Form and Function in Avian Flight

  • Jeremy M. V. Rayner
Part of the Current Ornithology book series (CUOR, volume 5)


Flapping flight is a highly effective form of locomotion which has permitted the radiation of birds into a wide range of niches. In this chapter I explore how the mechanics of flapping flight have molded the flight adaptations of birds. The paper has three main threads. First, I describe recent theoretical and experimental studies on flapping flight aerodynamics and demonstrate how the mechanical requirements of locomotion are reflected in wingbeat kinematics, in vortex wake structure, and in the action of the pectoral musculature. Next, I consider how flight performance varies with size; scaling has become a central tool in the analysis of flight in birds and has proved a useful means of predicting how different mechanical, physiological, and ecological parameters change in importance with size, morphology, and behavior. However, scaling is frequently misinterpreted: it is size-dependence of the constraints on adaptation which lead to allometric consistency in avian flight morphology, and many of these constraints can be related directly to flight mechanics. Finally, I use a multivariate analysis of wing morphology to demonstrate how these constraints interact to different degrees in different birds and underlie correlations among flight morphology, ecology, and behavior. These threads are then brought together in a discussion of the conjectural relationships between fitness and the evolution of specializations in flight morphology.


Vortex Ring Flight Muscle Vortex Wake Flight Speed Flight Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, M., and Norberg, R. Å., 1981, Evolution of reversed sexual size dimorphism and role partitioning among predatory birds, with a size scaling of flight performance, Biol. J. Linn. Soc. 15:105–130.CrossRefGoogle Scholar
  2. Bairlein, F., 1981, Ökosystemanalyse der Rastplätze von Zugvögeln, Ökol. Vögel 3:7–137.Google Scholar
  3. Berger, M., and Hart, J. S., 1974, Physiology and energetics of flight, in: Avian Biology, Volume 4 (D. S. Farner and J. R. King, eds.). Academic Press, London, pp. 260–415.Google Scholar
  4. Böker, H., 1927, Die biologische Anatomie der Flugarten der Vögel und ihre Phylogenie, J. Ornithol. Lpz. 75:304–371.CrossRefGoogle Scholar
  5. Brown, R. H. J., 1963, The flight of birds, Biol. Rev. 38:460–489.CrossRefGoogle Scholar
  6. Calder, W. A., 1984, Size, Function, and Life History, Harvard University Press, Cambridge, MA.Google Scholar
  7. Campbell, K. E., and Tonni, E. P., 1983, Size and locomotion in teratorns (Aves: Tera-tornithidae), Auk 100:390–403.Google Scholar
  8. Demoll, R., 1930, Die Flugbewegungen bei grossen und kleinen Vögeln, Z. Biol. 90:199–230.Google Scholar
  9. Diamond, J. M., 1981, Flightlessness and fear of flying in island species. Nature 293:507–508.Google Scholar
  10. Fredericus II Hohenstaufen, Imperator (Kaiser Friedrich II), ca. 1240, De Arte Venandi cum Avibus (cum Manfredi Regis additionibus), manuscript, trans. The Art of Falconry (C. A. Wood and F. M. Fyfe, eds.), Stanford University Press, Palo Alto, CA, 1943.Google Scholar
  11. Gladkov, N. A., 1949, Biologichyeskaya Osnovyi Polyeta Ptits (Biological Principles of Bird Flight), Nauka, Moscow.Google Scholar
  12. Gnosspelius, O. F., 1925, Notes (to J. D. Fullerton, “The flight of birds”), J. R. Aero. Soc. 29:543–547.Google Scholar
  13. Greenewalt, C. H., 1962, Dimensional relationships for flying animals, Smithsonian Misc. Coll. 144, part 2.Google Scholar
  14. Greenewalt, C. H., 1975, The flight of birds. Trans. Am. Phil. Soc. 65, part 4.Google Scholar
  15. Guidi, G., 1938, Osservazioni sul volo ad ala battente dei piccione, Aerotecnica 18:954–966, trans. J. R. Aero. Soc. 42:1104–1115.Google Scholar
  16. Guidi, G., 1939, La battuta alare del piccione, Aerotecnica 19:121–132, trans. J. R. Aero. Soc. 43:457–468.Google Scholar
  17. Hainsworth, F. R., and Wolf, L. L., 1983, Models and evidence for feeding control of energy, Am. Zool. 23:261–272.Google Scholar
  18. Hartman, F. A., 1961, Locomotor mechanisms of birds, Smithsonian Misc. Coll. 143.Google Scholar
  19. Hecht, M. K., Ostrom, J. H., Viohl, G., and Wellnhofer, P. (eds.), 1985, The Beginnings of Birds, JuraMuseum, Eichstätt, F.R.G.Google Scholar
  20. Herzog, K., 1968, Anatomie und Flugbiologie der Vögel, Gustav Fischer, Stuttgart.Google Scholar
  21. King, A. S., and King, D. Z., 1979, Avian morphology: General principles, in: Form and Function in Birds, Volume 1 (A. S. King and J. McLelland, eds.), Academic Press, New York, pp. 1–38.Google Scholar
  22. Kipp, F., 1961, Flügelbau und Zugverhalten bei der Anatiden, Vogelwarte 21:28–36.Google Scholar
  23. Kokshaysky, N. V., 1973, Functional aspects of some details of bird wing configuration, Syst. Zool. 22:442–450.CrossRefGoogle Scholar
  24. Kokshaysky, N. V., 1979, Tracing the wake of a flying bird, Nature 279:146–148.CrossRefGoogle Scholar
  25. Leisler, B., 1980, Morphological aspects of ecological specialization in bird genera, Ökol. Vögel 2:199–220.Google Scholar
  26. Leisler, B., and Winckler, H., 1985, Ecomorphology, Curr. Ornithol. 2:155–186.CrossRefGoogle Scholar
  27. Lighthill, M. J., 1974, Aerodynamic aspects of animal flight, Bull. Inst. Math. Appl. 10:369–393, reprinted in: Swimming and Flying in Nature, Volume 2 (T.Y.-T. Wu, C. J. Brokaw, and C. Brennen, eds.), Plenum Press, New York, pp. 423–491, 1975.Google Scholar
  28. Lighthill, M. J., 1977, Introduction to the scaling of animal locomotion, in: Scale Effects in Animal Locomotion (T. J. Pedley, ed.), Academic Press, New York, pp. 365–404.Google Scholar
  29. Livezey B. C., and Humphrey, P. S., 1986, Flightlessness in steamer ducks (Anatidae: Tachyeres): Its morphological bases and probable evolution. Evolution 40:540–558.CrossRefGoogle Scholar
  30. Lorenz, K., 1933, Beobachtetes über das Fliegen der Vögel und über die Beziehungen der Flügel-und Steuerform zur Art des Fluges, J. Ornithol Lpz. 81:107–236, reprinted as Der Vogelflug, G. Neske, Pfüllingen, F. R. G., 1965.CrossRefGoogle Scholar
  31. Magnan, A., 1922, Les caractéristiques des oiseaux suivant le mode de vol, Ann. Sci. Nat. Sér. Zool. 5:125–334.Google Scholar
  32. Magnan, A., 1925, Le Vol á Voile, Volume 1, G. Roché d’Estrez, Paris.Google Scholar
  33. Magnan, A., Perrilliat-Botonet, G., and Girerd, H., 1938, Essais d’enregistrements cin’matographiques simultanées dans trois directions perpendiculaires deux á deux á l’écoulement de l’air autour d’un oiseau en vol, C. R. Hebd. Seanc. Acad. Sci. Paris 206:374–377.Google Scholar
  34. Marey, E. J., 1890, Physiologie du Mouvement Le Vol des Oiseaux, G. Masson, Paris.Google Scholar
  35. Meunier, K., 1959, Die Allometrie des Vogelflügels, Z. Wiss. Zool 161:444–482.Google Scholar
  36. Nachtigall, W., 1985, Warum die VögeJ fliegen, Rasch und Röhring, Hamburg.Google Scholar
  37. Niethammer, G., 1937, Über die Beziehung zwischen Flügellänge und Wanderstrecke bei einigen europäischen Singvögeln, Arch. Naturges. 6:519–525.Google Scholar
  38. Norberg, U. M., 1976, Kinematics, aerodynamics, and energetics of horizontal flapping flight in the long-eared bat Plecotus auritus, J. Exp. Biol 65:179–212.PubMedGoogle Scholar
  39. Norberg, U. M., 1979, Morphology of the wings, legs and tail of three coniferous forest tits, the goldcrest and the treecreeper in relation to locomotor pattern and feeding station selection, Phil. Trans. R. Soc. Lond. B, 287:131–165.CrossRefGoogle Scholar
  40. Norberg, U. M., 1981, Allometry of bat wings and legs and comparisons with bird wings, Phil. Trans. R. Soc. Lond. B, 292:359–398.CrossRefGoogle Scholar
  41. Norberg, U. M., 1985a, Flying, gliding, soaring, in: Functional Vertebrate Morphology (M. Hildebrand, D. M. Bramble, K. F. Liem, and D. B. Wake, eds.), Harvard University Press, Cambridge, MA, pp. 129–158.Google Scholar
  42. Norberg, U. M., 1985b, Evolution of vertebrate flight: An aerodynamic model for the transition from gliding to active flight, Am. Nat. 126:303–327.CrossRefGoogle Scholar
  43. Norberg, U. M., 1986, Evolutionary convergence in foraging niche and flight morphology in insectivorous aerial-hawking birds and bats, Ornis Scand. 17:253–260.CrossRefGoogle Scholar
  44. Norberg, U. M., and Rayner, J. M. V., 1987, Ecological morphology of flight in bats (Mammalia: Chiroptera): Wing adaptations, flight performance, foraging strategy and echolocation, Phil. Trans. R. Soc. Lond. B, 316:335–427.CrossRefGoogle Scholar
  45. Oehme, H., 1959, Untersuchungen über Flug-und Flügelbau von Kleinvögeln, J. Ornithol. Lpz. 100:363–396.CrossRefGoogle Scholar
  46. Oehme, H., 1985, Über die Flügelbewegung der Vögel im schnellen Streckenflug, Milu 6:137–156.Google Scholar
  47. Oehme, H., and Kitzler, U., 1974, Untersuchungen zur Flugbiophysik und Flugphysiologie der Vögel. I. Über die Kinematik des Flügelschlages beim unbeschleunigten Horizontalflug, Zool. Jb. Abt. Physiol 78:461–512.Google Scholar
  48. Osborne, M. F. M., 1951, Aerodynamics of flapping flight with application to insects, J. Exp. Biol. 28:221–245.PubMedGoogle Scholar
  49. Padian, K., 1983, A functional analysis of flying and walking in pterosaurs, Paleobiology 9:218–239.Google Scholar
  50. Pennycuick, C. J., 1968, Power requirements for horizontal flight in the pigeon Columba livia, J. Exp. Biol. 49:527–555.Google Scholar
  51. Pennycuick, C. J., 1969, The mechanics of bird migration. Ibis 111:525–556.CrossRefGoogle Scholar
  52. Pennycuick, C. J., 1972a, Animal Flight, Edward Arnold, London.Google Scholar
  53. Pennycuick, C. J., 1972b, Soaring behaviour and performance of some East African birds, observed from a motor glider. Ibis 114:178–218.CrossRefGoogle Scholar
  54. Pennycuick, C. J., 1975, Mechanics of flight, in: Avian Biology, Volume 5 (D. S. Farner and J. R. King, eds.). Academic Press, New York, pp. 1–75.Google Scholar
  55. Pennycuick, C. J., 1982, The flight of petrels and albatrosses (Procellariiformes), observed in south Georgia and its vicinity, Phil. Trans. R. Soc. Lond. B 300:75–106.CrossRefGoogle Scholar
  56. Pennycuick, C. J., 1983, Thermal soaring compared in three dissimilar tropical bird species, Fregata magnificens, Pelecanus occidentalis and Coragyps atratus, J. Exp. Biol. 102:307–325.Google Scholar
  57. Pennycuick, C. J., 1985, Flight, in: A Dictionary of Birds (B. Campbell and E. Lack, eds.), T. & A. D. Poyser, Calton, U.K., pp. 218–223.Google Scholar
  58. Phillips, J. G., Butler, P. J., and Sharp, P. J., 1985, Physiological Strategies in Avian Biology, Blackie, Glasgow.Google Scholar
  59. Prior, N. C., 1984, Flight Energetics and Migration Performance in Swans, Ph.D. Thesis, University of Bristol, Bristol, U.K.Google Scholar
  60. Rayner, J. M. V., 1979a, A new approach to animal flight mechanics, J. Exp. Biol. 80:17–54.Google Scholar
  61. Rayner, J. M. V., 1979b, A vortex theory of animal flight. 1. The vortex wake of a hovering animal, J. Fluid Mech. 91:697–730.CrossRefGoogle Scholar
  62. Rayner, J. M. V., 1979c, A vortex theory of animal flight. 2. The forward flight of birds, J. Fluid Mech. 91:731–763.CrossRefGoogle Scholar
  63. Rayner, J. M. V., 1980, Vorticity and animal flight, in: Aspects of Animal Movement (H. Y. Elder and E. R. Trueman, eds.), Society for Experimental Biology Seminar Series, Volume 5, Cambridge University Press, Cambridge, U.K., pp. 177–199.Google Scholar
  64. Rayner, J. M. V., 1981, Flight adaptations in vertebrates, in: Vertebrate Locomotion (M. H. Day, ed.). Symposia of the Zoological Society of London, Volume 48, Academic Press, London, pp. 137–172.Google Scholar
  65. Rayner, J. M. V., 1982, Avian flight energetics, Annu. Rev. Physiol 44:109–119.PubMedCrossRefGoogle Scholar
  66. Rayner, J. M. V., 1985a, Vertebrate Flight, A Bibliography to 1985, University of Bristol Press, Bristol, U.K.Google Scholar
  67. Rayner, J. M. V., 1985b, Vorticity and propulsion mechanics in swimming and flying vertebrates, in: Konstruktionsprinzipien lebender und ausgestorbener Reptilien (J. Riess and E. Frey, eds.), Konzepte SFB230, Volume 4, Universität Tübingen, Tübingen, F.R.G., pp. 89–118.Google Scholar
  68. Rayner, J. M. V., 1985c, Bounding and undulating flight in birds, J. Theor. Biol. 117:47–77.CrossRefGoogle Scholar
  69. Rayner, J. M. V., 1985d, Linear relations in biomechanics: The statistics of scaling functions, J. Zool. Lond. A 206:415–439.CrossRefGoogle Scholar
  70. Rayner, J. M. V., 1985e, Flight, speeds of, in: A Dictionary of Birds (B. Campbell and E. Lack, eds.), T. & A. D. Poyser, Calton, U.K., pp. 224–226.Google Scholar
  71. Rayner, J. M. V., 1985f, Mechanical and ecological constraints on flight evolution, in: The Beginnings of Birds (M. K. Hecht, J. H. Ostrom, G. Viohl, and P. Wellnhofer, eds.), JuraMuseum, Eichstätt, F.R.G., pp. 279–288.Google Scholar
  72. Rayner, J. M. V., 1986a, Vertebrate flapping flight mechanics and aerodynamics, and the evolution of flight in bats, in: Bat Flight—Fledermausflug (W. Nachtigall, ed.), Biona Report, Volume 5, Gustav Fischer, Stuttgart, pp. 27–74.Google Scholar
  73. Rayner, J. M. V., 1986b, Pleuston: Animals which move in water and in air, Endeavour 10:58–64.CrossRefGoogle Scholar
  74. Rayner, J. M. V., 1987, The mechanics of flapping flight in bats, in: Recent Advances in the Study of Bats (M. B. Fenton, P. A. Racey, and J. M. V. Rayner, eds.), Cambridge University Press, Cambridge, U.K., pp. 23–42.Google Scholar
  75. Rayner, J. M. V., Jones, G., and Thomas, A., 1986, Vortex flow visualizations reveal change in upstroke function with flight speed in bats, Nature 321:162–164.CrossRefGoogle Scholar
  76. Rosser, B. W. C., and George, J. C., 1986, The avian pectoralis: Histochemical characterization and distribution of muscle fiber types, Can. J. Zool. 64:1174–1185.CrossRefGoogle Scholar
  77. Rüppell, G., 1980, Vogelflug, Rohrwolt Taschenbücher, Rembeck, F.R.G.Google Scholar
  78. Saville, D. B. O., 1957, Adaptive evolution in the avian wing, Evolution 11:212–224.CrossRefGoogle Scholar
  79. Schmidt-Nielsen, K., 1985, Scaling: Why Is Animal Size So Important?, Cambridge University Press, Cambridge, U.K.Google Scholar
  80. Scholey, K. D., 1983, Developments in Vertebrate Flight: Climbing and Gliding of Mammals and Reptiles, and the Flapping Flight of Birds, Ph.D. Thesis, University of Bristol, Bristol, U.K.Google Scholar
  81. Shyestakova, G. S., 1971, Stroyeniye Kryil—yev i Myekhanikye Polyeta Ptits (Wing Structure and the Mechanics of Bird Flight), Nauka, Moscow.Google Scholar
  82. Spedding, G. R., 1982, The Vortex Wake of Birds: An Experimental Investigation, Ph.D. Thesis, University of Bristol, Bristol, U.K.Google Scholar
  83. Spedding, G. R., 1986, The wake of a jackdaw (Corvus monedula) in slow flight, J. Exp. Biol. 125:287–307.Google Scholar
  84. Spedding, G. R., 1987a, The wake of a kestrel (Falco tinnunculus) in gliding flight, J. Exp. Biol. 125:45–57.Google Scholar
  85. Spedding, G. R., 1987b, The wake of a kestrel (Falco tinnunculus) in flapping flight, J. Exp. Biol. 125:59–78.Google Scholar
  86. Spedding, G. R., Rayner, J. M. V., and Pennycuick, C. J., 1984, Momentum and energy in the wake of a pigeon (Columba livia) in slow flight, J. Exp. Biol. 111:81–102.Google Scholar
  87. Stolpe, M., and Zimmer, K., 1939, Der Vogelflug, Akademische Verlag, Leipzig.Google Scholar
  88. Storer, J. H., 1948, The flight of birds analysed through slow-motion photography, Bull. Carnegie Inst. Sci. 28.Google Scholar
  89. Taylor, C. R., and Weibel, E. R., 1981, Design of the mammalian respiratory system. I. Problem and strategy, Resp. Physiol. 44:1–10.CrossRefGoogle Scholar
  90. Torre-Bueno, J. R., and LaRochelle, J., 1978, The metabolic cost of flight in unrestrained birds, J. Exp. Biol. 75:223–229.PubMedGoogle Scholar
  91. Tucker, V. A., 1973, Bird metabolism during flight: Evaluation of a theory, J. Exp. Biol. 58:689–709.Google Scholar
  92. Vasil’yev, T. S., 1953, Osnovyi Polyeta Modyelyei s Mashushchimi Kryil’yami (Principles of Flight Models with Flapping Wings), Oborongiz (G.I.O.P.), Moscow.Google Scholar
  93. von Helmholtz, H., 1874, Über ein Theorem, geometrisch ähnliche Bewegungen flüssiger Körper betreffend, nebst Anwendung auf das Problem, Luftballons zu Lenken, Mber. k. Akad. Wiss. Berl. 1873:501–514.Google Scholar
  94. von Holst, E., and Küchemann, D., 1941, Biologische und aerodynamische Probleme des Tierfluges, Naturwissenschaften 29:348–362, trans. J. R. Aero. Soc. 46:39–56, 1942, and NASA TM-75337, 1980.CrossRefGoogle Scholar
  95. Walker, G. T., 1925, The flapping flight of birds I, J. R. Aero. Soc. 29:590–594.Google Scholar
  96. Walker, G. T., 1927, The flapping flight of birds II, J. R. Aero. Soc. 31:337–342.Google Scholar
  97. Weis-Fogh, T., 1972, Energetics of hovering flight in hummingbirds and in Drosophila, J. Exp. Biol. 56:79–104.Google Scholar
  98. Weis-Fogh, T., 1973, Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production, J. Exp. Biol. 59:169–230.Google Scholar
  99. Yakobi, V. E., 1960, Morfo-funktsional’nyiye isslyedovaniya polyeta ptits syemyeistva yastryebnyikh (Functional morphology of flight in raptorial birds), Trudy Inst. Morf. Zhivot. 32:142–214.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Jeremy M. V. Rayner
    • 1
  1. 1.Department of ZoologyUniversity of BristolBristolUK

Personalised recommendations