Advertisement

Applications

  • E. M. Savitskii
  • V. V. Baron
  • Yu. V. Efimov
  • M. I. Bychkova
  • L. F. Myzenkova
Chapter
  • 93 Downloads
Part of the The International Cryogenics Monograph Series book series (INCMS)

Abstract

All the possibilities of using superconducting materials are difficult to predict at the present time. However, even the very fact that the remarkable properties of these materials are known offers wide prospects for their use in various fields of science and technology.

Keywords

Magnetic Field Netic Field Memory Device Liquid Helium Superconducting Magnet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    H. Kamerlingh-Qnnes, Communs Phys. Lab. Univ. Leiden, p. 139 (1914).Google Scholar
  2. 2.
    W. J. de Haas and J. Voogd, Communs Phys. Lab. Univ. Leiden, 208 (1930) and 214 (1931).Google Scholar
  3. 3.
    J. E. Kunzler, E. Buchler, F. S. L. Hsu, and J. H. Wernick, Phys. Rev. Lett., 6: 89 (1961).CrossRefGoogle Scholar
  4. 4.
    J. E. Kunzler, Bull. Amer. Phys. Soc., Ser. II, 6: 298 (1961).Google Scholar
  5. 5.
    D. Kunzler, Uspekhi Fiz. Nauk, 86 (1): 125 (1965).Google Scholar
  6. 5a.
    W. Samson, P. Craig, and M. Strongin, Uspekhi Fiz. Nauk, Vol. 93, No. 12 (4), p. 707 (1967).Google Scholar
  7. 6.
    Nedelya, No. 44 (1967) (TASS communication).Google Scholar
  8. 7.
    Chem. Eng. News, No. 14, p. 44 (1966).Google Scholar
  9. 8.
    J. E. Kunzler, E. Buchler, F. S. L. Hsu, B. T. Matthias, and C. J. Wahl, J. Appl. Phys., 32: 325 (1961).CrossRefGoogle Scholar
  10. 9.
    S. H. Autler, Rev. Scient. Instrum., 31: 369 (1960).CrossRefGoogle Scholar
  11. 10.
    G. B. Yntema, Phys. Rev., 98: 1197 (1960).Google Scholar
  12. 11.
    E. Justi, Electrotechn. Z., 63 (49/50): 578 (1942).Google Scholar
  13. 12.
    J. K. Hülm, M. J. Fraser, H. Riemersma, A. J. Venturino, and R. E. Wein, Bull. Amer. Phys., 6:501 (1961); R. E. Wein, High Magnetic Fields (1961), p. 332.Google Scholar
  14. 13.
    E. M. Savitskii, V. V. Baron, V. R. Karasik, V. Ya. Pakhomov, and M. I. Bychkova, Pribory i Tekh. Éksperim., No. 2, p. 152 (1963).Google Scholar
  15. 14.
    V. R. Karasik, Pribory i Tekh. Éksperim., No. 6, p. 5 (1962).Google Scholar
  16. 15.
    Science News, 93:124 (1968).Google Scholar
  17. 16.
    B. G. Lazarev, L. S. Lazareva, V. R. Golik, and S. I. Goridov, Contributions to the 15th All-Union Conference on Low-Temperature Physics, Tiflis (1968), p. 65.Google Scholar
  18. 17.
    O. I. Goncharov, Author’s abstract of dissertation “Study of critical currents in niobium alloys with 65–80% Zr for superconducting magnet systems based on these alloys,” Joint Institute for Nuclear Research, Dubna (1967).Google Scholar
  19. 18.
    Physics Today, 16(4):57 (1963).Google Scholar
  20. 19.
    C. K. Jones, J. K. Hülm, and B. S. Chandrasekhar, Rev. Mod. Phys., 36 (1): 74 (1964).CrossRefGoogle Scholar
  21. 20.
    E. Saur and H. Wizgall, Les Champs Magnetiques Intenses, Colloque Internat., Grenoble (1966), p. 223.Google Scholar
  22. 20a.
    D. B. Montgomery, Bull. Amer. Phys. Soc., 10 (3): 359 (1965).Google Scholar
  23. 20b.
    H. R. Hart, J. S. Jacobs, C. L. Kolbe, and P. E. Lawrence, High Magnetic Fields, New York (1962), p. 584.Google Scholar
  24. 20c.
    D. B. Montgomery and H. Wizgall, Phys. Letts., 22 (1): 48 (1966).Google Scholar
  25. 20d.
    K. Hechler, E. Saur, and H. Wizgall, Z. Phys., 205 (4): 400 (1967).CrossRefGoogle Scholar
  26. 20e.
    B. T. Matthias, Science, 168 (3927): 103 (1970).CrossRefGoogle Scholar
  27. 21.
    S. H. Autler, High Magnetic Fields (1962), p. 326.Google Scholar
  28. 22.
    D. L. Martin, M. G. Benz, C. A. Bruch, and C. H. Rosner, Cryogenics, No. 3, p. 114 (1963).CrossRefGoogle Scholar
  29. 23.
    Electronics, 36(9):18 (1963).Google Scholar
  30. 24.
    M. G. Benz, Metallurgy and Ceram. Lab. Rept., No. 66-K-19 (1966).Google Scholar
  31. 25.
    C. H. Rosner, M. G. Benz, Metallurgy and Ceram. Lab. Rept., No. 65-C-062 (1965).Google Scholar
  32. 26.
    JEEE, No. 3, 338 (1966).Google Scholar
  33. 27.
    Z. J. J. Stekly, E. J. Lucas, and T. A. Winter, Rev. Scient. Instrum., 39 (9): 1291 (1965).CrossRefGoogle Scholar
  34. 27a.
    J. P. Scott and J. R. Laning, Cryogenics, 10 (3): 208 (1970).CrossRefGoogle Scholar
  35. 27b.
    J. W. Metselaar, H. A. Jordaan, J. W. Schutter, and D. de Klerk, Cryogenics, 10 (3): 220 (1970).Google Scholar
  36. 28.
    P. S. Swartz and C. H. Rosner, J. Appi. Phys., 33 (7): 2292 (1962).CrossRefGoogle Scholar
  37. 29.
    New Scientist, 31(507):257 (1966).Google Scholar
  38. 30.
    Electronics, 40(11):192 (1967).Google Scholar
  39. 31.
    Usine Nouvelle, 42:137 (1966).Google Scholar
  40. 32.
    New Scientist, 31(508):312 (1966).Google Scholar
  41. 33.
    P. F. Chester, Roy. Soc. Meeting on Advanc. Metals for MHD Power Generation, London (1965).Google Scholar
  42. 34.
    Electrical Times, p. 984 (Dec. 11, 1966).Google Scholar
  43. 34a.
    H. Hillman, Laboratory of Vakuumschmelze GMBH, Hanau, Preprint L-Hi/Spä, April 4, 1970.Google Scholar
  44. 34b.
    M. N. Wilson, C. R. Walters, J. D. Lewin, P. F. Smith, and A. H. Spurway, J. Phys. D. Appi. Phys., 3 (11): 1517 (1970).Google Scholar
  45. 34c.
    A. C. Barber and P. F. Smith, Cryogenics, 9 (6): 483 (1969).Google Scholar
  46. 34d.
    Cryogenics, 10(4):358 and 10(5):456 (1970).Google Scholar
  47. 34e.
    Electrical World, 174(5):49 (1970).Google Scholar
  48. 34f.
    V. E. Keilin, E. Yu. Klimenko, and B. N. Samoilov, Pribory i Tekh. Éksperim., No. 1, p. 216 (1971).Google Scholar
  49. 35.
    D. A. Buck, Proc. IRE, 44: 482 (1956).CrossRefGoogle Scholar
  50. 36.
    J. Bremer, Superconducting Devices [Russian translation], Izd. Mir, Moscow (1964).Google Scholar
  51. 37.
    General Electric Review, 91(1):41 (1958).Google Scholar
  52. 38.
    D. R. Young, in: Progress in Cryogenics (K. Mendelssohn, ed.), Vol. 1 (1958).Google Scholar
  53. 39.
    M. K. Haynes, Proc. Sympos. Superconduct. Techniques, Washington (1960), p. 399.Google Scholar
  54. 40.
    I. M. Lock, Cryogenics, 2: 65 (1961).CrossRefGoogle Scholar
  55. 41.
    C. Neb ell and C. P. S. Cichter, Phys. Rev., 113: 1504 (1959).CrossRefGoogle Scholar
  56. 42.
    D. L. Fench and I. B. Woodford, J. Appi. Phys., 32: 1881 (1961).Google Scholar
  57. 43.
    J. Bremer, Superconducting Devices [Russian translation], Izd. Mir, Moscow (1964), p. 71.Google Scholar
  58. 44.
    J. W. Bremer, Electr. Manufact., 61: 78 (1958).Google Scholar
  59. 45.
    V. L. Newhanse and J. W. Bremer, J. Appl. Phys., 30: 1458 (1958).Google Scholar
  60. 46.
    D. Young, Brit. J. Appl. Phys., 12: 359 (1961).Google Scholar
  61. 47.
    J. Bremer, Superconducting Devices [Russian translation], Izd. Mir., Moscow (1964), p. 208.Google Scholar
  62. 48.
    M. I. Buckingham, Transactions of the Fifth International Conference on Low-Temperature Physics (J. R. Dillinger, ed. ), Madison (1958), p. 229.Google Scholar
  63. 49.
    E. C. Crittenden, Transactions of the Fifth International Conference on Low-Temperature Physics (J. R. Dillinger, ed. ), Madison (1958), p. 232.Google Scholar
  64. 50.
    J. W. Crowe, IBM J. Res. Develop., 1 (4): 294 (1957).Google Scholar
  65. 51.
    E. C. Crittenden, J. N. Cooper, and F. W. Schmidlin, Proc. IRE, 48: 1233 (1960).CrossRefGoogle Scholar
  66. 52.
    L. L. Bums, G. W. Leek, V. A. A. Caphouse, and R. W. Katz, Solid-State Electr., 1 (4): 343 (1960).CrossRefGoogle Scholar
  67. 53.
    D. H. Parkinson, Solid-State Electr., 1 (4): 306 (1960).CrossRefGoogle Scholar
  68. 54.
    A. C. Rose-Innes, Brit. J. Appl. Phys., 10: 452 (1959).Google Scholar
  69. 55.
    H. O. McMahon and W. E. Gifford, Solid-State Electr., 1: 273 (1960).CrossRefGoogle Scholar
  70. 56.
    Electr. Engng., 82: 150 (1963);Google Scholar
  71. 57.
    Automat. Control, No. 14, p. 52 (1961).Google Scholar
  72. 58.
    Sc. News, No. 11, p. 250 (1967).Google Scholar
  73. 59.
    Ilektronika, 40(7):39 (1967).Google Scholar
  74. 60.
    A. Goetz, Phys. Rev., 55: 1270 (1939).CrossRefGoogle Scholar
  75. 61.
    D. H. Andruos, R. M. Milton, and W. de Sorbo, J. Opt. Soc. Amer., 36: 518 (1946).Google Scholar
  76. 62.
    D. H. Andruos and C. W. Clark, Nature, 158: 945 (1946).CrossRefGoogle Scholar
  77. 63.
    New Scientist, 15(295):68 (1962).Google Scholar
  78. 64.
    B. Lavelic, J. Appl. Phys., 24: 19 (1953).CrossRefGoogle Scholar
  79. 65.
    D. H. Andruos, R. D. Fowler, and M. C. Williams, Phys. Rev., 76: 154 (1949).CrossRefGoogle Scholar
  80. 66.
    Aviat. Week and Space Technol., 79 (21): 96 (1963).Google Scholar
  81. 67.
    Aviat. Week, Vol. 72 (1960).Google Scholar
  82. 68.
    Chem. and Engng. News, 43 (37): 55 (1965).Google Scholar
  83. 69.
    K. A. Kapustinskaya and B. I. Kogan, in: Metallography and Metal Physics of Superconductors, Izd. Nauka, Moscow (1965), p. 132.Google Scholar
  84. 69a.
    CERN Courier, No. 9, p. 281 (1970).Google Scholar
  85. 69b.
    V. V. Baron, T. F. Demidenko, S. I. Klimov, E. M. Savitskii, and V. M. Turevskii, in: Problems of Superconducting Materials, Izd. Nauka, Moscow (1970), p. 209.Google Scholar
  86. 70.
    V. V. Baron, T. F. Demidenko, S. I. Klimov, E. M. Savitskii, and V. M. Turevskii, in: Physical Chemistry, Metallography, and Metal Physics of Superconductors, Izd. Nauka, Moscow (1968).Google Scholar
  87. 71.
    New Scientist, 73(503):24 (1966).Google Scholar
  88. 72.
    New Scientist, 27(453):218 (1965).Google Scholar
  89. 73.
    New Scientist, 26(448):781 (1965).Google Scholar
  90. 74.
    Electronics, 40(5):52 (1967).Google Scholar
  91. a. Electronics, 44(5):38 (1971).Google Scholar
  92. 74b.
    E. A. Combet, Rev. Phys. Appl., 4(4): 557 ( 1969, 1970 ).Google Scholar
  93. 74c.
    S. I. Bondarenko, E. I. Bulanov, L. E. Kolin’ko, and T. P. Narbut, Pribory i Tekh. iksperim., No. 1, p. 235 (1970).Google Scholar
  94. 75.
    V. R. Karasik, Physics and Technique of Strong Magnetic Fields, Izd. Nauka, Moscow (1964).Google Scholar
  95. 76.
    J. Pinkham, Interavia, 16 (1): 1833 (1961).Google Scholar
  96. 77.
    H. Meissner, Phys. Rev., 109: 686 (1958).CrossRefGoogle Scholar
  97. 78.
    H. Meissner, Phys. Rev., 117: 672 (1960).CrossRefGoogle Scholar
  98. 79.
    E. M. Savitskii, New Metallic Alloys, Izd. Znanie, Moscow (1967).Google Scholar
  99. 80.
    J. R. Routh, D. C. Freemann, and D. A. Haid, Rev. Scient. Inst rum., 36 (10): 1481 (1965).CrossRefGoogle Scholar
  100. 81.
    Sci. News, 91 (7): 163 (1967).Google Scholar
  101. a. New Scientist, 38(600):502 (1968).Google Scholar
  102. 82.
    Electronics, 39(24):140 (1967).Google Scholar
  103. 82a.
    E. F. Hammel, J. D. Rogers, and W. F. Hassenzahl, Cryogenics, Vol. 10, No. 5 (1970).Google Scholar
  104. b. Nuclear News, 14(2):51 (1971).Google Scholar
  105. 83.
    Conference on High-Energy Acceleration, Dubna (1963), p. 61.Google Scholar
  106. 84.
    New Scientist, 28(475):868 (1965).Google Scholar
  107. a. New Scientist, 36(575):663 (1967).Google Scholar
  108. 84b.
    Chem. and Engng. News, 46 (20): 18 (1968).Google Scholar
  109. 84c.
    New Scientist, 48(728):365 (1970).Google Scholar
  110. 85.
    M. G. Kremlev, Uspekhi Fiz. Nauk, 93 (4): 675 (1967).Google Scholar
  111. 85a.
    E. F. Hammel, J. D. Rogers, and W. F. Hassenzahl, Cryogenics, 10 (3): 186 (1970).CrossRefGoogle Scholar
  112. 85b.
    Neue Züricher Zeitung, No. 306, p. 76 (1968).Google Scholar
  113. 86.
    Chem. and Engng. News, 45 (27): 11 (1967).Google Scholar
  114. 87.
    Z. P. Kartsev, Superconductors in Physics and Technology [in Russian], Izd. Znanie, Moscow (1965), p. 30.Google Scholar
  115. 88.
    New Scientist, 24(416):366 (1964).Google Scholar
  116. 89.
    Design News, 22(13):24 (1964).Google Scholar
  117. 90.
    T. A. Buchhold, Scient. Amer., 202: 74 (1960).CrossRefGoogle Scholar
  118. 91.
    Mond, August 18 (1966).Google Scholar
  119. 91a.
    Science News, 93(23):540 (1968).Google Scholar
  120. 92.
    C. W. Wilson and D. C. Roberts, Sympos. Magnetoplasmodynamic Electrical Power Generation, Newcastle (1962), pp. 8, 9.Google Scholar
  121. 93.
    D. K. Fox and W. J. Reichenecker, Mater, in Design Engng., Vol. 57, No. 492 (1963).Google Scholar
  122. 94.
    New Scientist, 18(338):26 (1963).Google Scholar
  123. 95.
    Khimicheskaya Tekhnologiya, No. 2, 25 (1963).Google Scholar
  124. 96.
    Mech. Engng., 88 (8): 41 (1966).Google Scholar
  125. a. New Scientist, 41(634):233 (1969).Google Scholar
  126. 97.
    New Scientist, 34(543):284 (1967).Google Scholar
  127. 98.
    V. L. Newhouse, Applied Superconductivity, John Wiley and Sons (1964).Google Scholar
  128. 99.
    D. H. Douglass, Jr. and R. H. Blumberg, Phys. Letts., 1: 78 (1966).Google Scholar
  129. 100.
    Design News, 26:247 (1964).Google Scholar
  130. 101.
    New Scientist, 26(439):163 (1965).Google Scholar
  131. 102.
    K. F. Schoch, in: Advances in Cryogenic Engineering, Vol. 6 ( K. D. Timmerhaus, ed.), Plenum Press, New York (1961), p. 65.Google Scholar
  132. 102a.
    Financial Times, No. 24700, p. 11 (Nov. 19, 1971 ).Google Scholar
  133. b. New Scientist, 37(582):242 (1968).Google Scholar
  134. 102c.
    Spectrum, No. 49, p. 8 (1968).Google Scholar
  135. 103.
    R. McFee, Rev. Scient. In strum., 30(2):98 (1959).Google Scholar
  136. 104.
    Electr. World, 156 (11): 54 (1961).Google Scholar
  137. 105.
    New Scientist, 23(406):500 (1964).Google Scholar
  138. a. New Scientist and Science Journal, 49(740):424 (1971).Google Scholar
  139. 106.
    T. A. Buchhold, Scient. Amer., 202: 74 (1960).CrossRefGoogle Scholar
  140. 106a.
    Financial Times, No. 25232, p. 9 (Aug. 20, 1970 ).Google Scholar
  141. 107.
    R. McFee, Electr. Engng., 2: 122 (1962).Google Scholar
  142. 108.
    New Scientist, 29(488):753 (1966).Google Scholar
  143. 109.
    New Scientist, 34(548):557 (1967).Google Scholar
  144. 110.
    New Scientist, 34(544):337 (1967).Google Scholar
  145. 111.
    Chem. and Engng. News, 44 (11): 35 (1966).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • E. M. Savitskii
    • 1
  • V. V. Baron
    • 1
  • Yu. V. Efimov
    • 1
  • M. I. Bychkova
    • 1
  • L. F. Myzenkova
    • 1
  1. 1.A. A. Baikov Institute of MetallurgyAcademy of Sciences of the USSRMoscowUSSR

Personalised recommendations