Three Modes of Communication in the Nervous System

  • Jeffery L. Barker
  • Thomas G. SmithJr.
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 116)


How excitable cells communicate with each other has been the subject of continued study over the past 50 years. Much of the research done thus far has focused on a form of communication which occurs at specialized junctions between contiguous elements. The junctions are called “synapses”, the communication is known as “synaptic transmission” and the substance mediating the event is called a “neurotransmitter”. The ready availability of preparations appropriate to observe this communication and the development of techniques to study the details involved have gradually led to a more complete understanding of synaptic transmission. Since it is the most widely and intensively studied form of cell-cell signaling in the nervous system, many investigators have assumed that all intercellular communication is similar and that all substances which can be extracted from neuronal tissue and which bind to neuronal membranes or have pharmacological effects are a priori “neurotransmitters”. The logic implicit in this generalization likely reflects both the relatively well-understood nature of the communication and the natural desire to simplify neuronal function into an understandable form.


Synaptic Transmission Rest Membrane Potential Membrane Conductance Spinal Neuron Msec Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ADAMS, P. R., GAGE, P. W. and HAMMILL, D. P. (1976) Brain Res, 115, 506–511.PubMedCrossRefGoogle Scholar
  2. AKASU, T., OHTA, Y. and KOKETSU, K. (197 8) Experientia, 34, 488–490.PubMedCrossRefGoogle Scholar
  3. ARCH, S. (1972) J. Gen. Physiol. 60, 102–119.PubMedCrossRefGoogle Scholar
  4. ARECHIGA, H. and ACEVES, J. (197 8) Soc. Neurosci. Abst. 4, 505.Google Scholar
  5. ASCHER, P., MARTY, A. and NEILD, T.O. (1978) J. Physiol. 278, 177–206.PubMedGoogle Scholar
  6. BARKER, J. L. and GAINER, H. (1974) Science, 184, 1371– 1373.PubMedCrossRefGoogle Scholar
  7. BARKER, J. L. and MCBURNEY, R. N. Nature (in press). BARKER, J. L. and RANSOM, B. R. (1978a) J. Physiol. 280, 331–354.PubMedGoogle Scholar
  8. BARKER, J. L. and RANSOM, B. R. (197 8b) J. Physiol. 280, 355–372.PubMedGoogle Scholar
  9. BARKER, J. L. and SMITH, T. G. (1976) Brain Res. 103, 167–170.PubMedCrossRefGoogle Scholar
  10. BARKER, J. L. and SMITH, T. G. (197 7) in Society for Neuroscience Symposia, Vol. II; Approaches to the Cell Biology of Neurons (Cowan, W.M. and Ferrendelli , J.A., eds.) p. 340–373. Soc. Neurosci., Bethesda.Google Scholar
  11. BARKER, J. L. and SMITH, T. G. (197 8) in Abnormal Neu ronal Discharges, (Chalazonitis, N. and Boisson, M., eds.) Raven, New York. pp. 359–388.Google Scholar
  12. BARKER, J. L. IFSHIN, M. and GAINER, H. (1975) Brain Res. 84, 501–513.PubMedCrossRefGoogle Scholar
  13. BARKER, J. L. NEALE, J. H., SMITH, T. G. and MACDONALD, R. L. (1978a) Science 199, 1451–1453.PubMedCrossRefGoogle Scholar
  14. BARKER, J. L., NEALE, J. H. and SMITH, T. G. (1978b), Brain Res. 154, 153–158.PubMedCrossRefGoogle Scholar
  15. BARKER, J. L., GRUOL, D. L., HUANG, L. M., NEALE, J. H. and SMITH, T. G. (1978) in Characteristics and Function of Opioids (Van Ree, J. and Terenius, L.)pp. 87–98. Elsevier, North-Holland.Google Scholar
  16. BOLTON, T. B. (1975) J. Physiol. 250, 175–202.PubMedGoogle Scholar
  17. BRANTON, W. D., MAYERI, E., BROWNELL, P. and SIMON, S. B. (1978) Nature. 274, 70–72.PubMedCrossRefGoogle Scholar
  18. CHOI, D. W., FARB, D. H. and FISCHBACH, G. D. (1978) Nature , 269, 342–343.CrossRefGoogle Scholar
  19. COGGESHALL, R. E. (1967) J. Neurophysiol. 30, 1263–1287.PubMedGoogle Scholar
  20. CRAWFORD, A. C. and MCBURNEY, R. N. (1976) J. Physiol. 250, 205–226.Google Scholar
  21. DIONNE, V. and STEVENS, C. F. (1975). J. Physiol. 251, 245–270.PubMedGoogle Scholar
  22. DOSTROVSKY, J. and POMERANZ, B. (197 3) Nature New Biol. 246, 222–224.PubMedGoogle Scholar
  23. DUGGAN, A. W., HALL, T. G. and HEADLEY, P.M., (1976), Nature New Biol., 264, 456–458.CrossRefGoogle Scholar
  24. DUNLAP, K. and FISCHBACH, G. D. Nature (in press)Google Scholar
  25. FRAZIER, N. T., KANDEL, E. R., KUPFERMANN, I., WAZIRI, R. and COGGESHALL, R. E. (19 67) J. Neurophysiol. 30, 1288–1351.Google Scholar
  26. GILES, W. and NOBLE, S. J. (1976) J. Physiol. 261, 103– 123.PubMedGoogle Scholar
  27. GRUOL, D. L., HUANG, L. M., BARKER, J. L. and SMITH, T. G. (1978) Neurosci. Abst. 4, 408.Google Scholar
  28. HUANG, L. M., GRUOL, D. L., BARKER, J. L. and SMITH, T. G. (1978) Neurosci. Abst. 4, 410.Google Scholar
  29. IFSHIN, M., GAINER, H. and BARKER, J. L. (197 5) Nature 254, 72–74.PubMedCrossRefGoogle Scholar
  30. KATZ, B. (1966) Nerve Muscle and Synapse (McGraw-Hill, New York).Google Scholar
  31. KLEIN, M. and KANDEL, E. R. (197 8) Proc. Natl. Acad. Sci. 75, 3512–3516.PubMedCrossRefGoogle Scholar
  32. KOKETSU, K. and OHTA, Y. (1976) Life Sci. 19, 1009–1014.PubMedCrossRefGoogle Scholar
  33. KUBA, K. and KOKETSU, K. (1975) Brain Res. 89, 166–169.PubMedCrossRefGoogle Scholar
  34. KUBA, K. and KOKETSU, K. (1976) Jap. J. Physiol. 26, 703–716.CrossRefGoogle Scholar
  35. KUFFLER, S. W. and YOSHIKAMI, D. (1975) J. Physiol. 244, 703–730.PubMedGoogle Scholar
  36. KUPFERMANN, I. (1970) J. Neurophysiol. 28, 865–876.Google Scholar
  37. MACDONALD, R. L. and BARKER, J. L. (l978aT Nature , 271, 563–564.PubMedCrossRefGoogle Scholar
  38. MACDONALD, R. L. and BARKER, J. L. (197 8b) Neurology, 2_8, 325–333.CrossRefGoogle Scholar
  39. MACDONALD, R. L. and NELSON, P. G. (1978) Science, 199, 1449–1451.PubMedCrossRefGoogle Scholar
  40. MCBURNEY, R. N. and BARKER, J. L. (197 8) Nature, 274, 596–597.PubMedCrossRefGoogle Scholar
  41. NEHER, E. and STEVENS, C. F. (1977) Ann. Rev. Biophys. Bioeng. 6, 345–401.CrossRefGoogle Scholar
  42. PHILLIPS, M. I. (1978) Neuroendocrinol. 25, 354–377.CrossRefGoogle Scholar
  43. PINSKER, H. and DUDEK, F. E. (1977) Science 197, 490–493.PubMedCrossRefGoogle Scholar
  44. RANSOM, B. R., et al. (1977) J. Neurophysiol. 40, 1132– 1150.PubMedGoogle Scholar
  45. SEGAL, M. (1977) Neu ropharmacology, 16, 587–592.Google Scholar
  46. SMITH, T. G., BARKER, J. L., GRUOL, D. L. and HUANG, L. M. (1978) Neurosci. Abst. 4, 415.Google Scholar
  47. SMITH, T. G., BARKER, J. L. and GAINER, H. (1975) Nature, 253, 450–452.PubMedCrossRefGoogle Scholar
  48. STUART, D. G. and STRUMWASSER, F. (1978) Neurosci. Abst. 4, 207.Google Scholar
  49. TSIEN, R. (1974) J. Gen. Physiol. 64, 293–305.PubMedCrossRefGoogle Scholar
  50. WEAKY, J. N. (1969) J. Physiol. 204, 63–77.Google Scholar
  51. WILSON, W. A. and WACHTEL, H. (1971T Science 186, 932– 934.CrossRefGoogle Scholar
  52. WILSON, W. A. and WACHTEL, H. (1978) Science 202, 772– 775.PubMedCrossRefGoogle Scholar
  53. ZIEGLGANSBERGER, W. and BAYERL, H. (1976) Brain Res. 115, 111–128.PubMedCrossRefGoogle Scholar
  54. ZIEGLGANSBERGER, W., FRY, J. P., HERZ, A., MORODER, L. and WURSCH, E. (1976) Brain Res. 115, 160–164.PubMedCrossRefGoogle Scholar
  55. ZIEGLGANSBERGER, W. and FRY, J. P. (1976) in Opiates and Endogenous Opioid Peptides (Kosterlitz, H. W., ed.) pp. 231–238.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Jeffery L. Barker
    • 1
  • Thomas G. SmithJr.
    • 1
  1. 1.Laboratory of Neurophysiology, National Institute of Neurological and Communicative Disorders and StrokeNational Institutes of HealthBethesdaUSA

Personalised recommendations