Advertisement

Effects of toxicants on population and community parameters in field conditions, and their potential use in the validation of risk assessment methods

  • Leo Posthuma
Chapter

Abstract

Ecotoxicological risk assessment methods need to be validated due to the high economic consequences of too strict and the high ecological consequences of too weak risk management (Slooff et al., 1986;Hopkin, 1993;Van Straalen, 1993a,Van Straalen, 19936;Van Straalen et al., 1994). In this chapter the term ‘validation’ is used in the sense of evaluation of differences between laboratory-based predictions and field effects. A validated method in this sense predicts field effects within specified adequacy limits. Until now, the results of single-species (SS) laboratory tests have only been compared with toxic effects in enclosures or in multi-species (MS) experiments (Heimbach, 1992;Okkerman et al., 1993). Comparisons of predicted effects with effects in natural systems have, however, not yet been made

Keywords

Risk Level Field Effect Toxicant Effect Genetic Adaptation Risk Assessment Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldenberg, T. and Slob, W. (1993) Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotox. Environ. Safety, 25 48–63.CrossRefGoogle Scholar
  2. Bengtsson, G. and Rundgren, S. (1988) The Gusum case: a brass mill and the distribution of soil Collembola. Can. J. Zool, 66 1518–26.CrossRefGoogle Scholar
  3. Bengtsson, G. and Tranvik, L. (1989) Critical metal concentrations for forest invertebrates. Water Air Soil Pollut, 47 381–417.CrossRefGoogle Scholar
  4. Benton, M.J. and Guttman, S.I. (1990) Relationship of allozyme genotype to survivorship of mayflies (Stenonema femoratum) exposed to copper. J. N. Am. Benthol. Soc, 9 271–6.CrossRefGoogle Scholar
  5. Beyer, W.N., Miller, G.W. and Cromartie, E.J. (1984) Contamination of the 02 soil horizon by zinc smelting and its effect on woodlouse survival. J. Environ. Qual, 13 247–51.CrossRefGoogle Scholar
  6. Blanck, H. and Wängberg, S.-A (1988) Induced community tolerance in marine periphyton established under arsenate stress. Can. J. Fish. Aquat. Sci, 45 1816–19.CrossRefGoogle Scholar
  7. Blanck, H., Wängberg, S.-A and Molander, S. (1988) Pollution-induced community tolerance — a new ecotoxicological tool, in Special Technical Publication 988, American Society for Testing and Materials, Philadelphia, PA, pp. 219–30.Google Scholar
  8. Bradshaw, A.D. (1991) Genostasis and the limits to evolution. Phil. Trans. R. Soc. Lond. B, 333 289–305.CrossRefGoogle Scholar
  9. Calow, P. (1994) Ecotoxicology: what are we trying to protect? Environ. Toxicol. Chem, 13 1549.CrossRefGoogle Scholar
  10. Chagnon, N.L. and Guttman, S.I. (1989) Differential survivorship of allozyme genotypes in mosquitofish populations exposed to copper or cadmium. Environ. Toxicol. Chem, 8 319–26.CrossRefGoogle Scholar
  11. Charlesworth, B. (1980). Evolution in Age-structured Populations, Cambridge University Press, Cambridge.Google Scholar
  12. Crommentuijn, T., Brils, J. and Van Straalen, N.M. (1993) Influence of cadmium on life-history characteristics of Folsomia candida (Willem) in an artificial soil substrate. Ecotox. Environ. Safety, 26 216–27.CrossRefGoogle Scholar
  13. DÞaz-Raviña, M., Bååth, E. and Frostegård, Å. (1994) Multiple heavy metal tolerance of soil bacterial communities and its measurement by a thymidine incorporation technique. Appl. Environ. Microbiol, 60 2238–47.Google Scholar
  14. Doelman, P. and Haanstra, L. (1979) Effects of lead on the soil bacterial microflora. Soil Biol. Biochem, 11 487–91.CrossRefGoogle Scholar
  15. Doelman, P., Jansen, E., Michels, M. and Van Til, M. (1994) Effects of heavy metals on microbial diversity and activity as shown by the sensitivity—resistance index, an ecologically relevant parameter. Biol. Fertil. Soils, 17 177–84.CrossRefGoogle Scholar
  16. Domsch, K.H., Jagnow G. and Anderson T.-H. (1983) An ecological concept for the assessment of side-effects of agrochemicals on soil microorganisms. Res. Rev, 86 66–105.Google Scholar
  17. Donker, M.H. and Bogert, C. (1991) Adaptation to cadmium in three populations of the isopod Porcellio scaber. Comp. Biochem. Physiol, 100C 143–6.CrossRefGoogle Scholar
  18. Donker, M.H., Zonneveld, C. and Van Straalen, N.M. (1993) Early reproduction and increased reproductive allocation in metal adapted populations of the terrestrial isopod Porcellio scaber. Oecologia (Berlin), 96 316–23.CrossRefGoogle Scholar
  19. Donker, M.H., Raedecker, M.H. and Van Straalen, N.M. (1996) The role of zinc regulation in the zinc tolerance mechanism of the terrestrial isopod Porcellio scaber. J. Appl. Ecol 33 955–64.CrossRefGoogle Scholar
  20. Eberhardt, L.L. and Thomas, J.M. (1991) Designing environmental field studies. Ecol. Monogr, 6 53–73.CrossRefGoogle Scholar
  21. Endler, J.A. (1986) Natural Selection in the Wild, Princeton University Press, Princeton, New Jersey, USA.Google Scholar
  22. Ernst, W.H.O. (1983) Ökologische Anpassungsstrategien an Bodenfaktoren. Ber. Deutsch. Bot. Ges, 96 49–71.Google Scholar
  23. Ernsting, G., Zonneveld, C., Isaaks, J.A. and Kroon A. (1993) Relationships between growth, reproduction and survival in an insect with indeterminate growth. Oikos, 66, 17–26.CrossRefGoogle Scholar
  24. Falconer, D.S. (1981) Introduction to Quantitative Genetics, 2nd edn, Longman, New York.Google Scholar
  25. Frati, F., Fanciulli, P.P. and Posthuma, L. (1992) Allozyme variation in reference and metal-exposed natural populations of Orchesella cincta (L.) (Insecta, Collembola). Biochem. Syst. Ecol, 20 297–310.CrossRefGoogle Scholar
  26. Gillespie, R.B. and Guttman, S.I. (1989) Effects of contaminants on the frequencies of allozymes in populations of the central stoneroller. Environ. Toxicol. Chem, 8 309–17.CrossRefGoogle Scholar
  27. Gray, J.S. (1981) Detecting pollution induced changes in communities using the log normal distribution of individuals among species. Mar. Pollut. Bull, 12 173–6.CrossRefGoogle Scholar
  28. Gray, J.S. and Mirza, F.B. (1979) A possible method for the detection of pollutioninduced disturbance on marine benthic communities. Mar. Pollut. Bull, 10 142–6.CrossRefGoogle Scholar
  29. Haanstra, L., Doelman, P. and Oude Voshaar, J.H. (1985) The use of sigmoidal dose response curves in soil ecotoxicological research. Plant Soil, 84 293–7.CrossRefGoogle Scholar
  30. Hâgvar, S. (1994) Lognormal distribution of dominance as an indicator of stressed soil microarthropod communities. Acta Zool. Fenn, 195 71–80.Google Scholar
  31. Hágvar, S. and Abrahamsen G. (1990) Microarthopoda and Enchytraeidae (Oligochatea) in naturally lead-contaminated soil: a gradient study. Environ. Entomol, 19 1263–77.Google Scholar
  32. Hamers, T., Notenboom, J. and Eijsackers, H.J.P. (1996) Validation of Laboratory Toxicity Data on Pesticides for the Field Situation National Institute of Public Health and the Environment, Bilthoven, The Netherlands, Report no. 719102046.Google Scholar
  33. Hawkins, A.J.S., Rusin, J., Bayne, B.L. and Day, A.J. (1989) The metabolic/physiologic basis of genotype-dependent mortality during copper exposure in Mytilus edulis. Mar. Environ. Res, 28 253–7.CrossRefGoogle Scholar
  34. Heimbach, F. (1992) Correlation between data from laboratory and field tests for investigating the toxicity of pesticides to earthworms. Soil Biol. Biochem, 24 1749–53.CrossRefGoogle Scholar
  35. Holloway, G.J., Povey S.R. and Sibly, R.M. (1990a) The effects of new environment on adapted genetic architecture. Heredity, 64 323–30.CrossRefGoogle Scholar
  36. Holloway, G.J., Sibly, R.M. and Povey S.R. (1990b) Evolution in toxin stressed environments. Funct. Ecol, 4 289–94.CrossRefGoogle Scholar
  37. Hopkin, S.P. (1990) Critical concentrations, pathways of detoxification and cellular ecotoxicology of metals in terrestrial arthropods. Funct. Ecol, 4 321–7.CrossRefGoogle Scholar
  38. Hopkin, S.P. (1993) Ecological implications of ‘95% protection levels’ for metals in soil. Oikos, 66, 137–41.CrossRefGoogle Scholar
  39. Huggett, R.J., Kimerle, R.A., Mehrle, P.M. and Bergma, H.L. (1992) Biomarkers: Biochemical, Physiological and Histological Markers of Anthropogenic Stress, Lewis Publishers, Boca Raton, FL, USA.Google Scholar
  40. Kammenga, J.E., Van Gestel, C.A.M. and Bakker, J. (1994) Patterns of sensitivity to cadmium and pentachlorophenol among nematode species from different taxonomic and ecological groups. Arch. Environ. Contam. Toxicol, 27 88–94.CrossRefGoogle Scholar
  41. Klerks, P.L. and Weis, J.S. (1987) Genetic adaptation to heavy metals in aquatic organisms: a review. Environ. Pollut, 45 173–205.CrossRefGoogle Scholar
  42. Koehn, R.K. (1978) Physiology and biochemistry of enzyme variation: the interface of ecology and population genetics, in Ecological Genetics: the Interface (ed. P.F. Brussard), Springer, New York, pp. 51–72.CrossRefGoogle Scholar
  43. Kooijman, S.A.L.M. (1987) A safety factor for LC50 values allowing for differences in sensitivity among species. Water Res,21 269–76CrossRefGoogle Scholar
  44. Lag J., Hvatum, O.O. and BOlviken, B. (1970) An occurrence of naturally lead-poi-soned soil at Kastad near Gjovik, Norway. Arbok 1969, Norges Geologiske Undersökelse, 266 141–59.Google Scholar
  45. Lavie, B. and Nevo, E. (1982) Heavy metal selection of phosphoglucose isomerase allozymes in marine gastropods. Mar. Biol, 71 17–22.CrossRefGoogle Scholar
  46. Lavie, B. and Nevo, E. (1986) The interactive effects of cadmium and mercury pollution on allozyme polymorphisms in the marine gastropod Cerithium scabridum. Mar. Pollut. Bull, 17 21–3.CrossRefGoogle Scholar
  47. Lower, W.R. (1975) Gene frequency differences in Drosophila melanogaster associated with lead smelting operations. Mutat. Res,31 315.Google Scholar
  48. Luoma, S.N. (1977) Detection of trace contaminant effects in aquatic ecosystems. J. Fish. Board Can, 34 436–9.CrossRefGoogle Scholar
  49. Maruyama, T. and Fuerst, P.A. (1985) Population bottlenecks and nonequilibrium models in population genetics. II. The number of alleles in a small population that was formed by a recent bottleneck. Genetics, 111 675–89Google Scholar
  50. Michod, R.E. (1979) Evolution of life histories in response to age-specific mortality factors. Am. Nat, 113 531–50.CrossRefGoogle Scholar
  51. Molander, S. and Blanck, H. (1992) Detection of pollution-induced community tolerance (PICT) in marine periphyton communities established under diuron exposure. Aquat. Toxicol, 22 129–44.CrossRefGoogle Scholar
  52. Molander, S., Blanck, H. and Söderström M. (1990) Toxicity assessment by pollution induced community tolerance (PICT), and identification of metabolites in periphyton communities after exposure to 4,5,6-trichloroguaiacol. Aquat. Toxicol, 18 115–36.CrossRefGoogle Scholar
  53. Molander, S., Dahl, B., Blanck, H., Josson, J. and Sjöström, M. (1992) Combined effects of Tri-n-butyl Tin (113T) and diuron on marine periphyton communities detected as pollution-induced community tolerance. Arch. Environ. Contam. Toxicol, 22 419–27.CrossRefGoogle Scholar
  54. Murdoch, M.H. and Hebert, P.D.N. (1994) Mitochondrial DNA diversity of brown bullhead from contaminated and relatively pristine sites in the great lakes. Environ. Toxicol. Chem, 13 1281–9CrossRefGoogle Scholar
  55. Okkerman, P.C., Van de Plassche, E.J., Emans, H.J.B. and Canton, J.H. (1993) Validation of some extrapolation methods with toxicity data derived from multiple species experiments. Ecotox. Environ. Safety, 25 341–59CrossRefGoogle Scholar
  56. Peakall, D. B. (1992) Animal Biomarkers as Pollution Indicators, Springer Science+Business Media Dordrecht, London.CrossRefGoogle Scholar
  57. Pearson, T.H., Gray, J.S. and Johannessen, P.J. (1983) Objective selection of sensitive species indicative of pollution-induced change in benthic communities. 2. Data analyses. Mar. Ecol. Progr. Ser, 12 237–55.CrossRefGoogle Scholar
  58. Posthuma, L. (1990) Genetic differentiation between populations of Orchesella cinc-ta (Collembola) from heavy-metal contaminated sites. J. Appl. Ecol,27 609–22.CrossRefGoogle Scholar
  59. Posthuma, L. and Janssen, G.M. (1995) Genetic variation for life-history characteristics in Orchesella cincta (L.) in relation to evolutionary responses to metals in soils. Acta Zool. Fenn, 196 301–6.Google Scholar
  60. Posthuma, L. and Van Straalen N.M. (1993) Heavy-metal adaptation in terrestrial invertebrates: a review of occurrence, genetics, physiology and ecological consequences. Comp. Biochem. Physiol, 106C 11–38.Google Scholar
  61. Posthuma L., Hogervorst R.F. and Van Straalen N.M. (1992) Adaptation to soil pollution by cadmium excretion in natural populations of Orchesella cincta (L.) (Collembola). Arch. Environ. Contam. Toxicol, 22 146–56.CrossRefGoogle Scholar
  62. Posthuma, L., Hogervorst R.F., Joosse E.N.G. and Van Straalen N.M. (1993a) Genetic variation and covariation for characteristics associated with cadmium tolerance in natural populations of the springtail, Orchesella cincta (L.). Evolution, 47 619–31.CrossRefGoogle Scholar
  63. Posthuma, L., Verweij R.A., Widianarko B. and Zonneveld C. (1993b) Life-history patterns in metal-adapted Collembola. Oikos, 67, 235–49.CrossRefGoogle Scholar
  64. Posthuma, L., Boonman, H., Mogo, F.C. and Baerselman, R. (1994) Heavy Metal Toxicity in Eisenia andrei Exposed in Soils From a Gradient Around a Zinc Smelter (Budel) and Comparison with Toxic Effects in OECD-Artificial Soil RIVM-report no. 719102033, Dutch National Institute for Public Health and Environmental Protection RIVM, Bilthoven, The Netherlands.Google Scholar
  65. Posthuma, L., Weltje, L. and Notenboom J. (1995) Mixtures of toxicants and their effects on soil animals RIVM-Annual Scientific Report 1994, RIVM, Bilthoven, The Netherlands. pp. 137–8.Google Scholar
  66. Postma, J.F. and Davids, C. (1995) Tolerance induction and life-cycle changes in cadmium exposed Chironomus riparius (Diptera) during consecutive generations. Ecotox. Environ. Safety, 30, 195–202.CrossRefGoogle Scholar
  67. Postma, J.F., Mol, S., Larsen, H. and Admiral, W. (1995) Life-cycle changes and zinc shortage in cadmium tolerant midges, Chironomus riparius (Diptera) reared in the absence of cadmium. Environ. Toxicol. Chem, 14 117–22.Google Scholar
  68. Reznick, D.N., Bryga, H. and Endler, J.A. (1990) Experimentally induced life-history evolution in a natural population. Nature, 346 357–9.CrossRefGoogle Scholar
  69. Shaw, J. (1988) Genetic variation for tolerance to copper and zinc within and among populations of the moss, Funaria hygrometrica Hedw. New Phytol, 109 211–22.CrossRefGoogle Scholar
  70. Siepel, H. (1994) Structure and Function of Soil Microarthropod Communities PhD Thesis, Landbouw Universiteit Wageningen, The Netherlands.Google Scholar
  71. Slooff, W., Van Oers, J.A.M. and De Zwart, D. (1986) Margins of uncertainty in eco toxicological hazard assessment. Environ. Toxicol. Chem, 5 841–52.CrossRefGoogle Scholar
  72. Suter, G.W. (1992) Ecological Risk Assessment, Lewis Publishers, Boca Raton, FL, USA.Google Scholar
  73. Swift, M.J., Heal, O.W. and Anderson J.M. (1979) Decomposition in Terrestrial Ecosystems Studies in Ecology, no. 5. Blackwell Scientific Publications, Oxford, UK.Google Scholar
  74. Tranvik, L., Sjögren M. and Bengtsson, G. (1994) Allozyme polymorphism and protein profile of Orchesella bifasciata (Collembola): indicative of extended metal pollution? Biochem. Syst. Ecol, 22 13–23.CrossRefGoogle Scholar
  75. Tyler, G. (1975) Heavy metal pollution and mineralisation of nitrogen in forest soils. Nature, 255 701–2.CrossRefGoogle Scholar
  76. Tyler, G. (1984) The impact of heavy-metal pollution on forests: a case study of Gusum, Sweden. Ambio, 13 18–24.Google Scholar
  77. Van Beelen, P. and Fleuren-Kemilä, A.K. (1993) Toxic effects of pentachlorophenol and other pollutants on the mineralization of acetate in several soils. Ecotox. Environ. Safety, 26 10–17.CrossRefGoogle Scholar
  78. Van Beelen, P. and Van Vlaardingen, P.L.A. (1994) A method for the ecotoxicological risk analysis of polluted sediments by the measurement of microbial activities, in Ecotoxicology of Soil Organisms (eds M.H. Donker, H. Eijsackers and F. Heimbach), Lewis Publishers, Boca Raton, FL, pp. 105–12.Google Scholar
  79. Van Beelen, P., Fleuren-Kemilä, A.K., Huys, M.P.A., Van Mil, A.C.H.M. and Van Vlaardingen, P.L.A. (1990) Toxic effects of pollutants on the mineralization of substrates at low environmental concentrations in soils, subsoils and sediments, in Contaminated Soil ‘80 (eds F. Arendt, M. Hinseveld, and W.J. van den Brink), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 431–8.Google Scholar
  80. Van Beelen, P., Fleuren-Kemilä, A.K., Huys, M.P.A., Van Montfort A.C.P. and Van Vlaardingen, P.L.A. (1991) The toxic effects of pollutants on the mineralization of acetate in subsoil microcosms. Environ. Toxicol. Chem,10 775–89.CrossRefGoogle Scholar
  81. Van Capelleveen, H.E. (1987) Ecotoxicity of Heavy Metals for Terrestrial Isopods PhD Thesis, Vrije Universiteit, Amsterdam.Google Scholar
  82. Van Ewijk, P.H. and Hoekstra, J.A. (1993) Calculation of the EC50 and its confidence interval when subtoxic stimulus is present. Ecotox. Environ. Safety, 25 25–32.CrossRefGoogle Scholar
  83. Van Straalen, N.M. (1993a) An ecotoxicologist in politics. Oikos, 66 142–3.CrossRefGoogle Scholar
  84. Van Straalen, N.M. (1993b) Soil and sediment criteria derived from invertebrate tox icity data, in Ecotoxicology of Metals in Invertebrates (eds R. Dallinger and P.S. Rainbow), Lewis Publishers, Boca Raton, FL, USA, pp. 427–41.Google Scholar
  85. Van Straalen, N.M. (1994) Open problems in the derivation of soil quality criteria from ecotoxicity experiments, in Contaminated Soil ‘83 (eds F. Arendt, G.J. Annokkée, R. Bosman and W.J. van den Brink), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 315–26.Google Scholar
  86. Van Straalen, N.M. and Denneman, C.A.J. (1989) Ecotoxicological evaluation of soil quality criteria. Ecotox. Environ. Safety, 18 241–51.CrossRefGoogle Scholar
  87. Van Straalen, N.M., Groot, G.M. and Zoomer, H.R. (1986) Adaptation of soil Collembola to heavy-metal soil contamination, in Proceedings of the International Conference on Environmental Contamination,Amsterdam, CEP Consultants, Edinburgh, UK, pp. 16–20.Google Scholar
  88. Van Straalen, N.M., Schobben, J.H.M. and De Goede, R.G.M. (1989) Population consequences of cadmium toxicity in soil microarthropods. Ecotox. Environ. Safety, 17 190–204.CrossRefGoogle Scholar
  89. Van Straalen, N.M., Schobben, J.H.M. and Traas, T.P. (1992) The use of ecotoxicological risk assessment in deriving maximum acceptable half-lives of pesticides. Pest. Sci, 34 227–31.CrossRefGoogle Scholar
  90. Van Straalen, N.M., Leeuwangh, P. and Stortelder, P.B.M. (1994) Progressing limits for soil ecotoxicological risk assessment, in Ecotoxicology of Soil Organisms (eds M.H. Donker, H. Eijsackers and F. Heimbach), Lewis Publishers, Boca Raton, FL, USA, pp. 397–409.Google Scholar
  91. Van Wensem, J., Vegter, J.J. and Van Straalen, N.M. (1994) Soil quality criteria derived from critical body concentrations of metals in invertebrates. Appl. Soil. Ecol, 1 185–91.CrossRefGoogle Scholar
  92. Verkleij, J.A.C., Bast-Cramer, W.B. and Levering, H. (1985) Effects of heavy-metal stress on the genetic structure of populations of Silene cucubalus, in Structure and Functioning of Plant Populations, (eds. J. Haeck and J.W. Woldendorp) North Holland Publishing Company, Amsterdam, The Netherlands, pp. 355–65.Google Scholar
  93. Vonk, J.W. and Matla, Y.A. (1993) A Test for Effects of Chemicals on Glutamate Mineralisation in Soil TNO Institute of Environmental Sciences, Report no. IMW-R 93/097Google Scholar
  94. Wagner, C. and Lpkke, H. (1991) Estimation of ecotoxicological protection levels from NOEC toxicity data Water Res, 25 1237–42.CrossRefGoogle Scholar
  95. Wängberg, S.-A. and Blanck, H. (1990) Arsenate sensitivity in marine periphyton communities established under various nutrient regimes. J. Exp. Mar. Biol. Ecol, 139 119–34.CrossRefGoogle Scholar
  96. Wängberg, S.-A., Heyman, U. and Blanck, H. (1991) Long-term and short-term arsenate toxicity to freshwater phytoplankton and periphyton in limnocorals. Can. J. Fish. Aquat. Sci, 48 173–82.CrossRefGoogle Scholar
  97. Wilson, J.B. (1988) The cost of heavy-metal tolerance: an example. Evolution, 42 408–13.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Leo Posthuma

There are no affiliations available

Personalised recommendations