Escape from Immune Surveillance during Persistent Virus Infection

  • Neal Nathanson
  • John R. Klein
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 162)


Persistent virus, infections present a paradox; there exists a potent array of antiviral immune defenses, and yet there are many naturally occurring instances of persistent virus infection in animals and in humans. In this short review we will examine the diverse strategies whereby persistent viruses escape immune surveillance, and illustrate these mechanisms by reference to a few selected examples. More detailed information is available in a number of symposia and compendia (1–5).


Viral Antigen Immune Surveillance Measle Virus Intercellular Bridge Subacute Sclerosing Panencephalitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kimberlin, R.H., ed. (1976). Slow virus diseases of animals and man. American Elsevier, New York.Google Scholar
  2. 2.
    Prusiner, S.B. and Hadlow, W.J., eds. (1979). Slow transmissable diseases of the nervous system. Academic Press, New York.Google Scholar
  3. 3.
    Tyrrell, D.A.J., ed. (1979). Aspects of slow and persistent virus infections. M. Nijhoff, The Hague.Google Scholar
  4. 4.
    Stevens, J.G., Todaro, G.J. and Fox, C.F., eds. (1978). Persistent viruses. Academic Press, New York.Google Scholar
  5. 5.
    Youngner, J.S., ed. (1977). Persistent virus infections. Microbiology — 1977. Schlessinger, D., ed. American Society for Microbiology, Washington, p. 433.Google Scholar
  6. 6.
    Gerhard, W., Yewdell, J., Frankel, M.E. and Webster, R. (1981). Antigenic structure of influenza virus hemagglutinin defined by hybridoma antibodies. Nature (London) 290: 713.CrossRefGoogle Scholar
  7. 7.
    Flamand, A., Wiktor, T.J. and Koprowski, H. (1980). Use of hybridoma monoclonal antibodies in the detection of antigenic differences between rabies and rabies-related virus proteins: II. The glycoproteins, J. Gen. Virol., 48:105.PubMedCrossRefGoogle Scholar
  8. 8.
    Gonzalez-Scarano, F., and Nathanson, N. (1981). Monoclonal antibodies which neutralize LaCrosse bunyavirus are directed against the GI glycoprotein. J. Virol.: submitted.Google Scholar
  9. 9.
    Weiner, H.L., Ault, K.A. and Fields, B.N. (1980). Interaction of reovirus with cell surface receptors. I, Murine and human lymphocytes have a receptor for the hemagglutinin of reovirus type 3. J. Immunol. 124:2143.PubMedGoogle Scholar
  10. 10.
    Schleuderberg, A., Ajello, C. and Evans, B. (1976). Fate of Rubella genome ribonucleic acid after immune and nonimmune virolysis in the presence of ribonuclease. Infect. Immun. 14:1097.Google Scholar
  11. 11.
    Welsh, R.M., Lampert, P.W., Burner, P.A. and Oldstone, M.B.A. (1976). Antibody-complement interactions with purified lymphocytic choriomeningitis virus. Virol. 73:59.CrossRefGoogle Scholar
  12. 12.
    Oroszlan, S. and Nowinski, R.C. (1980). Lysis of retrovirus with monoclonal antibodies against viral envelope proteins. Virol. 101:296.CrossRefGoogle Scholar
  13. 13.
    Silverstein, S. (1970). Macrophages and viral immunity. Semin. Hematol. 7:185.PubMedGoogle Scholar
  14. 14.
    Lodish, H.F., Zilberstein, A. and Porter, M. (1981). Synthesis and assembly of vesicular stomatitis virus and Sindla’s virus glycoprotein, in: Perspectives in Virology, 11:31. Liss, Inc., N.Y., Editor: Morris Polland.Google Scholar
  15. 15.
    Witkor, T.J., Kuwert, E. and Koprowski, H. (1968). Immune lysis of rabies-infected cells. J. Immunol. 101:1271.Google Scholar
  16. 16.
    Doherty, P.C., Goetz, D., Trinchieri, G. and Zinkernagel, R.M. (1976). Models for recognition of virally modified cells by immune thymus derived lymphocytes. Immuno-genetics, 3:517.Google Scholar
  17. 17.
    Sissons, J.G.P. and Oldstone, M.B.A. (1980). Killing of virus infected cells by cytotoxic lymphocytes. J. Infect. Dis., 142:114.PubMedCrossRefGoogle Scholar
  18. 18.
    Shore, S.L., Cromeans, T.L. and Norrild, B. (1979). Early damage of herpes-infected cells by antibody dependent cellular cytotoxicity: relative roles of virus-specific cell-surface antigens and input virus. J. Immunol. 123: 2239.PubMedGoogle Scholar
  19. 19.
    Leung, K.N. and Ada, G.L. (1980). Production of DTH in the mouse to influenza virus: comparison of conditions for stimulation of cytotoxic T cells. Scand. J. Immunol. 12:129.PubMedCrossRefGoogle Scholar
  20. 20.
    Leung, K.N. and Ada, G.L. (1980). Two T-cell populations mediating delayed-type hypersensitivity to murine influenza infection. Scand. J. Immunol. 12:481.PubMedCrossRefGoogle Scholar
  21. 21.
    De Maeyer, E. and De Maeyer-Guignard, J. (1979). Interferons, in: Comprehensive Virology, 15:205. Plenum Press, N.Y. Editors: Fraenkel-Conrat, H. and Wagner, R.R.CrossRefGoogle Scholar
  22. 22.
    Johnson, H.M. (1981). Interferon and host defense systems. This symposium.Google Scholar
  23. 23.
    Fraenkel-Conrat, H. and Wagner, R.R. Editors (1979). Virus-Host interactions, Comprehensive Virology, 15.Google Scholar
  24. 24.
    Milla, A., Morse, W.W. III, Winkelstein, J. and Nathanson, N. (1978). Role of antibody in recovery from experimental rabies. I. Effect of deplection of B and T cells. J. Immunol. 120:321.Google Scholar
  25. 25.
    Nathanson, N., Johnson, E.D., Camenga, D.L., and Cole, G.A. (1974). Immunosuppression and experimental viral infection: the dual role of the immune response. E. Neter and F. Milgrom, eds. The immune system and infectious diseases. Karger, Basel, p. 76.Google Scholar
  26. 26.
    Nathanson, N. and Cole, G.A. (1970). Immunosuppression and experimental virus infections. Adv. Virus Res. Academic Press, New York. 16:397.Google Scholar
  27. 27.
    Nathanson, N. and Cole, G.A. (1971). Immunosuppression: a means for assessing the role of the immune response in acute viral infections. Fed. Proc. 31:1831.Google Scholar
  28. 28.
    Vyas, G.N., Cohen, S.N. and Schmid, R., eds. (1978). Viral hepatitus. Franklin Institute Press, Philadelphia.Google Scholar
  29. 29.
    Rawls, W.E. (1974). Viral persistence in congenital rubella. Prog. Medical Virology. 18:273.Google Scholar
  30. 30.
    Anonymous. International symposium on arenaviral infections of public health importance. Bull. W.H.O. 52:381.Google Scholar
  31. 31.
    Gardner, M.B. (1978). Type C viruses of wild mice: characterization and natural history of amphotropic, ecotropic and zenotropic MuLV. Curr. Topics Microbiol. Immun. 79:112.Google Scholar
  32. 32.
    Brooks, B.R., Swarz, J.R. and Johnson, R.T. (1980). Spongiform polioencephalomyelopathy caused by a murine retrovirus. Laboratory Investigation 43:480.PubMedGoogle Scholar
  33. 33.
    Oldstone, M.B.A., Lampert, P.W., Lee, S. and Dixon, F.J. (1977). Pathogenesis of the slow disease of the central nervous system associated with WM 1504 E virus. Am. J. Pathology 88:193.Google Scholar
  34. 34.
    Stevens, J.G. (1978). Latent herpetic infections in the central nervous system of experimental animals, in; Stevens, J. C, Todaro, G.J. and Fox, C.F., eds. Persistent Viruses, Academic Press, New York, p. 701.Google Scholar
  35. 35.
    Kucera, L.S. (1979). Herpes simplex virus-host interactions. CRC Critical Rev. Microbiol. 7:215.CrossRefGoogle Scholar
  36. 36.
    Burnell, P.A. Varicella-zoster virus. Mandell, G.L., Douglas, R.G. and Bennett, J.A., eds. Principles and practice of infectious diseases. p. 1295.Google Scholar
  37. 37.
    Klein, G. (1978). EBV-persistenee in human lymphoid and carcinoma cells. Stevens, J.G., Todaro, G.J. and Fox, CF., eds. Persistent Viruses. Academic Press, New York, p. 27.Google Scholar
  38. 38.
    Snyder, B., Kintner, C.R. and Mark, W. (1979). The molecular biology of lymphotropic herpesvirus. Adv. Cancer Res. 30:239.CrossRefGoogle Scholar
  39. 39.
    Petursson, G., Martin, J., Georgsson, C, Nathanson, N. and Palsson, P.A. (1979). Visna. The biology of the agent and the disease. Tyrrell, D.A.J., ed. Aspects of slow and persistent infections. Martinus Nijhoff, The Hague, p. 165.CrossRefGoogle Scholar
  40. 40.
    Petursson, G., Nathanson, N., Georgsson, G., Panitch, H. and Palsson, P.A. (1976). Pathogenesis of visna. I. Sequential virological, serological and pathological studies. Lab. Investigation. 35:402.Google Scholar
  41. 41.
    Brahic, M., Stowring, L., Ventura, P. and Haase, A.H. (1981). Gene expression in visna virus infection. Nature, in press.Google Scholar
  42. 42.
    Narayan, O., Griffin, D.E. and Clements, J.E. (1978). Progressive antigenic drift of visna virus in persistently infected sheep. in: Stevens, J.G., Todaro, G.J. and Fox, C.F., eds. Persistent viruses. Academic Press, New York, p. 663.Google Scholar
  43. 43.
    Georgsson, G., Nathanson, N., Palsson, P.A. and Petursson, G. (1976). The pathology of visna and maedi in sheep. in: Slow Virus Diseases of Animals and Man, Frontiers in Biology, R. Kimberlin, ed., North Holland Publishing Co., Amsterdam, p. 61.Google Scholar
  44. 44.
    Nathanson, N., Panitch, H., Palsson, P.A., Petursson, G. and Georgsson, G. (1976). Pathogenesis of visna. II, Effect of immunosuppression upon early central nervous system lesions. Lab. Investigation. 35:444.Google Scholar
  45. 45.
    Strayer, D.R. (1980). The nature and organization of retroviral genes in animal cells. Virol. Mono. 17:1.CrossRefGoogle Scholar
  46. 46.
    Crawford, T.B., Cheevers, W.P., Klevjer-Anderson, Pa. and McGuire, T.C. (1978). Equine infectious anemia: Virion characteristics, virus-cell interaction, and host responses. in: Stevens, J.G., Todaro, G.J. and Fox, C. F., eds. Persistent Viruses. Academic Press, New York, p. 727.Google Scholar
  47. 47.
    Porter, D.D. and Cho, H.J. (1980). Aleutian disease of mink: a model for persistent infection. in: H. Fraenkel-Conrat and R.R. Wagner, eds. Comprehensive Virology, 16:233–256.CrossRefGoogle Scholar
  48. 48.
    Lipton, H.L. (1978). The relationship of Theiler’s mouse encephalomyelitis virus plaque size with persistent infection. in: Stevens, J.G., Todaro, G.J. and Fox, CF., eds. Persistent Viruses. Academic Press, New York, p. 679.Google Scholar
  49. 49.
    Lipton, H.L., Dal Canto, M.C. and Rabinowitz, S.G. (1977). Chronic Theiler’s virus infection in mice. in: Microbiology — 1977, D. Schlessinger, ed. American Society for Microbiology, Washington, 1977, p. 505.Google Scholar
  50. 50.
    Lipton, H.L. and Friedmann, A. (1980). Purification of Theiler’s virus infection in mice. in: Microbiology -1977, D. Schlessinger, ed. American Society for Microbiology, Washington, 1977, p. 505.Google Scholar
  51. 51.
    Riley, V. (1974). Persistence and other characteristics of the lactic dehydrogenase elevating virus (LDH-virus). Prog. Med. Virol. 18:198.PubMedGoogle Scholar
  52. 52.
    Brinton, M. (1981). Lactate dehydrogenase elevating virus. Foster, H.L., Small, J.D. and Fox, J.G., eds. The mouse in biomedical research. Academic Press, New York, in press.Google Scholar
  53. 53.
    Daniels, C.A. (1975). Mechanisms of virus neutralization. in: Notkins, A.L., ed. Viral Immunology and Immuno-pathology. Academic Press, New York, p. 79.Google Scholar
  54. 54.
    ter Meulen, V., Hall, W.W. and Kreth, H.W. (1978). Pathogenic aspects of subacute sclerosing panencephalitis. in: Persistent Viruses. Stevens, J.G., Todaro, G.J. and Fox, CF., eds. Academic Press, New York, p. 615.Google Scholar
  55. 55.
    Hall, W.W. and Choppin, P.W. (1979). Evidence for lack of synthesis of the M polypeptide of measles virus in brain cells in subacute sclerosising panencephalitis. Virology. 99:443.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Neal Nathanson
    • 1
  • John R. Klein
    • 1
  1. 1.Dpeartment of Microbiology, School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations