Effect of quinidine and bretylium on defibrillation energy requirements. Am Heart J 1986;112:19–25.PubMedCrossRefGoogle Scholar
  85. 85.
    Deeb GM, Hardesty RL, Griffith BP, et al. The effects of cardiovascular drugs on the defibrillation threshold and the pathological effects on the heart using an automatic implantable defibrillator. Ann Thorac Surg 1983;4:361–366.CrossRefGoogle Scholar
  86. 86.
    Woolfolk DI, Chaffee WR, Cohen W, et al. The effect of quinidine on electrical energy required for ventricular defibrillation. Am Heart J 1966;72:659.PubMedCrossRefGoogle Scholar
  87. 87.
    Babbs CF, Vim GKW, Whistler SJ, et al. Elevation of ventricular defibrillation energy requirements. Am Heart J 1986;112:19.CrossRefGoogle Scholar
  88. 88.
    Koo CC, Allen JD, Pantridge JF. Lack of effect of bretylium tosylate on electrical ventricular defibrillation in a controlled study. Cardiovasc Res 1984;18:762–767.PubMedCrossRefGoogle Scholar
  89. 89.
    Kerber RE, Pandian NG, Jensen SR, et al. Effect of lidocaine and bretylium on energy requirements for transthoracic defibrillation: Experimental studies. J Am Coll Cardiol 1986;7:397–405.PubMedCrossRefGoogle Scholar
  90. 90.
    Tacker WA, Niebauer MJ, Babbs CF, et al. The effect of newer antiarrhythmic drugs on defibrillation threshold. Crit Care Med 1980;8:177–180.PubMedCrossRefGoogle Scholar
  91. 91.
    Echt DS, Black JN, Barbey JT, et al. Evaluation of antiarrhythmic drugs on defibrillation energy requirements in dogs: sodium channel block and action potential prolongation. Circulation 1989;79:1106–1117.PubMedCrossRefGoogle Scholar
  92. 92.
    Dawson AK, Steinberg MI, Shephard JE. Effects of Class I and Class III drugs on current and energy required for internal defibrillation. Circulation 1985;72:III-384.Google Scholar
  93. 93.
    Ruffy R, Schechtman K, Monje E, et al. B-adrenergic modulation of direct defibrillation energy in anesthetized dog heart. Am J Physiol 1985;248:H674-677.Google Scholar
  94. 94.
    Ruffy R, Monje E, Schechtman K. Facilitation of cardiac defibrillation by aminophylline in the conscious, closed-chest dog. J Electrophysiol 1988;2:450. (abstract)Google Scholar
  95. 95.
    Wang M, Dorian P. Defibrillation energy requirements differ between anesthetic agents. J Electrophysiol 1989;3/2:86–94.CrossRefGoogle Scholar
  96. 96.
    Sweeney RJ, Gill RM, Steinberg MI, et al. Effects of Flecainide, Encainide, and Clofilium on ventricular refractory period extension by transcardiac shocks. PACE 1996;19:50–60.PubMedCrossRefGoogle Scholar
  97. 97.
    Borbola J, Denes P, Ezri MD at al. The automatic implantable cardioverter/defibrillator: clinical experience, complications and follow-up in 25 patients. Arch Int Med 1988;148:70–76.CrossRefGoogle Scholar
  98. 98.
    Blakeman BM, Pifarre R, Scanlon PJ, et al. Coronary revascularization and implantation of the automatic cardioverter /defibrillator: Reliability of immediate intraoperative testing. PACE 1989;12:86–91.PubMedGoogle Scholar
  99. 99.
    Troup PJ. Implantable cardioverters and defibrillators. In RA O’Rourke, MH Crawford (eds): Current Problems in Cardiology. St. Louis, MO, Yearbook Medical Publishers, Inc., 1989, Vol. XIV(12), p. 673–843.Google Scholar
  100. 100.
    Hillsley RE, Wharton JM, Cates AW, et al. Why do some patients have high defibrillation thresholds at defibrillator implantation? Answers from basic research. PACE 1994;17:222–239.PubMedCrossRefGoogle Scholar
  101. 101.
    KenKnight BH, Eyuboglu BM, Ideker RE. Impedance to defibrillation countershock: does an optimal impedance exist? PACE 1995;18:2068–2087.PubMedCrossRefGoogle Scholar
  102. 102.
    Jordaens L, Vertongen P, van Belleghem Y. A subcutaneous lead array for implantable cardioverter defibrillators. PACE 1993;16:1429–1433.PubMedCrossRefGoogle Scholar
  103. 103.
    Higgins SL, Alexander DC, Kuypers CJ, et al. The subcutaneous array — a new lead adjunct for the transvenous ICD to lower defibrillation thresholds. PACE 1995;18:1540–1548.PubMedCrossRefGoogle Scholar
  104. 104.
    Brodman R, Fisher JD, Furman S, et al. Implantation of the automatic implantable defibrillator by left subcostal thoracotomy. PACE 1984;7:1370. (abstract)CrossRefGoogle Scholar
  105. 105.
    Thurer RJ, Luceri RM, Balooki H. Automatic implantable cardioverter defibrillator: Techniques of implantation and results. Ann Thorac Surg 1986;42:143–147.PubMedCrossRefGoogle Scholar
  106. 106.
    Lawrie GM, Griffin JC, Wyndham CRC. Epicardial implantation of the automatic defibrillator by left subcostal thoracotomy. PACE 1984;7:1370–1374.PubMedCrossRefGoogle Scholar
  107. 107.
    Echt DS, Armstrong K, Schmidt P, et al. Clinical experience, complication, and survival in 70 patients with the automatic cardioverter/defibrillator. Circulation 1985;71:289–296.PubMedCrossRefGoogle Scholar
  108. 108.
    Block M, Breithardt G. Optimizing defibrillation through improved waveforms. PACE 1995;18:526–538.PubMedCrossRefGoogle Scholar
  109. 109.
    Hahn SJ, Heil JE, Lin Y, et al. Improved defibrillation with small capacitance and optimized biphasic waveform. Circulation 1994;90:1–175. (abstract)CrossRefGoogle Scholar
  110. 110.
    Swartz JF, Fletcher RD, Karasik PE. Optimization of biphasic waveforms for human nonthoracotomy defibrillation. Circulation 1993;88:2646–2654.PubMedCrossRefGoogle Scholar
  111. 111.
    Natale A, Sra J, Krum D, et al. Relative efficacy of different tilts with biphasic defibrillation in humans. PACE 1996;19:197–206.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Igor Singer
  • Douglas Lang

There are no affiliations available

Personalised recommendations