Scientific basis for extrapolating results from soil ecotoxicity tests to field conditions and the use of bioassays

  • Cornelis A. M. Van Gestel


The risk assessment of chemicals for ecosystems is generally based on the results of laboratory toxicity tests. For an overview of tests available or under development for the soil ecosystem, refer to Van Straalen and Van Gestel (1993). To derive ‘safe’ levels of chemicals in soil ecosystems, a number of extrapolation methods have been developed. These extrapolation methods all assume a certain distribution (log-logistic, log-normal or triangular) of sensitivities of organisms in the field, and aim at deriving a so-called 95% protection level, i.e. the hazardous concentration for 5% of the species, the so-called HC5 value. For a critical overview of extrapolation methods see Suter (1993)


Pore Water Soil Respiration Soil Moisture Content Polluted Soil Field Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlf, W., Gunkel, J. and Rönnpagel, K. (1993) Toxikologische Bewertung von Sanierungen, in Bodenreinigung. Biologische und chemisch-physikalische Verfahrensentwicklung unter Berücksichtigung der bodenkundlichen,analytischen und rentlichen Bewertung (ed. R. Stegman), Economica Verlag, Bonn, pp. 275–86.Google Scholar
  2. Belfroid, A.C. (1994) Toxicokinetics of Hydrophobic Chemicals in Earthworms. Validation of the Equilibrium Partitioning Theory PhD Thesis, University of Utrecht.Google Scholar
  3. Bengtsson, G. and Rundgren, R. (1992) Seasonal variation of lead uptake in the earthworm Lumbricus terrestris and the influence of soil liming and acidification. Arch. Environ. Contam. Toxicol, 23 198–205.CrossRefGoogle Scholar
  4. Beyer, L., Wachendorf, C., Elsner, D.C. and Knabe, R. (1993) Suitability of dehydrogenase activity assay as an index of soil biological activity. Biol. Fertil. Soils, 16 52–6.CrossRefGoogle Scholar
  5. Bitton, G., Koopman, B. and Agami, O. (1992) MetpacIm: a bioassay for rapid assessment of heavy metal toxicity in wastewater. Water Environ. Res, 64 834–6.CrossRefGoogle Scholar
  6. Boesten, J.J.T.I. (1986) Behaviour of Herbicides in Soil: Simulation and Experimental Assessment PhD Thesis, Agricultural University Wageningen.Google Scholar
  7. Brouwer, H., Murphy, T. and McArdle, L. (1990) A sediment-contact bioassay with Photobacterium phosphoreum. Environ. Toxicol. Chem, 9 1353–8.CrossRefGoogle Scholar
  8. Callahan, C.A. and Linder, G. (1992) Assessment of contaminated soils using earthworm test procedures, in Ecotoxicology of Earthworms (eds P.W. Greig-Smith, H. Becker, P. Edwards and F. Heimbach), Intercept Ltd, Andover, Hants, UK, pp. 187–96.Google Scholar
  9. Callahan, C.A., Menzie, C.A., Burmaster, D.E., Wilborn, D.C. and Ernst, T. (1991) On-site methods for assessing chemical impact on the soil environment using earthworms: a case study at the Baird and McGuire superfund site, Holbrook, Massachusetts. Environ. Toxicol. Chem, 10 817–26.CrossRefGoogle Scholar
  10. Carante, J.P., Battut, P., Lemaitre, C. and Dorier, A. (1993) La mouche mediterranéenne des fruits, un nouvel outil en ecotoxicologie. Bull. Soc. Zool. Fr, 118 169–76.Google Scholar
  11. Corp, N. and Morgan, A.J. (1991) Accumulation of heavy metals from polluted soils by the earthworm Lumbricus rubellus: can laboratory exposure of control worms reduce biomonitoring problems? Environ. Pollut, 74 39–52.CrossRefGoogle Scholar
  12. Crommentuijn, G.H. (1994) Sensitivity of Soil Arthropods to Toxicants PhD Thesis, Vrije Universiteit, Amsterdam.Google Scholar
  13. Davies, B.E. (1993) Radish as an indicator plant for derelict land: uptake of zinc at toxic concentrations. Commun. Soil Sci. Plant Anal, 24 1883–95.CrossRefGoogle Scholar
  14. Demon, A. and Eijsackers, H. (1985) The effects of lindane and azinphosmethyl on survival time of soil animals, under extreme or fluctuating temperature and moisture conditions. Z. ang. Ent, 100 504–10.CrossRefGoogle Scholar
  15. Denneman, C.A.J. and Van Gestel, C.A.M. (1990) Bodemverontreiniging en Bodemecosystemen: Voorstel voor C-(toetsings)waarden op Basis van Ecotoxicologische Risico’s Report no. 725201001. National Institute of Public Health and Environmental Protection (RIVM), Bilthoven, The Netherlands (in Dutch).Google Scholar
  16. Denneman, C.A.J. and Van Gestel, C.A.M. (1991) Afleiding van C-waarden voor Bodem-ecosystemen op Basis van Aquatisch Ecotoxicologische Gegevens Report no. 7252001008. National Institute of Public Health and Environmental Protection (RIVM), Bilthoven, The Netherlands (in Dutch).Google Scholar
  17. DÞaz-Raviña, M., Bââth, E. and Frostegârd, A. (1994) Multiple heavy metal tolerance of soil bacterial communities and its measurement by a thymidine incorporation technique. Appl. Environ. Microbiol, 60 2238–47.Google Scholar
  18. Di Toro, D.M., Zarba, C.S., Hansen, D.J., Berry, W.J., Swartz, R.C., Cowan, C.E., Pavlou, S.P., Allen, H.E., Thomas, N.A. and Paquin, P.R. (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ. Toxicol. Chem, 10 1541–83.CrossRefGoogle Scholar
  19. Eiserman, R. and Daei, B. (1993) Evaluation of soil pollutions applying an ecotoxicological assay, in Integrated Soil and Sediment Research: A Basis for Proper Protection (eds H. J. P. Eijsackers and T. Hamers), Kluwer Academic Publishers, Dordrecht, pp. 313–14.CrossRefGoogle Scholar
  20. Everts, J.W. (1990) Sensitive Indicators of Side-effects of Pesticides on the Epigeal Fauna of Arable Land PhD Thesis, Agricultural University Wageningen.Google Scholar
  21. Everts, J.W., Aukema, B., Mullié, W.C., Van Gemerden, A., Rottier, A., Van Katz, R. and Van Gestel, C.A.M. (1991) Exposure of the ground dwelling spider Oedothorax apicatus (Blackwall) (Erigonidae) to spray and residues of deltamethrin. Arch. Environ. Contam. Toxicol, 20 13–19.CrossRefGoogle Scholar
  22. Floate, K.D., Elliott, R.H., Doane, J.F. and Gillott, C. (1989) Field bioassay to evaluate contact and residual toxicities of insecticides to carabid beetles (Coleoptera: Carabidae). J. Econ. Entomol, 82 1543–7.Google Scholar
  23. Forge, T.A., Berrow, M.L., Darbyshire, J.F. and Warren, A. (1993) Protozoan bioassays of soil amended with sewage sludge and heavy metals, using the common soil ciliate Colpoda steinii. Biol. Fertil. Soils, 16 282–6.CrossRefGoogle Scholar
  24. Förster, H.-G., Tiberg, E., Knoblauch, H., Kaun, E., Genz, U., Fischer, W., Adam, R. and Brendel, M. (1993) Remaining PAH-contamination after microbial remediation: why does it exist and how to treat it, in Integrated Soil and Sediment Research: A Basis for Proper Protection (eds H. J. P. Eijsackers and T. Hamers), Kluwer Academic Publishers, Dordrecht, pp. 352–3.CrossRefGoogle Scholar
  25. Frostegârd, A., Tunlid, A. and Bââth, E. (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl. Environ. Microbiol, 59 3605–17.Google Scholar
  26. Gezondheidsraad (1994) Ecotoxicologie op Koers Netherlands Health Council, Report nr 1994/13 (in Dutch).Google Scholar
  27. Gunkel, J., Rönnpagel, K. and Ahlf, W. (1993) Eignung mikrobieller Biotests für gebundene Schadstoffe. Acta Hydrochim. Hydrobiol, 21 215–20.CrossRefGoogle Scholar
  28. Harris, C.R. (1964a) Influence of soil moisture on the toxicity of insecticides in a mineral soil to insects. J. Econ. Entomol, 57 946–50.Google Scholar
  29. Harris, C.R. (1964b) Influence of soil type and soil moisture on the toxicity of insecticides in soils to insects. Nature, 202 724.CrossRefGoogle Scholar
  30. Harris, C.R. (1967) Further studies on the influence of soil moisture on the toxicity of insecticides in soil. J. Econ. Entomol, 60 41–4.Google Scholar
  31. Hassan, S.A. (1985) Standard methods to test the side-effects of pesticides on natural enemies of insects and mites developed by IOBC/WPRS Working Group ‘Pesticides and Beneficial Organisms’. Bull. OEPP/EPPO Bull, 15 214–55.Google Scholar
  32. Hassan, S.A. (1992) Guidelines for testing the effects of pesticides on beneficial organisms: description of test methods. IOBC/WPRS Bull XV/3 1–186.Google Scholar
  33. Hopkin, S.P. (1993a) Ecological implications of ‘85% protection levels’ for metals in soil. Oikos, 66 137–41.CrossRefGoogle Scholar
  34. Hopkin, S.P. (1993b) In situ biological monitoring of pollution in terrestrial and aquatic ecosystems, in Handbook of Ecotoxicology (ed. P. Calow), Blackwell Scientific Publishers, Oxford, pp. 397–427.Google Scholar
  35. Jagers op Akkerhuis, G.A.J.M. (1993) Physical Conditions Affecting Pyrethroid Toxicity in Arthropods PhD Thesis, Agricultural University Wageningen.Google Scholar
  36. Janssen, M.P.M. and Bergema, W.F. (1991) The effect of temperature on cadmium kinetics and oxygen consumption in soil arthropods. Environ. Toxicol. Chem 10 1493–501.CrossRefGoogle Scholar
  37. Jepson, P.C., Croft, B.A. and Pratt, G.E. (1994) Test systems to determine the ecological risks posed by toxin release from Bacillus thuringiensis genes in crop plants. Mol. Ecol, 3 81–9.CrossRefGoogle Scholar
  38. Keddy, C., Greene, J.C. and Bonnell, M.A. (1992) A Review of Whole Organism Bioassays for Assessing the Quality of Soil,Freshwater Sediment and Freshwater in Canada Report of the National Contaminated Sites Remediation Program, Environment Canada.Google Scholar
  39. Linder, G., Ingham, E., Brandt, C.H. and Henderson, G. (1992) Evaluation of Terrestrial Indicators for Use in Ecological Assessments at Hazardous Waste Sites United States Environmental Protection Agency, EPA/600/12–92/183.Google Scholar
  40. Lake, H. (1994) Ecotoxicological extrapolation: tool or toy? in Ecotoxicology of Soil Organisms (eds M.H. Donker, H. Eijsackers and F. Heimbach), Lewis Publishers, Boca Raton, Florida, pp. 411–25.Google Scholar
  41. Loonen, H. (1994) Bioavailability of Chlorinated Dioxins and Furans in the Aquatic Environment PhD Thesis,Amsterdam University of Amsterdam.Google Scholar
  42. Mac, M.J., Noguchi, G.E., Hesselberg, R.J., Edsall, C.C., Shoesmith, J.A. and Bowker, J.D. (1990) A bioaccumulation bioassay for freshwater sediments. Environ. Toxicol. Chem, 9, 1405–14.CrossRefGoogle Scholar
  43. Menzie, C.A., Burmaster, D.E., Freshman, J.S. and Callahan, C.A. (1992) Assessment of methods for estimating ecological risk in the terrestrial component: a case study at the Baird and McGuire superfund site in Holbrook, Massachusetts. Environ. Toxicol. Chem, 11 245–60.CrossRefGoogle Scholar
  44. Morgan, J.E., Morgan, A.J. and Corp, N. (1992) Assessing soil metal pollution with earthworms: indices derived from regression analysis, in Ecotoxicology of Earthworms (eds P.W. Greig-Smith, H. Becker, P. Edwards and F. Heimbach), Intercept Ltd., Andover, Hants, UK, pp. 233–7.Google Scholar
  45. Paine, J.M., McKee, M.J. and Ryan, M.F. (1993) Toxicity and bioaccumulation of soil PCBs in crickets: comparison of laboratory and field studies. Environ. Toxicol. Chem, 12 2097–103.CrossRefGoogle Scholar
  46. Samoiloff, M. (1990) The nematode toxicity assay using Panagrellus redivivus. Toxicity Assessment, 5, 309–18.CrossRefGoogle Scholar
  47. Sheppard, S.C. and Evenden, W.G. (1992) Bioavailability indices for uranium: effect of concentration in eleven soils. Arch. Environ. Contam. Toxicol, 23 117–24.CrossRefGoogle Scholar
  48. Sheppard, S.C. and Evenden, W.G. (1994) Simple whole-soil bioassay based on microarthropods. Bull. Environ. Contam. Toxicol, 52 95–101.CrossRefGoogle Scholar
  49. Sheppard, S.C., Gaudet, C., Sheppard, M.I., Cureton, P.M. and Wong, M.P. (1992) The development of assessment and remediation guidelines for contaminated soils, a review of the science. Can. J. Soil Sci, 72 359–94.CrossRefGoogle Scholar
  50. Suter, G.W. (1993) New concepts in the ecological aspects of stress: the problem of extrapolation. Sci. Total Envir, Suppl., 63–76.Google Scholar
  51. TCB (1992) Advies Herziening Leidraad Bodembescherming 1. C-toetsingswaarden en Urgentiebeoordeling Technical Committee on Soil Protection. The Netherlands (in Dutch).Google Scholar
  52. Torstensson, L. (ed.) (1993) Soil Biological Variables in Environmental Hazard Google Scholar
  53. Van de Meent, D., Aldenberg, T., Canton, J.H., Van Gestel, C.A.M. and Slooff, W. (1990) Desire for Levels. Background Study for the Policy Document ‘Setting Environmental Quality Standards for Water and Soil’ Report no. 670101002, National Institute of Public Health and Environmental Protection (RIVM), Bilthoven, The Netherlands.Google Scholar
  54. Van Gestel, C.A.M. (1992) The influence of soil characteristics on the toxicity of chemicals for earthworms: a review, in Ecotoxicology of Earthworms (eds P.W. Greig-Smith, H. Becker, P.J. Edwards, and F. Heimbach), Intercept Press, Andover, Hants, UK, pp. 44–54.Google Scholar
  55. Van Gestel, C.A.M. and Ma, W. (1988) Toxicity and bioaccumulation of chlorophenols in earthworms, in relation to bioavailability in soil. Ecotox. Environ. Safety, 15 289–97.CrossRefGoogle Scholar
  56. Van Gestel, C.A.M. and Ma, W. (1990) An approach to quantitative structure—activity relationships (QSARs) in earthworm toxicity studies. Chemosphere, 21 1023–33.CrossRefGoogle Scholar
  57. Van Gestel, C.A.M., Adema, D.M.M., De Boer, J.L.M. and De Jong, P. (1988) The influence of soil clean-up on the bioavailability of metals, in Contaminated Soil ‘88 (eds K. Wolf, W.J. Van den Brink, and F.J. Colon), Kluwer Academic Publishers, Dordrecht, pp. 63–5.Google Scholar
  58. Van Gestel, C.A.M., Dirven-Van Breemen, E.M. and Kamerman, J.W. (1993) The influence of soil clean up on the bioavailability of heavy metals for earthworms and plants, in Integrated Soil and Sediment Research: A Basis for Proper Protection (eds H.J.P. Eijsackers and T. Hamers), Kluwer Academic Publishers, Dordrecht, pp. 345–8.CrossRefGoogle Scholar
  59. Van Gestel, C.A.M., Rademaker, M.C.J. and Van Straalen, N.M. (1995) Capacity controlling parameters and their impact on metal toxicity in soil invertebrates, in Biogeodynamics of Pollutants in Soils and Sediments. Risk Assessment of Delayed and Non-linear Responses (eds W. Salomons and W.M. Stigliani), Springer Verlag, Berlin, pp. 171–92.Google Scholar
  60. Van Gestel, C.A.M. and Van Diepen, A.M.F (in press) The influence of soil moisture content on the bioavailability and toxicity of cadmium for Folsomia candida Willem (Collembola: Isotomidae). Ecotox. Environ. Safety Google Scholar
  61. Vanhala, P.T. and Ahtiainen, J.H. (1994) Soil respiration, ATP content, and Photobacterium toxicity test as indicators of metal pollution in soil. Environ. Toxicol. Water Qual, 9 115–21.CrossRefGoogle Scholar
  62. Van Straalen, N.M. (1993a) An ecotoxicologist in politics. Oikos, 66 142–3.CrossRefGoogle Scholar
  63. Van Straalen, N.M. (1993b) Open problems in the derivation of soil quality criteria from ecotoxicity experiments, in Contaminated Soil ‘83 (eds F. Arendt, G.J. Annokkee, R. Bosman and W.J. van den Brink), Kluwer Academic Publishers, Dordrecht, pp. 315–26.CrossRefGoogle Scholar
  64. Van Straalen, N.M. and Denneman, C.A.J. (1989) Ecotoxicological evaluation of soil quality criteria. Ecotox. Environ. Safety, 18 241–51.CrossRefGoogle Scholar
  65. Van Straalen, N.M. and Van Gestel, C.A.M. (1993) Soil invertebrates and microorganisms, in Handbook of Ecotoxicology (ed. P. Calow), Blackwell Scientific Publishers, Oxford, pp. 251–77.Google Scholar
  66. Van Straalen, N.M., Schobben, J.H.M. and Traas, T.P. (1992) The use of ecotoxicological risk assessment in deriving maximum acceptable half-lives of pesticides. Pestic. Sci, 34 227–31.CrossRefGoogle Scholar
  67. Van Wensem, J., Vegter, J.J. and Van Straalen, N.M. (1994) Soil quality criteria derived from critical body concentrations of metals in soil invertebrates. Appl. Soil Ecol 1 185–91.CrossRefGoogle Scholar
  68. Verma, A. and Pillai, M.K. (1991) Bioavailability of soil-bound residues of DDT and HCH to earthworms. Curr. Sci 61 840–3.Google Scholar
  69. Wang, W. and Keturi, P.H. (1990) Comparative seed germination test using ten plant species for toxicity assessment of a metal engraving effluent sample. Water Air Soil Pollut, 52 369–76.CrossRefGoogle Scholar
  70. Warren-Hicks, W., Parkhurst, B.R. and Baker, S.S. (1989) Ecological Assessment of Hazardous Waste Sites: A Field and Laboratory Reference United States Environmental Protection Agency. EPA/600/3–89/013.Google Scholar
  71. Wiles, J.A. and Jepson, P.C. (1992) In situ bioassay techniques to evaluate the toxicity of pesticides to beneficial invertebrates in cereals. Asp. of Appl. BioL, 31 61–8.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Cornelis A. M. Van Gestel

There are no affiliations available

Personalised recommendations