Advertisement

Dynamic Surface Tension and Capillary Waves

  • J. Adin MannJr.
Chapter

Abstract

A definition is in order. Dynamic surface tension is the tension per unit length developed at a specified point in a surface and observed as a function of time. The surface is part of a nonequilibrium system.

Keywords

Constitutive Equation Viscosity Coefficient Capillary Wave Dynamic Surface Tension Surface Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Defay, I. Prigogine, and A. Bellemans, Surface Tension and Adsorption, D. H. Everett (trans.), John Wiley and Sons, New York, 1966.Google Scholar
  2. 2.
    J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 17, 338 (1949), see, for example, Ref. I;CrossRefGoogle Scholar
  3. F. P. Buff, J. Chem. Phys. 23, 419 (1955);CrossRefGoogle Scholar
  4. F. P. Buff, J. Chem. Phys. 25, 146 (1956).CrossRefGoogle Scholar
  5. 3.
    C. Truesdell and R. Toupin, “The Classical Field Theories,” in Handbuch der Physik, Vol. III/I, S. Flügge (ed.), Springer-Verlag, Berlin, 1960, Section E, p. 607, see Ref. 11.Google Scholar
  6. 4.
    J. A. Mann and K. C. Porzio, “Capillarity: The Physical Nature of Fluid—Fluid Interfaces Including the Problem of Biomembrane Structures,” in International Review of Sci. Phys. Chem., Series 2, Vol. 7, Surface Chemistry and Coll., M. Kerker (ed.), Butterworths, London, 1975.Google Scholar
  7. 5.
    G. L. Gaines, Jr., Insoluble Monolayers at Liquid—Gas Interfaces, Interscience Publishers, New York, 1966;Google Scholar
  8. A. W. Adamson, Physical Chemistry of Surfaces, 2nd. ed., Interscience Publishers, New York, 1967;Google Scholar
  9. M. Joly, “Surface Viscosity,” in Recent Progress in Surface Science, J. F. Danielli, K. G. A. Pankhurst, and A. C. Riddiford (eds.), Academic Press, New York, 1964.Google Scholar
  10. 6.
    M. van den Tempel and R. P. van de Riet, J. Chem. Phys. 42, 2769 (1965).CrossRefGoogle Scholar
  11. 7.
    L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Pergamon Press, London, 1959.Google Scholar
  12. 8.
    C. Truesdell, The Elements of Continuum Mechanics, Springer-Verlag, New York, 1966.Google Scholar
  13. 9.
    R. Aris, Vectors, Tensors and the Basic Equations of Fluid Mechanics, Prentice-Hall, Englewood Cliffs, N.J., 1962.Google Scholar
  14. 10.
    R. Buck, Advanced Calculus,2nd ed., McGraw-Hill Book Co., New York, 1965, Chaps. 5 and 6, especially Sec. 6.3. See also Ref. 9.Google Scholar
  15. 11.
    J. Serrin, “Mathematical Principles of Classical Fluid Mechanisms,” in Handbuch der Physik, Vol. VIII/2, S. Flügge (ed.), Springer-Verlag, Berlin, 1959. See also Ref. 3.Google Scholar
  16. 12.
    R. S. Hansen and J. A. Mann, J. Appl. Phys. 35, 152 (1964).CrossRefGoogle Scholar
  17. 13.
    L. E. Scriven, Chem. Eng. Sci. 12, 98 (1960).CrossRefGoogle Scholar
  18. 14.
    R. C. Goodrich, Proc. Roy. Soc. London A260, 490 (1961).CrossRefGoogle Scholar
  19. 15.
    J. C. Slattery, Chem. Eng. Sci. 19, 379 (1964);CrossRefGoogle Scholar
  20. J. C. Slattery, IEC Fundamentals 6, 108 (1967), 7, 672 (1968).CrossRefGoogle Scholar
  21. 16.
    J. G. Oldroyd, Proc. Camb. Philos. Soc. 53 (2), 514 (1957).CrossRefGoogle Scholar
  22. 17.
    K. F. Herzfield and T. A. Litovitz, Absorption and Dispersion of Ultrasonic Waves, Academic Press, New York, 1969.Google Scholar
  23. 18.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, London, 1959.Google Scholar
  24. 19.
    E. R. Cooper and J. A. Mann, J. Phys. Chem. 77, 3024 (1973).CrossRefGoogle Scholar
  25. 20.
    J. A. Mann and T. McGregor, “Molecular Motion of Surfactant Molecules at the Air—Water Interface: ESR Exchange Relaxation as a Means of Measuring Surface Viscosity,” in Monolayers, E. D. Goddard (ed.), Advances in Chemistry Series 144, ACS, Washington, 1975.Google Scholar
  26. 21.
    R. S. Hansen, J. Lucassen, R. L. Bendure, and G. Bierwagen, J. Colloid and Interface Sci. 26, 198 (1968); Ref. 12; Ref. 13;Google Scholar
  27. V. G. Levich, Physical-Chemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J., 1962; a different view is presented in Ref. 10.Google Scholar
  28. 22.
    J. Lucassen and R. S. Hansen, J. Colloid Sci. 22, 32 (1966).CrossRefGoogle Scholar
  29. 23.
    J. Meixner, Kolloid-Z. 134, 3 (1953).CrossRefGoogle Scholar
  30. 24.
    W. Thompson (Lord Kelvin), Philos. Mag. 42, 368 (1971).Google Scholar
  31. 25.
    J. Lucassen, Trans. Faraday Soc. 64, 2221 (1968). The idea is that the dispersion equations have more than one solution for any given set of input numbers. The first “mode” corresponds to the Kelvin solution and is an almost pure transverse wave, while the second mode is an almost pure longitudinal wave. The point is discussed in the text.Google Scholar
  32. 26.
    Von D. Thiessen and A. Scheuludko, Kolloid-Z. Z. Poly. 218, 139 (1967).CrossRefGoogle Scholar
  33. 27.
    E. H. Lucassen-Reynders and J. Lucassen, “Properties of Capillary Waves,” Advan. Colloid Interface Sci. 2, 347 (1969).CrossRefGoogle Scholar
  34. 28.
    R. S. Hansen and J. Ahmad, Progr. Surface Membrane Sci. 4, 1 (1971).Google Scholar
  35. 29.
    R. S. Hansen, J. Appt. Phys. 35, 1983 (1964).Google Scholar
  36. 30.
    E. Mayer and J. D. Eliassen, J. Coll. and Interface Sci. 37 (1), 228 (1971).CrossRefGoogle Scholar
  37. 31.
    V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J., 1962.Google Scholar
  38. 32.
    J. A. Mann and R. S. Hansen, J. Colloid Sci. 18, 757 (1963).CrossRefGoogle Scholar
  39. 33.
    J. A. Mann and J. Ahmad, Colloid and Interface Sci. 29, 158 (1969).CrossRefGoogle Scholar
  40. 34.
    Unpublished results, derived in connection with membrane motion induced in soap films formed in the double-frame arrangement of J. Lyklema, P. C. Scholten, and K. J. Mysels, J. Phys. Chem. 69, 116 (1965).Google Scholar
  41. 35.
    G. Du, M.S. Thesis, University of Hawaii, 1969. van den Tempel pointed out that the “second solution” corresponds to the “longitudinal” capillary waves discovered by Lucassen. See also Ref. 48.Google Scholar
  42. 36.
    M. Battezzati, J. Colloid and Interface Sci. 33, 24 (1970).CrossRefGoogle Scholar
  43. 37.
    J. A. Mann and R. S. Hansen, J. Colloid Sci. 18, 757 (1963).CrossRefGoogle Scholar
  44. 38.
    R. L. Bendure and R. S. Hansen, J. Phys. Chem. 71, 2889 (1967).CrossRefGoogle Scholar
  45. 39.
    G. Von Bekesy, private communication, Department of Sensory Science, University of Hawaii, Honolulu, Hawaii.Google Scholar
  46. 40.
    C. H. Sohl, K. Miyano, and J. B. Ketterson, Rev. Sci. Inst. 49, 1464 (1978).CrossRefGoogle Scholar
  47. 41.
    J. A. Haeringx, On Highly Compressible Helical Springs and Rubber Rods, and Their Application for Vibration-Free Mountings, Philips Research Laboratories, Eindhoven, 1950.Google Scholar
  48. 42.
    Model HR8 manufactured by Princeton Applied Research Corporation, Princeton, New Jersey.Google Scholar
  49. 43.
    For example, the Hewlett Packard 5233L counter.Google Scholar
  50. 44.
    J. Ahmad, Thesis, University of Hawaii, 1969.Google Scholar
  51. 45.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Addison-Wesley Publishing Company, Reading, Mass., 1962, p. 130.Google Scholar
  52. 46.
    J. A. Mann, Chapter 5 in this volume.Google Scholar
  53. 47.
    R. L. Bendure, Thesis, Iowa State University, 1968.Google Scholar
  54. 48.
    J. Lucassen, Trans. Faraday Soc. 64 2230 (1968).CrossRefGoogle Scholar
  55. 49.
    J. Lucassen, Trans. Faraday Soc. 64, 2221 (1968).CrossRefGoogle Scholar
  56. 50.
    L. D. Landau and E. M. Lifshitz, Statical Physics, Pergamon Press, London, 1958.Google Scholar
  57. 51.
    M. S. John, R. C. Desori, and J. S. Dahler, J. Chem. Phys. 68 (12), 5615 (1978).CrossRefGoogle Scholar
  58. 52.
    A. Vrij, J. Colloid Sci. 19, 1 (1964).CrossRefGoogle Scholar
  59. 53.
    M. A. Bouchiat and D. Langevin, J. Colloid and Interface Sci. 63 (2), 193 (1978).CrossRefGoogle Scholar
  60. 54.
    M. A. Bouchiat and J. J. Meunier, J. de Physique 33, C1–2, 3, CI-141 (1972).Google Scholar
  61. See Ref. 57 for other references. Also see J. C. Herijin and J. Meunier, J. de Physique 35, 847 (1974) for the two-phase case.Google Scholar
  62. 55.
    D. Langevin and J. Meunier, in Photon Correlation Spectroscopy and Velocimetry ( Cummins & Pike, ed.), Plenum Press, New York, 1977.Google Scholar
  63. 56.
    B. J. Berne and R. Pecora, Dynamic Light Scattering, John Wiley and Sons, New York, 1976.Google Scholar
  64. 57.
    S. Hard, Y. Hamnerius, and O. Nilsson, J. Appl. Phys. 47, 2433 (1976);CrossRefGoogle Scholar
  65. S. Hard and O. Nilsson, Appl. Apt. 18, 3018 (1979).Google Scholar
  66. 57.
    D. Byrne and J. C. Earnshaw, J. Phys. D: Appl. Phys. 12, 1133, 1145 (1979).Google Scholar
  67. 59.
    R. V. Edwards, R. S. Sirohi, J. A. Mann, L. B. Shih, and L. Lading, “Surface Fluctuation Scattering Using Grating Heterodyne Spectroscopy,” J. App. Opt. 21 (19), 3555 (1982).CrossRefGoogle Scholar
  68. 60.
    J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York, 1968.Google Scholar
  69. 61.
    J. A. Mann, J. F. Baret, F. J. Dechow, and R. S. Hansen, J. Colloid and Interface Sci. 37 (1), 14 (1971).CrossRefGoogle Scholar
  70. 62.
    R. S. Sirohi, R. V. Edwards, and J. A. Mann, “Measurements of Surface Flow Velocity with Light Scattering from Thermal Fluctuations of the Surface,” J. Applied Optics (Submitted, preprint available from J.A.M.).Google Scholar
  71. 63.
    S. Hard and R. D. Neuman, J. Colloid and Interface Sci. 83 (2), 315 (1981).CrossRefGoogle Scholar
  72. 64.
    J. A. Stone and W. J. Rice, J. Colloid and Interface Sci. 61 (1). 160 (1977).CrossRefGoogle Scholar
  73. 65.
    L. Lading and R. V. Edwards, private communication; see also Ref. 59.Google Scholar
  74. 66.
    L. J. Kramer, Chem. Phys. 55 (1), 2097 (1971).Google Scholar
  75. 67.
    D. Langevin, J. Colloid and Interface Sci. 80 (2), 412 (1981).CrossRefGoogle Scholar
  76. 68.
    D. Byrne and J. Earnshaw, J. Colloid and Interface Sci. 74 (2), 467 (1980).CrossRefGoogle Scholar
  77. 69.
    J. A. Mann and R. V. Edwards, Rev. Sci. Instrum. 55, 727 (1984);CrossRefGoogle Scholar
  78. L. B. Shih, ibid, 55, 716 (1984).Google Scholar
  79. 70.
    L. B. Shih, J. A. Mann, and G. H. Brown, Mol. Cryst. Liq. Cryst. 98, 47 (1983).CrossRefGoogle Scholar
  80. 71.
    W. M. Klein, D. K. Hoffman, and J. S. Dahler, J. Chem. Phys. 49 (5), 2321 (1968).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • J. Adin MannJr.
    • 1
  1. 1.Department of Chemical EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations